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Abstract

We introduce the concept of very true operator on a commutative basic
algebra in a way analogous to that for fuzzy logics. We are motivated by
the fact that commutative basic algebras form an algebraic axiomatization
of certain non-associative fuzzy logics. We prove that every such operator
is fully determined by a certain relatively complete sublattice provided its
idempotency is assumed.1
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The concept of a very true operator was in fact introduced by L.A. Zadeh [6]
under the name “linguistic hedge” for a certain class of fuzzy logics. The name
“very true” was given by P. Hájek [5]. It was shown by M. Botur and R. Halaš
that every commutative basic algebra is an axiomatization of a non-associative
fuzzy logic that can be used e.g. in expert systems or another tasks in Artificial

1This work is supported by the project CZ.1.07/2.3.00/20.0051 Algebraic Methods in Quan-
tum Logic.
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Inteligence. Hence, the question about an operator reducing the structure of
values in these logics was established.

It was proved by M. Botur and the second author that the concept of a very
true operator can be extended in these logics and, in a pure axiomatic setting,
also in commutative basic algebras. Moreover, both of these concepts are in a
one-to-one correspondence, see [1].

On the other hand, several properties of very true operators on commutative
basic algebras have not been revealed in [1] and we feel the opportunity to do
it now. In particular, we show that the image of a very true operator in a
commutative basic algebra is in fact a sublattice of the induced lattice and, if
moreover an idempotency of the operator is assumed, every very true operator is
fully determined by this sublattice in the way developed here.

At first, we recall the basic concepts. By a basic algebra is meant an algebra
A = (A;⊕,¬, 0) of type 〈2, 1, 0〉 satisfying the axioms

(B1) x⊕ 0 = x,

(B2) ¬¬x = x,

(B3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,

(B4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1.

where 1 = ¬0. If, moreover, A satisfies the identity

(C) x⊕ y = y ⊕ x

then it is called a commutative basic algebra. In every basic algebra A we can
introduce an induced order “≤” as follows

x ≤ y if and only if ¬x⊕ y = 1.

It was shown in [3, 4] that 0 ≤ x ≤ 1 for all x ∈ A and (A;≤) is in fact a lattice
where

x ∨ y = ¬(¬x⊕ y)⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

The bounded lattice L(A) = (A;∨,∧, 0, 1) will be called the induced lattice of A.
It was proved in [3, 4] that for every commutative basic algebra A the induced
lattice L(A) is distributive (which is not true in a non-commutative case). Recall
that a basic algebra is an MV -algebra if and only if it is associative and that
every finite commutative basic algebra is an MV -algebra. M. Botur constructed
an example of an infinite basic algebra which is not an MV -algebra.
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Having an algebra (A;→, 1) of type 〈2, 0〉, one can introduce a very true operator
t on (A;→, 1) in the sense of P. Hájek as a mapping t : A → A satisfying t(1) = 1,
t(x) ≤ x, t(x → y) ≤ t(x) → t(y), where “≤” is an order on (A;→, 1) induced by
x ≤ y iff x → y = 1.

However, in basic algebras we have different operations and the previous con-
cept seems to be rather weak. First, let A = (A;⊕,¬, 0) be a basic algebra.
Define 1 = ¬0, x⊙ y = ¬(¬x⊕¬y) and x → y = ¬x⊕ y. Hence, A can be alter-
natively considered in operations (→, 0) or in operations (⊙,¬, 0). The converse
way is also possible, since

¬x = x → 0, x⊕ y = (x → 0) → y

or x⊕ y = ¬(¬x⊙ ¬y).

Therefore, consider the operation → as defined above, we can introduce the so-
called vt-operator on A as a mapping t : A → A satisfying the following:

(T1) t(1) = 1;

(T2) t(x) ≤ x;

(T3) t(x → y) ≤ t(x) → t(y);

(T4) t(x ∨ y) ≤ t(x) ∨ t(y).

If, moreover, t satisfies

(T5) t(t(x)) = t(x),

it will be called a strong vt-operator. It is elementary to prove the following (see
e.g. Lemma 4.1 in [1]).

