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Abstract

The aim of the paper is to generalize the (ultra-classical) notion of the
determinant of a bilinear form to the class of bilinear forms on projective
modules without assuming that the determinant bundle of the module is
free. Successively it is proved that this new definition preserves the basic
properties, one expects from the determinant. As an example application, it
is shown that the introduced tools can be used to significantly simplify the
proof of a recent result by B. Rothkegel.
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The notion of the determinant is fundamental to (linear) algebra. Its most basic
variant is the determinant of matrices and endomorphisms of vector spaces. This
generalizes naturally to the determinant of endomorphisms on free modules, since
free modules (like vector spaces) have bases and associated coordinate systems.
In 1960s, Goldman showed that it is possible to generalize the notion of the deter-
minant to endomorphisms of projective modules, that in general lack coordinates.
Another standard application of the determinant is in the theory of bilinear forms
over fields. It is well known that the determinant of a bilinear form is non-zero if
and only if the form is non-degenerate. This can be even taken as a definition of
non-degeneracy over fields. Next fundamental property is that the determinant
factors over orthogonal sums. Like in the case of endomorphisms, the notion of
the determinant generalizes naturally to bilinear forms on free modules (see e.g.,
[3]). However, to the best of our knowledge, the notion has not been generalized
to forms on arbitrary projective modules. Some efforts in this direction may be
found in [5], but under quite a strong assumption, that the determinant bundle
of the module in question is free. The notion of the determinant in [5] is also
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implicitly relative to an isomorphism from the determinant bundle to the base
ring. Such a relativity with respect to some reference object seems to be intrinsic
to the notion of the determinant of forms on projective modules and is present
also in our approach.

In this paper, we propose another definition of the determinant of a bilinear
form on a finitely generated projective module. Our strategy consists of three
steps. First, we define a relative determinant of one form with respect to an-
other (necessarily non-degenerate) “reference form” on the same module. In the
second step, we show that, for non-degenerate forms, instead of having separate
“reference forms” on each module, it suffices to have “reference isomorphism”
only for line bundles (with rank ≤ 2 in the Picard group of R). In addition, if
R is a domain, then all one needs is one global “reference object” in form of a
certain semi-group homomorphism. Finally, in the last step, using the notion
of the relative determinant, we extend the definition of the determinant to all
forms, including degenerate ones. We also show that with such a definition, the
determinant still has the two basic properties: the form is non-degenerate if and
only if its determinant is invertible (see Corollary 13) and the determinant factors
over orthogonal sums (see Proposition 14). Finally, as an example application of
usability of the introduced theory, it is shown that the determinant of a bilinear
form on an arbitrary projective module can be used to significantly simplify the
proof of a recent result by B. Rothkegel.

The notation utilized throughout this note is conventional. For definitions of
used terms, we refer the reader to standard textbooks like e.g., [3, 4] (for the
theory of bilinear forms) and [7] (for the terms from K-theory). In particular, all
rings here are always commutative, associative and has 1. If M is a finitely gener-
ated projective R-module, by M∨ we denote its dual module M∨ = HomR(M,R).
For a symmetric bilinear form ξ : M × M → R on M , ξ̂ : M → M∨ denotes
the adjoin homomorphism (i.e.,

(
ξ̂(u)

)
(v) = ξ(u, v)). The form is said to be

non-degenerate if ξ̂ is an isomorphism.

1. Relative determinant

We begin by defining a relative determinant of a general form with respect to a
non-degenerate “reference form”. In this section R is an arbitrary commutative
ring and M is a finitely generated projective module of a constant rank. Let
ζ : M × M → R be a fixed non-degenerate symmetric bilinear form on M .
Take another form ξ : M ×M → R defined on the same module M (we do not
make any assumptions about non-degeneracy of ξ) and consider an endomorphism
∆ζ,ξ = ∆ζ(ξ) := ζ̂−1 ◦ ξ̂ of M .
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Observation 1. The endomorphism of ∆ζ,ξ associated to the pair (ζ, ξ) satisfies

the following identity

ξ(u, v) = ζ
(
u,∆ζ,ξ(v)

)
, for every u, v ∈ M.

