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Abstract

A congruence ρ on a semiring S is called a (generalized)Clifford semiring
congruence if S/ρ is a (generalized)Clifford semiring. Here we characterize
the (generalized)Clifford congruences on a semiring whose additive reduct
is a regular semigroup. Also we give an explicit description for the least
(generalized)Clifford congruence on such semirings.
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1. Introduction

A semiring (S,+, ·) is an algebra with two binary operations + and · such that
both, the additive reduct (S,+) and multiplicative reduct (S, ·) are semigroups
and connected by the ring like distributive laws. An element a of S is called an
additive idempotent if a + a = a. We denote the set of all additive idempotents
of a semiring S by E+ or sometimes by E+(S). A subset I 6= ∅ of a semiring S is
called a left ideal of S if a+ b, sa ∈ I for all a, b ∈ I and s ∈ S. Right ideals are
defined dually. I is said to be an ideal of S if it is both, a left and a right ideal
of S. A semiring S is additive regular if its additive reduct (S,+) is a regular
semigroup, that is, if for all a ∈ S there exists x ∈ S such that a = a+x+ a. An
element x of a semiring S is called an additive inverse of a ∈ S if a = a+ x+ a
and x = x + a + x. The set of all additive inverses of a is denoted by V +(a).
A semiring S is called an inverse semiring if every element of S has a unique
additive inverse, equivalently, the additive reduct (S,+) is an inverse semigroup.
A semiring S is called a skew-ring [6] if its additive reduct (S,+) is a group. A

http://dx.doi.org/10.7151/dmgaa.1219


144 A.K. Bhuniya

semiring S is called an idempotent semiring if a + a = a = a2 for every a ∈ S.
An idempotent semiring with commutative addition is called a b-lattice [14]. By
a subdirect product of two semirings S1 and S2 we mean a semiring S which is
isomorphic to a subsemiring T of the direct product of S1 and S2 such that the
projection maps of T into both, S1 and S2 are surjective.

Thus semirings are generalizations of both, distributive lattices and rings, and
hence it is interesting to characterize the class of semirings which are subdirect
products of a distributive lattice and a ring. Bandelt and Petrich [1] characterized
the same for inverse semirings. In the same paper they described a construction,
namely strong distributive lattices of rings, which is analogous to the construction
of a strong semilattice of groups. Ghosh [4] improved the construction of strong
distributive lattices of rings given by Bandelt and Petrich, and characterized the
class of all semirings which are subdirect products of a distributive lattice and a
ring. The additive reduct of every semiring which is a strong distributive lattice
of rings is commutative. To get a noncommutative one, Sen, Maity and Shum [14]
considered the semirings which are strong distributive lattices of skew-rings and
a more general class of semirings, namely strong b-lattices of skew-rings. Such
semirings are known as Clifford semirings and generalized Clifford semirings,
respectively.

Sen, Ghosh and Mukhopadhayay [13] characterized the Clifford semiring con-
gruences on an additive commutative and inverse semiring. Maity [9] improved
this to inversive semirings S such that E+(S) is a bisemilattice. In this arti-
cle we wish to characterize the Clifford semiring congruences on additive regular
semirings.

It was recognized by Feigenbaum [3] that every congruence ρ on a regular
semigroup S is uniquely determined by its kernel, kerρ and its trace, trρ. Pastijn
and Petrich [11] characterized the least and the greatest congruences on a reg-
ular semigroup S with a given trace and kernel. For an inverse semigroup, and
more generally for an orthodox semigroup S, the least Clifford congruence was
described by Mills [10]. LaTorre [8] used the least group congruence on a regular
semigroup given by Feigenbaum [2] to describe the least Clifford congruence ξ on
a regular semigroup.