Lemma 1. If t is a vt-operator on a basic algebra A = (A;⊕,¬, 0) then

(a) t(x) = 1 iff x = 1,

(b) t(0) = 0,

(c) x ≤ y implies t(x) ≤ t(y).

If a basic algebra A is commutative, we are able to prove a bit more due to the
fact that a commutative basic algebra is in fact a (non-associative) residuated
lattice. We can repeat this important result from [1, 2]:

Lemma 2 (Lemma 3.1 in [1]). Let A = (A;⊕,¬, 0) be a commutative basic

algebra. Then

(i) x⊙ y ≤ z iff x ≤ y → z, (adjoitness)

(ii) x ∧ y = x⊙ (x → y), (divisibility)
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(iii) (x → y) ∨ (y → x) = 1, (prelinearity)

(iv) x ≤ y =⇒ x → z ≥ y → z, z → x ≤ z → y.

For the proof of the following statement, see Lemma 4.1 in [1] again.

Lemma 3. Let t be a vt-operator on a commutative basic algebra A = (A;⊕,¬, 0).
Then

(a) t(x)⊙ t(y) ≤ t(x⊙ y),

(b) t(¬x) ≤ ¬t(x).

The following useful results holds in every basic algebra.

Lemma 4. Let A = (A;⊕,¬, 0) be a basic algebra and a, b, c ∈ A. Then

(a ∧ b)⊕ c = (a⊕ c) ∧ (b⊕ c).

Proof. Since basic algebras are in a one-to-one correspondence with bounded
lattices with sectionally antitone involutions, see e.g. [3, 4], we can compute

(a ∧ b)⊕ c = (¬(a ∧ b) ∨ c)c = (¬a ∨ ¬b ∨ c)c

= ((¬a ∨ c) ∨ (¬b ∨ c))c = (¬a ∨ c)c ∧ (¬b ∨ c)c

= (a⊕ c) ∧ (b⊕ c)

(where xy means an involution of x in the interval [y, 1], i.e., xy = ¬x⊕y provided
x ∈ [y, 1]).

Now, we are able to formulate our new results on vt-operators.

Theorem 5. Let A = (A;⊕,¬, 0) be a commutative basic algebra and let L(A) =
(A;∨,∧, 0, 1) be its induced lattice. Let t be a vt-operator on A. Then t is a 0-1-
homomorphism of L(A) to L(A).

Proof. By (T1) and (b) of Lemma 1 we have t(0) = 0, t(1) = 1.

By (T4) we have t(x∨ y) ≤ t(x) ∨ t(y). By (c) of Lemma 1, t(x ∨ y) ≥ t(x), t(y),
thus also t(x ∨ y) ≥ t(x) ∨ t(y). Altogether we conclude

(∗) t(x ∨ y) = t(x) ∨ t(y).

By (ii) of Lemma 2 we get x ∧ y = x ⊙ (x → y), thus, using (a) of Lemma 3,
t(x ∧ y) = t(x⊙ (x → y)) ≥ t(x) ⊙ t(x → y). Applying (i) of Lemma 3 we infer
t(x) ≤ t(x → y) → t(x ∧ y).
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Interchanging the roles of x and y in the previous, we obtain analogously t(y) ≤
t(y → x) → t(x ∧ y). Together, it gets

t(x) ∧ t(y) ≤ (t(y → x) → t(x ∧ y)) ∧ (t(x → y) → t(x ∧ y))

= (¬t(y → x)⊕ t(x ∧ y)) ∧ (¬t(x → y)⊕ t(x ∧ y))

= (¬t(y → x) ∧ ¬t(x → y))⊕ t(x ∧ y)

= ¬(t(y → x) ∨ t(x → y))⊕ t(x ∧ y)

due to Lemma 4 and de Morgan laws. Using (iii) of Lemma 2 and (∗) we have

t(y → x) ∨ t(x → y) = t((y → x) ∨ (x → y)) = t(1) = 1.