Lemma 2. The form ξ is non-degenerate if and only if ∆ζ,ξ is an automorphism.

Proof. If ξ is non-degenerate, then ξ̂ : M → M∨ is an isomorphism. Conse-
quently, ∆ζ,ξ is an automorphism as a composition of two isomorphisms. Con-

versely, if ∆ζ,ξ is an automorphism, then ξ̂ = ζ̂ ◦ ∆ζ,ξ is an isomorphism and so
ξ is non-degenerate.

Recall (see e.g., [7, Chapter I, § 3]) that the determinant bundle of a finitely gen-
erated projective module M of a constant rank is defined as the highest exterior
power of M , namely

detM := M ∧ · · · ∧M
︸ ︷︷ ︸

n times

, where n = rankM.

By functoriality, any endomorphism ϕ ∈ EndM induces an endomorphism ∧nϕ
of detM of the form (∧nϕ)(x) = d ·x for a unique element d ∈ R, depending only
on ϕ (because detM is a line bundle). This element is called the determinant of
the endomorphism ϕ and denoted detϕ (see e.g., [7]).

Definition. Let ζ, ξ : M ×M → R be two symmetric bilinear forms on a pro-
jective R-module M with ζ non-degenerate. We define the relative determinant

of ξ with respect to ζ by the formula:

detζ(ξ) := det ∆ζ,ξ.

One of the fundamental facts in the theory of quadratic forms over fields, is that
a form is non-degenerate if and only if its determinant is non-zero. Combining
Lemma 2 with [2, Proposition 1.3], we get an analog of this property for the
relative determinant.

Proposition 3. The form ξ : M ×M → R is non-degenerate if and only if its

determinant detζ(ξ) is invertible in R.

As the theory of bilinear forms over fields has already been called upon, it is
worth to make also another observation.

Observation 4. If M is a free module (e.g., when R is a field), then the classical

determinant of ξ is the relative determinant (in sense of the above definition) of

ξ with respect to the dot product.
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Another basic property of the determinant is that it factors over orthogonal sums.

Proposition 5. Let M,N be two finitely generated projective R-modules of con-

stant ranks. Take symmetric bilinear forms ζ, ξ : M×M → R and ς, ρ : N×N →
R and assume that ζ, ς are non-degenerate. Then

detζ⊥ς(ξ ⊥ ρ) = detζ(ξ) · detς(ρ).

Proof. Fix any u⊕ v ∈ M ⊕N . We claim that ∆ζ⊥ς(ξ ⊥ ρ)(u⊕ v) =
(
∆ζ(ξ) ⊕

∆ς(ρ)
)
(u⊕ v). Indeed, the left-hand-side reads as

∆ζ⊥ς(ξ ⊥ ρ)(u⊕ v) =
(

ζ̂ ⊥ ς
−1

◦ ξ̂ ⊥ ρ
)

(u⊕ v) =
(

ζ̂ ⊥ ς
−1)(

ξ(u, ·) + ρ(v, ·)
)
,

while the right-hand-side evolves into
(

∆ζ(ξ) ⊕ ∆ς(ρ)
)

(u⊕ v) = ∆ζ(ξ)(u) ⊕ ∆ς(ρ)(v) = ζ̂−1
(
ξ(u, ·)

)
⊕ ς̂−1

(
ρ(v, ·)

)
.

Apply ζ̂ ⊥ ς to both side to get ξ(u, ·) + ρ(v, ·) in both cases. Now, ζ̂ ⊥ ς is an
isomorphism, hence our claim is proved. Consequently ∆ζ⊥ς(ξ ⊥ ρ) =

(
∆ζ(ξ) ⊕

∆ς(ρ)
)

and the assertion follows from [7, Proposition II.2.6].