Following Pastijn and Petrich [11], we define two relations τ and κ on the
lattice C(S) of all congruences on an additive regular semiring S, induced by
trace and kernel, respectively. Equivalence classes determined by τ and κ are
intervals with the greatest and the least elements. If ρ is a [generalized] Clifford
semiring congruence on an additive regular semiring S, then the greatest element
ρmax in ρτ is a [b-lattice]distributive lattice congruence and the greatest element
ρmax in ρκ is a ring congruence. Thus it follows that every Clifford semiring is
a subdirect product of a distributive lattice and a ring. Such details are given in
Section 3. In Section 4, we give explicit characterizations for the least Clifford
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semiring congruence and the least generalized Clifford semiring congruence, which
is analogous to the characterization of the least Clifford congruence on a regular
semigroup given by LaTorre.

2. Preliminaries

Sen, Ghosh and Mukhopadhyay [4, 13] used the term Clifford semiring to mean
the semirings which are strong distributive lattices of rings. By the same phrase,
Sen, Maity and Shum [14] called the semirings which are strong distributive
lattices of skew-rings, and used the name generalized Clifford semiring for the
semirings which are strong b-lattices of skew-rings. They also characterized both,
the Clifford semirings and generalized Clifford semirings as equational classes.
Here we follow the conventions of Sen, Maity and Shum.

Definition 2.1. A semiring is called a Clifford semiring if it is an inverse semiring
satisfying following conditions: for every a, b ∈ S and a′ ∈ V +(a), b′ ∈ V +(b),

a+ a′ = a′ + a,(2.1)

a(a+ a′) = a+ a′,(2.2)

a(b+ b′) = (b+ b′)a,(2.3)

a+ a(b+ b′) = a,(2.4)

and a+ b = b implies that a+ a = a.(2.5)

As a generalizations of Clifford semirings Sen, Maity and Shum [14] introduced
generalized Clifford semirings which are defined by:

Definition 2.2. A semiring S is a generalized Clifford semiring if it is an inverse
semiring satisfying the conditions (2.1), (2.2) and (2.5) for all a, b ∈ S and a′ ∈
V +(a), b′ ∈ V +(b).

An inverse semiring is a [generalized] Clifford semiring if and only if it is a sub-
direct product of a [b-lattice] distributive lattice and a skew-ring [14, Theorem
2.7]. For detailed descriptions and examples of Clifford and generalized Clifford
semirings we refer to [14].

Let S be a semiring. A congruence ρ on S is called a Clifford (generalized)
congruence if S/ρ is a Clifford (generalized) semiring. We define b-lattice con-
gruences and distributive lattice congruences similarly.

We denote the set of all congruences on S by C(S). Lallement’s Lemma shows
that the idempotents are well behaved in connection with homomorphisms of
regular semigroups. A corresponding result for additive regular semirings is as
follows:
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Lemma 2.3 (Lallement’s Lemma). Let S be an additive regular semiring and

ρ ∈ C(S). Then aρ ∈ E+(S/ρ) if and only if aρe for some e ∈ E+(S).

Pastijn and Petrich [11] characterized the congruences on a regular semigroup
by their trace and kernel. Similarly, the following notions can be developed and
results can be proved.

The trace of a congruence ρ on an additive regular semiring gives us how
the additive idempotents are ρ-related and the kernel of ρ gives us the union of
equivalence classes of all additive idempotents. Thus the trace and kernel of a
congruence ρ is are defined by [12]:

tr ρ = ρ ∩ (E+ × E+) and ker ρ = {a ∈ S : aρ ∈ E+(S/ρ)}.

Since S is regular, by Lallement’s Lemma,

ker ρ = {a ∈ S : a ρ e for some e ∈ E+}

Lemma 2.4. A congruence on an additive idempotent semiring S is uniquely

determined by its kernel and its trace.

Define two relations τ and κ on the lattice C(S) by: for ρ, σ ∈ C(S),

ρτσ if tr ρ = trσ and ρκσ if ker ρ = kerσ.

Then we have:

Lemma 2.5. Let S be an additive regular semiring and ρ ∈ C(S). Then both, ρτ
and ρκ are intervals with the greatest and the least elements.

For ρ ∈ C(S), we denote ρτ = [ρmin, ρmax] and ρκ = [ρmin, ρmax].

Lemma 2.6. Let S be an additive regular semiring. Then for every ρ ∈ C(S),

ρ = ρmax ∩ ρmax.