Substituting this in the previous computation, we obtain

t(x) ∧ t(y) ≤ ¬1⊕ t(x ∧ y) = 0⊕ t(x ∧ y) = t(x ∧ y).

However, by (c) of Lemma 1 we infer t(x)∧ t(y) ≥ t(x∧ y), whence t(x)∧ t(y) =
t(x ∧ y). We have proved that t is 0-1-homomorphism of L(A) to L(A).

Corollary 6. Let A = (A;⊕,¬, 0) be a commutative basic algebra and t be a

vt-operator on A. Then t is a 0-1-homomorphism of L(A) onto t(A).

Let L = (L;∨,∧) be a lattice and B = (B;∨,∧) its sublattice. We say that B is a
relatively complete sublattice of L if for each a ∈ L there exists sup{b ∈ B; b ≤ a}
computed in L.

We are able now to state our main results which characterize strong vt-
operators on commutative basic algebras by means of relatively complete sub-
lattices of the included lattices.

Theorem 7. Let A = (A;⊕,¬, 0) be a commutative basic algebra and t a strong

vt-operator on A. Let A0 = t(A). Then A0 = (A0;∨,∧, 0, 1) is a relatively

complete 0-1-sublattice of L(A) satisfying the following conditions

(I) sup{b ∈ A0; b ≤ x → y} ≤ sup{b ∈ A0; b ≤ x} → sup{b ∈ A0; b ≤ y}.

(J) sup{b ∈ A0; b ≤ x ∨ y} ≤ sup{b ∈ A0; b ≤ x} ∨ sup{b ∈ A0; b ≤ y}.

Proof. By Theorem 5, A0 = (A0;∨,∧, 0, 1) is a 0-1-sublattice of L(A) for A0 =
t(A). Assume a ∈ A. Then t(A) ∈ {b ∈ A0; b ≤ a}. If y ∈ A0 and y ≤ a

then t(y) = y due to (T5) and, using (c) of Lemma 1, y = t(y) ≤ t(a). Hence,
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t(a) = {b ∈ A0; b ≤ a} for all a ∈ A thus A0 is relatively complete. By (T3), we
conclude

sup{b ∈ A0; b ≤ x → y} = t(x → y) ≤ t(x) → t(y)

= sup{b ∈ A0; b ≤ x} → sup{b ∈ A0; b ≤ y},

which is the condition (I), and analogously by (T4)

sup{b ∈ A0; b ≤ x ∨ y} = t(x ∨ y) ≤ t(x) ∨ t(y)

= sup{b ∈ A0; b ≤ x} ∨ sup{b ∈ A0; b ≤ y},

which is the inequality (J).

We can prove also the converse to show that relatively complete 0-1-sublattices
satisfying (I) and (J) really characterize strong vt-operators on commutative basic
algebras.

Theorem 8. Let A = (A;⊕,¬, 0) be a commutative basic algebra and let L(A) =
(A;∨,∧, 0, 1) be its induced lattice. Let A0 = (A0;∨,∧, 0, 1) be a relatively com-

plete 0-1-sublattice of L(A) satisfying (I) and (J). Define a mapping t : A → A

as follows:

t(a) = sup{b ∈ A0; b ≤ a}.

Then t is a strong vt-operator on A.

Proof. Since A0 is relatively complete, t(a) = sup{b ∈ A0; b ≤ a} ∈ A0. It is
evident that for any b ∈ A0 we have t(b) = b thus, in particular, t(a) = A0

and t(1) = 1 and t(t(a)) = t(a) proving (T1) and (T5). Immediately from the
definition of t we have t(x) ≤ x which is (T2) and the condition (I) yields (T3).

Since A0 is relatively complete, there exists sup{b ∈ A0; b ≤ a} for all a ∈ A

and, by (J), we conclude

t(x) ∨ t(y) = sup{b ∈ A0; b ≤ x} ∨ sup{b ∈ A0; b ≤ y}

≥ sup{b ∈ A0; b ≤ x ∨ y} = t(x ∨ y),

which is (T4).
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