The relative determinant satisfies also the following “chain-rule”, that has no
direct analog for a classical determinant:

Proposition 6. Let ζ, ς be two non-degenerate forms and ξ be any bilinear form,

all three defined on the same R-module M . Then

detζ(ξ) = detζ(ς) · detς(ξ).

Proof. We have ∆ζ,ξ = ζ̂−1 ◦ ξ̂ = ζ̂−1 ◦ ς̂ ◦ ς̂−1 ◦ ξ̂ = ∆ζ,ς ◦ ∆ς,ξ. Therefore
detζ(ξ) = det ∆ζ,ξ = det(∆ζ,ς ◦ ∆ς,ξ) = det ∆ζ,ς · det ∆ς,ξ = detζ(ς) · detς(ξ).

2. Determinant of non-degenerate forms

In this section we show that, when dealing with non-degenerate forms, the rela-
tivity in the definition of the determinant may be restricted entirely to modules of
constant rank 1 (i.e., line bundles). We begin with a proposition that is essentially
due to M. Ciema la and K. Szymiczek (c.f. [1, Theorem 2.5]).

Proposition 7. Let L be a line bundle. If L admits any non-degenerate form,

then L has rank ≤ 2 in the Picard group of R.

Proof. Let λ : L × L → R be a non-degenerate form, then λ̂ : L → L∨ is an
isomorphism and so we have L⊗ L ∼= L⊗ L∨ ∼= R.



Relative determinant of a bilinear module 207

For line bundles, there is an alternative formula for computing the relative deter-
minant (the proof is immediate):

Observation 8. If λ, ξ : L × L → R are two non-degenerate forms on the

same line bundle L and Λ,Ξ : L ⊗ L ∼−→ R be the associated isomorphisms:

Λ(x⊗ y) = λ(x, y), Ξ(x⊗ y) = ξ(x, y), then the following identity holds:

detλ(ξ) = det(Λ−1 ◦ Ξ).

Now, let ξ : M × M → R be a non-degenerate symmetric bilinear form on an
arbitrary finitely generated projective R-module M . In particular ξ̂ : M → M∨,
(
ξ̂(u)

)
(v) := ξ(u, v) is an isomorphism. By functoriality of the (fixed) exterior

power, ∧nξ̂ : ∧nM → ∧nM∨ is again an isomorphism. Recall that rankM =
rankM∨ (see e.g., [7, p. 17]), hence for n = rankM we get an isomorphism
∧nξ̂ : detM ∼−→ detM∨. Define δ : detM × detM → R by the formula

δ(x, y) :=
(
∧nξ̂(x)

)
(y).

It is straightforward to check that δ symmetric bilinear. Notice that δ̂ = ∧nξ̂ is
an isomorphism and so we have:

Observation 9. The form δ : detM × detM → R is non-degenerate.

This let us define a relative determinant of a (non-degenerate) form ξ with respect
to a (fixed) isomorphism Λ : (detM)⊗2 ∼−→ R or equivalently with respect to a
(fixed) non-degenerate form λ : detM × detM → R.

Definition. The relative determinant of a non-degenerate form ξ : M ×M → R
with respect to an isomorphism Λ : (detM)⊗2 → R is

detΛ(ξ) := det(Λ−1 ◦ ∆) = detλ(δ),

where δ : detM×detM → R is the form constructed above and ∆ : (detM)⊗2 ∼−→
R is the associated isomorphism of line bundles.

This definition of the determinant is still relative, but contrary to Definition 1,
instead of having a separate reference form for each module, we have a separate
reference isomorphism only for each line bundle isomorphic to R. In order to
have just one global reference object, we need to assume that R is a domain.
It is well known (see e.g., [7, Proposition I.3.5]), that over a domain, every line
bundle can be identified with an invertible ideal. We assume that such an iden-
tification is fixed once and for all (the definition that follows will still depend on
the identification).