We use, whenever possible, the notations of Golan [5] and Howie [7].

3. Clifford and generalized Clifford Congruences

First we characterize ρmax and ρmax when ρ is a generalized Clifford congruence.

Lemma 3.1. Let S be an additive regular semiring and ρ be a generalized Clifford

congruence on S. Then
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(1) ρmax is given by:

ρmax = {(a, b) ∈ S ×S : ∃ a′ ∈ V +(a), b′ ∈ V +(b) such that (a+ a′) ρ (b+ b′)}.

(2) ρmax is given by:

ρmax = {(a, b) ∈ S × S : ∃ b′ ∈ V +(b) such that a+ b′ ∈ ker ρ}.

Proof. (1) It follows from the definition that ρmax is reflexive and symmetric.
Now let a, b, c ∈ S such that aρmaxb and bρmaxc. Then (a + a′)ρ(b + b′) and
(b+b′′)ρ(c+c′) for some a′ ∈ V +(a), b′, b′′ ∈ V +(b) and c′ ∈ V +(c). Since (S/ρ,+)
is an inverse semigroup, so b′ρb′′, and hence (a+a′)ρ(b+b′)ρ(b+b′′)ρ(c+c′). Thus
ρmax is an equivalence relation. Let a, b, c ∈ S and aρmaxb. Then (a+a′)ρ(b+ b′)
for some a′ ∈ V +(a) and b′ ∈ V +(b). Consider c′ ∈ V +(c), (a + c)′ ∈ V +(a + c)
and (b+c)′ ∈ V +(b+c). Since (S/ρ,+) is an inverse semigroup, so (a+c)′ρ(c′+a′)
and (b+ c)′ρ(c′ + b′). Then ((a+ c) + (a+ c)′)ρ(a+ c+ c′ + a′)ρ(a+ a′ + c+ c′),
since (S/ρ,+) is a Clifford semigroup. Similarly ((b+c)+(b+c)′)ρ(b+b′+c+c′).
Thus ((a+c)+(a+c)′)ρ((b+c)+(b+c)′) and hence (a+c)ρmax(b+c). Similarly,
(c + a)ρmax(c + b). Now ca′ ∈ V +(ca) and a′c ∈ V +(ac) implies that acρmaxbc
and caρmaxcb. Thus ρmax is a congruence on S.

Also tr ρ = tr ρmax. Now let ξ be a congruence on S such that tr ρ = tr ξ.
Then for a, b ∈ S, aξb implies that (a+ a′)ξ(b+ b′) and so (a+ a′)ρ(b+ b′). Thus
aρmaxb and hence the result follows.

(2) Let a, b ∈ S such that aρmaxb. Then a+b′ ∈ ker ρ and hence, by Lallement’s
Lemma, aρ+ b′ρ = eρ for some e ∈ E+. Since (S/ρ,+) is an inverse semigroup,
so bρ+a′ρ = (aρ+ b′ρ)′ = eρ which implies that b+a′ ∈ ker ρ. Thus bρmaxa, and
so ρmax is symmetric. Now let a, b, c ∈ S, and aρmaxb and bρmaxc. Then there are
e, f ∈ E+ such that (a+b′)ρe and (b+c′)ρf . Then (a+c′+(c+b+b′+c′))ρ(a+b+
b′+c′)ρ(e+f). Since (S/ρ,+) is an inverse semigroup, (c+b′+b+c′)ρ, (e+f)ρ ∈
E+(S/ρ) and hence (a + c′ + (c + b + b′ + c′ + e + f))ρ(c + b + b′ + c′ + e + f).
Then (c+ b′ + b+ c′ + e+ f)ρ ∈ E+(S/ρ) implies that (a+ c′)ρ ∈ E+(S/ρ), since
S/ρ is a generalized Clifford semiring. Hence a + c′ ∈ ker ρ, by the Lallement’s
Lemma, and so aρmaxc. Thus ρmax is an equivalence relation.

