CHARACTERIZATIONS OF ORDERED「-ABEL-GRASSMANN'S GROUPOIDS

Madad Khan, Venus Amjid
Department of Mathematics COMSATS Institute of Information Technology
Abbottabad, Pakistan
e-mail: madadmath@yahoo.com, venusmath@yahoo.com

Gul Zaman
Department of Mathematics University of Malakand, Chakdara, Pakistan
e-mail: gzaman@uom.edu.pk

AND

Naveed Yaqoob
Department of Mathematics Quaid-i-Azam University, Islamabad, Pakistan
e-mail: nayaqoob@ymail.com

Abstract

In this paper, we introduced the concept of ordered Γ-AG-groupoids, Γ ideals and some classes in ordered Γ-AG-groupoids. We have shown that every Γ-ideal in an ordered Γ-AG**-groupoid S is Γ-prime if and only if it is Γ-idempotent and the set of Γ-ideals of S is Γ-totally ordered under inclusion. We have proved that the set of Γ-ideals of S form a semilattice, also we have investigated some classes of ordered Γ - $\mathrm{AG}^{* *}$-groupoid and it has shown that weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular and (2,2)-regular ordered Γ - $\mathrm{AG}^{* *}$-groupoids coincide. Further we have proved that every intra-regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid is regular but the converse is not true in general. Furthermore we have shown that non-associative regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular Γ - AG^{*}-groupoids do not exist.

Keywords: ordered Γ-AG-groupoids, Γ-ideals, regular Γ-AG ${ }^{* *}$-groupoids. 2010 Mathematics Subject Classification: 20M10, 20N99.

1. Introduction

The concept of a left almost semigroup (LA-semigroup) [10] was first introduced by Kazim and Naseeruddin in 1972. In [7], the same structure is called a left invertive groupoid. Protić and Stevanović called it an Abel-Grassmann's groupoid (AG-groupoid) [24].

An AG-groupoid is a groupoid S whose elements satisfy the left invertive law $(a b) c=(c b) a$, for all $a, b, c \in S$. In an AG-groupoid, the medial law [10] $(a b)(c d)=(a c)(b d)$ holds for all $a, b, c, d \in S$. An AG-groupoid may or may not contains a left identity. In an AG-groupoid S with left identity, the paramedial law $(a b)(c d)=(d c)(b a)$ holds for all $a, b, c, d \in S$. If an AG-groupoid contains a left identity, then by using medial law, we get $a(b c)=b(a c)$, for all $a, b, c \in S$.

The concept of ordered Γ-semigroups has been studied by many mathematicians, for instance, Chinram et al. [1], Hila et al. [2, 3, 4, 5, 6], Iampan [8, 9] and Kwon et al. [15, 16, 17, 18]. Also see [25].

In this paper, we have introduced the notion of ordered Γ - $\mathrm{AG}^{* *}$-groupoids. Here, we have explored all basic ordered Γ-ideals, which includes ordered Γ-ideals (left, right, two-sided) and some classes of ordered Γ-AG-groupoids.

Definition 1. Let S and Γ be two non-empty sets, then S is said to be a Γ-AGgroupoid if there exists a mapping $S \times \Gamma \times S \rightarrow S$, written (x, γ, y) as $x \gamma y$, such that S satisfies the left invertive law, that is

$$
\begin{equation*}
(x \gamma y) \delta z=(z \gamma y) \delta x, \text { for all } x, y, z \in S \text { and } \gamma, \delta \in \Gamma \tag{1}
\end{equation*}
$$

Definition 2. A Γ-AG-groupoid S is called a Γ-medial if it satisfies the medial law, that is
(2) $\quad(x \alpha y) \beta(s \gamma t)=(x \alpha s) \beta(y \gamma t)$, for all $x, y, s, t \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

Definition 3. A Γ-AG-groupoid S is called a Γ-AG**-groupoid if it satisfy the following law:

$$
\begin{equation*}
x \alpha(y \beta z)=y \alpha(x \beta z), \text { for all } x, y, z \in S \text { and } \alpha, \beta \in \Gamma \tag{3}
\end{equation*}
$$

Definition 4. A Γ - $\mathrm{AG}^{* *}$-groupoid S is called a Γ-paramedial if it satisfies the paramedial law, that is
(4) $\quad(x \alpha y) \beta(s \gamma t)=(t \alpha s) \beta(y \gamma x)$, for all $x, y, s, t \in S$ and $\alpha, \beta, \gamma \in \Gamma$.