The global reference object, with respect to which we may now define an
“absolute” determinant, is a (fixed) semi-group homomorphism F from {I ⊳
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R : I2 is principal} to the multiplicative semi-group (R, ·) such that F (I) is a
generator for I2. Having fixed F , we can coherently define all the Λ’s, namely
Λ : I2 → R is Λ(x) := x

F (I) . This way the determinants of forms on ideals
are uniformly defined by the means of Observation 8 and consequently, they are
uniformly defined on all finitely generated projective modules using Definition 2,
as well.

It is known (see [1, Theorem 3.1]) that every non-degenerate bilinear form on
an ideal I is given by the formula δ(x, y) = u

F (I) xy for some invertible u. Clearly,

the determinant of δ with respect to the above defined Λ (i.e., with respect to
F ) equals now detΛ(δ) = u. To emphasize the uniformity, in what follows, we
shall write detF (δ) or even drop the subscript all together, when F is known.

Proposition 10. Let ξ : M×M → R and ζ : N×N → R be two non-degenerate

symmetric bilinear forms on some finitely generated projective R-modules M
and N, respectively. Then

det(ξ ⊥ ζ) = det ξ · det ζ.

Proof. Let I, J be two invertible ideals of R such that detM ∼= I and detN ∼= J .
Further, let d := F (I), e := F (J) and

δ : I × I → R, δ(x, y) =
u

d
xy,

ǫ : J × J → R, ǫ(x, y) =
v

e
xy

be the associated bilinear forms, as explained in the above construction of the
determinant. Now, det(M⊕N) ∼= detM⊗detN by [7, Proposition II.2.6]. Denote
by ∂ : (detM⊗detN)×(detM⊗detN) → R the bilinear form associated to ξ ⊥ ζ.
With the earlier convention, we use the same letter to denote the isometric form
∂ : IJ × IJ → R. Now, F is a semi-group homomorphism and so F (IJ) = d · e.
Then, for some xx′, yy′ ∈ IJ we have

∂(xx′, yy′)

=
((

∧m+nξ̂ ⊥ ζ
)
(x1 ⊗ x′1 ∧ . . . ∧ xm ⊗ x′n)

)

(y1 ⊗ y′1 ∧ . . . ∧ ym ⊗ y′n)

=
((

∧mξ̂
)
(x1 ∧ . . . ∧ xm)

)

(y1 ∧ . . . ∧ ym) ·
((

∧nζ̂
)
(x′1 ∧ . . . ∧ x′n)

)

(y′1 ∧ . . . ∧ y′n)

= δ(x, y) · ǫ(x′, y′) = uv
de
xx′ yy′.

It follows that det(ξ ⊥ ζ) = uv = det ξ · det ζ, as desired.
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3. Determinant of general forms

The above construction of the determinant relies on the fact that for a non-
degenerate bilinear module the square (detM)2 of the determinant line bundle
is principal. It is not so for degenerate bilinear forms. Hence this construction
does not admit a direct generalization to such forms. We may, however, omit this
obstacle using our earlier definition of the relative determinant.

Observe that combining Observation 4 with the chain-rule (i.e., Proposition 6)
one gets the following identity for the determinant of a bilinear form over a field
(or more generally for a form on a free module):

det ξ = det ζ · detζ(ξ),

where ξ is an arbitrary form and ζ is non-degenerate. We shall use it to define
the determinant of a general form. First, however, we need to check that this
formula agrees with our definition of the determinant of a non-degenerate form
on a projective module, ensuring the correctness of the definition that follows. As
before, we assume that an isomorphism of a given line bundle with an invertible
ideal of R remains fixed and F is a fixed reference isomorphism relative to which
we define all determinants.

Lemma 11. If ζ, η : M ×M → R are two non-degenerate forms, then

det η = det ζ · detζ(η).