Let a, b, c ∈ S and aρmaxb. Then (a + b′)ρe for some e ∈ E+. Consider b′ ∈
V +(b), c′ ∈ V +(c) and (b+c)′ ∈ V +(b+c). Since (S/ρ,+) is an inverse semigroup,
so (b+c)′ρ(c′+b′). Then (a+c+(b+c)′)ρ(a+c+c′+b′)ρ(a+b′+b+c+c′+b′)ρg for
some g ∈ E+. Thus (a+c)ρmax(b+c). Similarly (c+a)ρmax(c+b). Also acρmaxbc
and caρmaxcb follows form the fact that ce, ec ∈ E+, b′cρ(bc)′ and cb′ρ(cb)′ for
every b′ ∈ V +(b), (bc)′ ∈ V +(bc) and (cb)′ ∈ V +(cb). Thus ρmax is a congruence
on S.

Now a ∈ ker ρmax implies that a + e ∈ ker ρ for some e ∈ E+. Then there
is f ∈ E+ such that (a + e)ρf and so a + (e + f)ρ(e + f). This implies that



148 A.K. Bhuniya

a ∈ ker ρ, since S/ρ is a generalized Clifford semiring. Thus ker ρmax ⊆ ker ρ.
Since ρ ⊆ ρmax reverse inclusion follows directly. Hence ker ρ = ker ρmax. Let ξ
be a congruence on S such that ker ρ = ker ξ, and a, b ∈ S such that aξb. Then
(a + b′)ξ(b + b′) implies that a + b′ ∈ ker ξ = ker ρ, and hence aρmaxb. Thus
ξ ⊆ ρmax.

On a semiring S, we denote the least distributive lattice congruence on S by η,
the least b-lattice congruence on S by ν and the least skew-ring congruence on
S by σ. If ρ is a generalized Clifford congruence on S then (S/ρ,+) is a Clifford
semigroup and so (a+ e)ρ(e + a) for every a ∈ S and e ∈ E+.

Theorem 3.2. Let S be an additive regular semiring and ρ be a congruence on

S. Then the following statements are equivalent:

(1) ρ is a generalized Clifford congruence,

(2) ρmax is a b-lattice congruence and ρmax is a skew-ring congruence on S,

(3) ρmax = ρ ∨ ν and ρmax = ρ ∨ σ,

(4) trρ = tr(ρ ∨ ν) and kerρ = ker(ρ ∨ σ).

Proof. (1) ⇒ (2) Let a, b ∈ S, and consider a′ ∈ V +(a), b′ ∈ V +(b), (a + b)′ ∈
V +(a + b) and (b + a)′ ∈ V +(b + a). Since (S/ρ,+) is an inverse semigroup,
(a + b)′ρ(b′ + a′) and (b + a)′ρ(a′ + b′). Then ((a + b) + (a + b)′)ρ(a + b + b′ +
a′)ρ(b+ b′+a+a′)ρ(b+a+a′+ b′)ρ((b+a)+ (b+a)′) shows that a+ bρmaxb+a.
Consider (a + a)′ ∈ V +(a + a). Then (a + a)′ρ(a′ + a′) which implies that
((a+a)+(a+a)′)ρ(a+a+a′+a′)ρ(a+a′+a+a′) = a+a′. Thus (a+a)ρmaxa. Now
consider a2

′

∈ V +(a2). Since aa′ ∈ V +(a2), so a2
′

ρaa′, and since ρ is a generalized
Clifford congruence a(a+a′)ρ(a+a′). Thus (a2+a2

′

)ρ(a2+aa′)ρa(a+a′)ρ(a+a′)
which implies that a2ρmaxa. Therefore ρmax is a b-lattice congruence on S.

Let e, f ∈ E+. Since ρ is an inverse semigroup, so (e+ f)ρ ∈ E+(S/ρ). Then
e+ f ∈ ker ρ, by Lallement’s Lemma. This implies that eρmaxf . Thus ρmax is a
skew-ring congruence on the semiring S.