Proof. Assume that detM = ∧nM ∼= I for some invertible ideal I of R and
F (I) = d. Let u = det ζ, v = det η and w = detζ(η) with u, v, w ∈ UR. Thus
(
(∧nζ̂)(x)

)
(y) = u

d
xy,

(
(∧nη̂)(x)

)
(y) = v

d
xy and

(
∧n(ζ̂−1 ◦ η̂)

)
(x) = wx. By

functoriality of the exterior power, the following diagram commutes

detM∨

�
�
�
�
�

∧nη̂
� I@

@
@
@
@

∧nζ̂

detM
∧n(ζ̂−1 ◦ η̂)

- detM

Hence, ∧nη̂ =
(
∧nζ̂

)
◦
(
∧n(ζ̂−1 ◦ η̂)

)
and so v = u · w.

Definition. Let ξ : M ×M → R be a symmetric bilinear form on some finitely
generated projective module M over a domain R. If there exists any non-
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degenerate form ζ on M , the (absolute) determinant of ξ is defined as

det ξ := det ζ · detζ(ξ).

If, on the other hand, M does not admit any non-degenerate form, take det ξ := 0.

Proposition 12. The definition of det ξ does not depend on the choice of ζ.

Proof. Let ζ, η be two non-degenerate forms on M , then

det ζ · detζ(ξ) = det ζ · detζ(η) · detη(ξ) = det η · detη(ξ),

here the first equality follows from the chain-rule (Proposition 6) and the second
is due to Lemma 11.

In the view of the above definition, we have the following immediate consequence
of Proposition 3:

Corollary 13. The form ξ : M ×M → R is non-degenerate if and only if det ξ
is invertible in R.

Now, having completed the definition of the determinant we should generalize
Proposition 10.

Proposition 14. Let M , N be two finitely generated projective modules over a

common domain R, both admitting some non-degenerate forms. Then, for any

two forms ξ : M ×M → R and ρ : N ×N → R the following holds:

det(ξ ⊥ ρ) = det ξ · det ρ.

Proof. Let ζ : M ×M → R and ς : N × N → R be two non-degenerate forms.
Write

det ξ = det ζ · detζ(ξ) and det ρ = det ς · detς(ρ).

The assertion follows now from Proposition 10 and Proposition 5. Indeed:

det(ξ ⊥ ρ) = det(ζ ⊥ ς) · detζ⊥ς(ξ ⊥ ρ)

= det ζ · det ς · detζ(ξ) · detς(ρ)

= det ξ · det ρ.
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Example

As an example application of the above theory, we shall reprove [6, Theorem 2.9]
using the introduced notion of the determinant. Take a domain R and assume
that the reference semi-group homomorphism F is fixed. Let M = I1⊕· · ·⊕In be
a direct sum of invertible ideals of R. A symmetric bilinear form ξ : M ×M → R
is given by a formula (see [6, Proposition 2.8]):

ξ
(
x1 ⊕ · · · ⊕ xn, y1,⊕ · · · ⊕ yn

)
:=

1

d
·
(
x1, . . . , xn

)
·A ·






y1
...
yn




 ,

where d = F (I1 · · · In) and A =
(
aij

)

1≤i,j≤n
is a symmetric square matrix with

entries aij ∈ Iε11 · · · Iεnn with εk = 2 for k /∈ {i, j}, εk = 1 for k = i 6= j or
k = j 6= i and εk = 0 when k = i = j.

Keep the notation used in previous sections. The determinant bundle of M
is detM = det(I1 ⊕ · · · ⊕ In) ∼= det(I1) ⊗ · · · ⊗ det(In) ∼= I1 · · · In ⊳ R. The
isomorphism Λ : (I1 · · · In)2 ∼−→ R is given by Λ(x) = x/d. Therefore, one can
express δ : detM × detM → R in the form

δ
(
x1 ∧ · · · ∧ xn, y1 ∧ · · · ∧ yn

)
= det

(

ξ(xi, yj)
)

1≤i,j≤n
.

Consequently, the determinant of ξ is

det ξ = det
(
Λ−1 ◦ ∆

)
= d · det

(aij
d

)

1≤i,j≤n
=

1

dn−1
detA.

It follows from Corollary 13 that ξ is non-degenerate if and only if detA = u·dn−1

for some unit u ∈ UR of R. This (re)proves [6, Theorem 2.9].
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