(2) ⇒ (3) By our hypothesis, ν ⊆ ρmax. Also ρ ⊆ ρmax. Hence ν ∨ ρ ⊆ ρmax.
Again kerρmax ⊆ S = kerν = ker(ν ∨ ρ) and trρmax = trρ ⊆ tr(ν ∨ ρ) implies
that ρmax ⊆ ν ∨ ρ. Thus ρmax = ν ∨ ρ. Similarly ρmax = ρ ∨ σ.

(3) ⇒ (4) Follows directly.

(4) ⇒ (1) Let a ∈ S. Then for any two a′, a′′ ∈ V +(a), a′νa′′ implies that
(a + a′)ν(a + a′′) and (a′ + a)ν(a′′ + a). Then trρ = tr(ρ ∨ ν) implies that
(a+a′)ρ(a+a′′) and (a′+a)ρ(a′′+a), and hence a′ = (a′+a+a′)ρ(a′′+a+a′′) = a′′.
Thus ρ is an inversive semiring congruence. Let a ∈ S. Then for all a′ ∈
V +(a) both a′ν and aν are inverses of aν in S/ν. So a′νa, which implies that
(a + a′) ν a ν (a′ + a) that is (a + a′)ν(a′ + a). Consequently, (a + a′)ρ(a′ + a).
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Now aa′νa2 implies that (a2+aa′)νa2νaν(a+a′), that is a(a+a′)ν(a+a′), which
implies that a(a+a′)ρ(a+a′). Let a, b ∈ S such that aρ+bρ = bρ. Then (a+b)ρb
that is (a + b) + b′ ∈ kerρ = ker(ρ ∨ σ). Since σ and hence ρ ∨ σ is skew-ring
congruence and b+ b′ ∈ E+, so a ∈ ker(ρ∨σ) = kerρ. Hence aρ+aρ = aρ. Thus
ρ is a generalized Clifford congruence on S.

Corollary 3.3. On a semiring S the following conditions are equivalent:

(i) S is a generalized Clifford semiring.

(ii) For every ρ ∈ C(S), ρmax = ρ ∨ ν and ρmax = ρ ∨ σ.

Let S be a generalized Clifford semiring. Consider ε, the relation of equality
on S. Then ε is a congruence on S and εmax = ν and εmax = σ. Hence ε =
εmax ∩ εmax implies that S is a subdirect product of S/ν and S/σ. Thus every
generalized Clifford semiring is a subdirect product of a b-lattice and a skew-ring
[14, Theorem 2.7].

Theorem 3.4. Let S be an additive regular semiring and ρ be a congruence on

S. Then the following statements are equivalent:

(1) ρ is a Clifford congruence on S;

(2) ρmax is a distributive lattice congruence on S and ρmax is a skew-ring con-

gruence on S;

(3) ρmax = ρ ∨ η and ρmax = ρ ∨ σ;

(4) trρ = tr(ρ ∨ η) and kerρ = ker(ρ ∨ σ).

Proof. (1) ⇒ (2) Every Clifford semiring is a generalized Clifford semiring.
So ρmax is a b-lattice congruence, by Theorem 3.2. Let a, b ∈ S and a′ ∈
V +(a), b′ ∈ V +(b). Then ab′ ∈ V +(ab) and b′a ∈ V +(ba), and we have ab+ab′ =
a(b+ b′)ρ(b+ b′)a = ba+ b′a. Thus abρmaxba. Let (a+ ab)′ ∈ V +(a+ ab). Then
(a+ ab)′ρ(ab′ + a′), since (S/ρ,+) is an inverse semigroup. Hence (a+ ab)+ (a+
ab)′ρ(a+ab+ab′+a′)ρ(a+a′+a(b+b′))ρa+a′ which implies that (a+ab)ρmaxa.
Hence ρmax is a distributive lattice congruence.

It follows from Theorem 3.2, that ρmax is a skew-ring congruence.

(2) ⇒ (3) Similar to Theorem 3.2.

(3) ⇒ (4) Follows directly.

(4) ⇒ (1) From Theorem 3.2 it follows that ρ is a generalized Clifford con-
gruence. Let a, b ∈ S and b′ ∈ V +(b). Then ab′ ∈ V +(ab) and b′a ∈ V +(ba)
implies that (ab+ ab′)ηabηbaη(ba + b′a). Since trρ = tr(ρ ∨ η), this implies that
a(b + b′)ρ(b + b′)a. Now consider (a + ab)′ ∈ V +(a + ab) and a′ ∈ V +(a). Then
(a+ ab+ (a+ ab)′)η(a+ ab)ηaη(a+ a′) implies that (a+ ab+ (a+ ab)′)ρ(a+ a′).
Since (S/ρ,+) is an inversive semigroup, so (a+ ab)′ρ(ab′ + a′). Hence (a+ ab+
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(a+ab)′)ρ(a+ab+ab′+a′) which implies that (a+a(b+ b′)+a′)ρ(a+a′) and so
(a+a(b+b′)+a′+a)ρ(a+a′+a) = a. Then (a+a(b+b′))ρ(a+a(b+b′)+a′+a)ρa.
Thus ρ is a Clifford congruence.

Corollary 3.5. On a semiring S the following conditions are equivalent:

(i) S is a Clifford semiring.

(ii) For every ρ ∈ C(S), ρmax = ρ ∨ η and ρmax = ρ ∨ σ.

This corollary implies that every Clifford semiring is a subdirect product of a
distributive lattice and a skew-ring.

4. The least generalized Clifford and Clifford congruence

In [8] LaTorre described a construction for the least semilattice of group congru-
ence on a regular semigroup. Let S be a regular semigroup. For a ∈ S, V (a)
denotes the set of all inverses of a. A subset T of S is called self-conjugate if
x′Tx ⊆ T for all x ∈ S and all x′ ∈ V (x); T is called full if E ⊆ T . Let C denote
the collection of all full, self-conjugate subsemigroups of S and let U =

⋂
T∈C

T
be the least member in C. In her doctoral dissertation, Feigenbaum [2] proved
that

Lemma 4.1 ([2]; Theorems 4.1, 4.2). For each H in C, the relation

βH = {(a, b) ∈ S × S : xa = by for some x, y ∈ H}

is a group congruence on S.

The least group congruence on S is given by σ = βU .

LaTorre considered the least semilattice congruence η on a regular semigroup S
and Y = S/η. Then S = ∪α∈Y Sα is a semilattice Y of its η-classes Sα which is a
regular semigroup for each α ∈ Y . Let Uα = U ∩Sα for each α ∈ Y . Then Uα is a
full, self-conjugate subsemigroup of Sα. Hence the relation βUα

= {(a, b) ∈ S×S :
xa = by for some x, y ∈ Uα} is a group congruence on Sα. Let ξ = ∪α∈DβUα

.
Then ξ is a congruence on S such that S/ξ = ∪α∈Y Sα/βUα

is a semilattice Y of
groups Sα/βUα

. Thus the relation ξ is given by:

aξb if a, b ∈ Sα and aβUα
b for some α ∈ Y,

equivalently, aξb if aηb and xa = by for some x, y ∈ U ∩ aη.

LaTorre [8] proved that



The Clifford semiring congruences on ... 151

Lemma 4.2 ([8], Theorem 1). Let S be a regular semigroup. Then ξ is the least

semilattice of groups congruence on S.

Here we give the least distributive lattice of skew-rings congruence ξ on an addi-
tive regular semiring in a slight modified form than that given by Lattore [8]. A
subset I of S is called self-conjugate if x′+I+x ⊆ I for all x ∈ S and x′ ∈ V +(x),
and I is called full if E+ ⊆ I. Let C denote the collection of all full, self-conjugate
ideals of S and let U =

⋂
T∈C

T be the least member in C.

The following result can be proved similar to [2]:

Lemma 4.3. For each I in C, the relation βI = {(a, b) ∈ S × S : x+ a = b + y
for some x, y ∈ I} is a skew-ring congruence on S.

The least skew-ring congruence on S is given by σ = βU .

Now we are ready to prove the main theorems of this section.

Theorem 4.4. Let S be an additive regular semiring. Then the least generalized

Clifford congruence ζ on S is given by:

aζb if and only if aνb and x+ a = b+ y for some x, y ∈ U .

Proof. As in the proof of Theorem 1 [8], it can be proved that ζ is an additive
congruence on S such that (S/ζ,+) is an inverse semigroup. Let a, b ∈ S be such
that aζb and c ∈ S. Then there are x, y ∈ U such that aνb and x + a = b + y.
Then caνcb. Also cx + ca = cb + cy. Since U is an ideal cx, cy ∈ U . Therefore
caζcb. Similarly acζbc. Thus ζ is an inversive semiring congruence on S.

Let a ∈ S and a′ ∈ V +(a). Then (a + a′)ν(a′ + a). Also x + (a + a′) =
(a′ + a) + y where x = a′ + a, y = a + a′ ∈ E+ ⊆ U , since U is full. Hence
(a+a′)ζ(a′+a). Again a(a+a′)ν(a2+aa′)ν(a+a′) and x+a(a+a′) = a+a′+y
where x = a(a + a′), y = a + a′ ∈ U . Therefore a(a + a′)ζ(a + a′). Let c, d ∈ S
be such that (c+ d)ζd. Then there are x, y ∈ U such that x+ d = c+ d+ y. Let
c′ ∈ V +(c), d′ ∈ V +(d). Then (c+x+d+d′+ c′)+ c = c+ c+(d+y+d′+ c′+ c).
Since U is a full subsemiring x + d + d′, c′ + c ∈ U . U is self-conjugate. So
c+x+d+d′+c′, d+y+d′ ∈ U . This implies that c+x+d+d′+c′, d+y+d′+c′+c ∈ U .
Also (c + c)νc. Therefore (c + c)ζc. Thus ζ is a generalized Clifford congruence
on S.

Note that ζ = ν ∩ σ. Let ρ be a generalized Clifford congruence on S. Then
Theorem 3.2 implies that ρmax is a b-lattice congruence on S and ρmax is a skew-
ring congruence on S which implies that ν ⊆ ρmax and σ ⊆ ρmax. Therefore
ζ = ν ∩ σ ⊆ ρmax ∩ ρmax = ρ, by Lemma 2.6. Hence ζ is the least generalized
Clifford congruence on S.
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Theorem 4.5. Let S be an additive regular semiring. Then the least Clifford

congruence ξ on S is given by:

aξb if and only if aηb and x+ a = b+ y for some x, y ∈ U .

Proof. Theorem 4.4 implies that ξ is a generalized Clifford congruence. Let
a, b ∈ S and a′ ∈ V +(a). (S/η, ·) commutative. So b(a + a′)η(a + a′)b. Taking
x = (a+a′)b and y = b(a+a′) we get that b(a+a′)ξ(a+a′)b. From the absorptive
property of distributive lattice it follows that (b + b(a + a′))ηb. Let b′ ∈ V (b).
Then (b+b′)+(b+b(a+a′)) = b+(b′+b+b(a+a′)) where b+b′, b′+b+b(a+a′) ∈ U .
Therefore (b+ b(a+ a′))ξb. Hence ξ is a Clifford congruence on S.

Note that ξ = η ∩ σ. Let ρ be a Clifford congruence on S. Then Theorem 3.4
implies that ρmax is a distributive lattice congruence on S and ρmax is a skew-
ring congruence on S which implies that η ⊆ ρmax and σ ⊆ ρmax. Therefore
ξ = η ∩ σ ⊆ ρmax ∩ ρmax = ρ. Hence ξ is the least Clifford congruence on S.

The least skew-ring congruence σ on an inversive semiring S is as follows:

aσb if and only if a+ e = b+ e for some e ∈ E+.

Hence the description of the least Clifford congruence, given by Sen, Ghosh and
Mukhopadhaya [13], on an additive commutative inversive semiring follows as a
corollary:

Corollary 4.6 [13]. Let S be an inversive semiring. Then the least Clifford

congruence ξ on S is given by:

aξb if and only if aηb and a+ e = b+ e for some e ∈ E+.
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