If an AG-groupoid (without left identity) satisfies medial law, then it is called an $\mathrm{AG}^{* *}$-groupoid [20].

An AG-groupoid has been widely explored in $[12,13,14,21]$ and $[24]$. An AGgroupoid is a non-associative algebraic structure mid way between a groupoid and a commutative semigroup with wide applications in theory of flocks [23].

Definition 5. An AG-groupoid S is called a Γ - AG^{*}-groupoid [20], if the following hold:

$$
\begin{equation*}
(a \beta b) \gamma c=b \beta(a \gamma c), \text { for all } a, b, c \in S \text { and } \beta, \gamma \in \Gamma . \tag{5}
\end{equation*}
$$

Definition 6. In an AG^{*}-groupoid S, the following law holds (see [24])

$$
\begin{equation*}
\left(x_{1} \alpha x_{2}\right) \beta\left(x_{3} \gamma x_{4}\right)=\left(x_{p(1)} \alpha x_{p(2)}\right) \beta\left(x_{p(3)} \gamma x_{p(4)}\right) \text { for all } \alpha, \beta, \gamma \in \Gamma \tag{6}
\end{equation*}
$$

where $\{p(1), p(2), p(3), p(4)\}$ means any permutation on the set $\{1,2,3,4\}$. It is an easy consequence that if $S=S \Gamma S$, then S becomes a commutative Γ semigroup.

An AG-groupoid may or may not contains a left identity. The left identity of an AG-groupoid allow us to introduce the inverses of elements in an AG-groupoid. If an AG-groupoid contains a left identity, then it is unique [21].

Definition 7. An ordered Γ-AG-groupoid (po- Γ-AG-groupoid) is a structure (S, Γ, \leq) in which the following conditions hold:
(i) (S, Γ) is a Γ-AG-groupoid.
(ii) (S, \leq) is a poset.
(iii) For all a, b and $x \in S, a \leq b$ implies $a \beta x \leq b \beta x$ and $x \beta a \leq x \beta b$ for all $\beta \in \Gamma$.

Let S be an ordered Γ-AG-groupoid. For $H \subseteq S$, we define

$$
(H]=\{t \in S \mid t \leq h \text { for some } h \in H\} .
$$

For $H=\{a\}$, usually written as (a].
Definition 8. A non-empty subset A of an ordered Γ-AG-groupoid S is called a Γ-left (resp. Γ-right) ideal of S if
(i) $S \Gamma A \subseteq A$ (resp. $A \Gamma S \subseteq A$), and
(ii) If $a \in A$ and b is in S such that $b \leq a$, then $b \in A$.

Definition 9. A non-empty subset A of an ordered Γ-AG-groupoid S is called a (Γ-two-sided) ideal of S if A is both Γ-left and Γ-right ideal of S.

Definition 10. A Γ-ideal P of an ordered Γ-AG-groupoid S is called Γ-prime if for any two Γ-ideals A and B of S such that $A \Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$.

Definition 11. A Γ-ideal I of an ordered Γ-AG-groupoid S is called Γ-completely prime if for any two elements a and b of S and $\beta \in \Gamma$ such that $a \beta b \in I$, then $a \in I$ or $b \in I$.
Definition 12. A Γ-ideal P of an ordered Γ-AG-groupoid S is said to be Γ semiprime if $I^{2} \subseteq P$ implies that $I \subseteq P$, for any Γ-ideal I of S.

Definition 13. A Γ-AG-groupoid S is said to be Γ-fully semiprime if every Γ ideal of S is Γ-semiprime. An ordered Γ-AG-groupoid S is called Γ-fully prime if every Γ-ideal of S is Γ-prime.

Definition 14. The set of Γ-ideals of an ordered Γ-AG-groupoid S is called Γ totally ordered under inclusion if for all Γ-ideals A, B of S, either $A \subseteq B$ or $B \subseteq A$ and is denoted by Γ-ideal (S).

2. Ideals in Ordered Γ-AG-Groupoid

In this section we developed some results on ideals in ordered AG-groupoid.
Lemma 1. Let S be an ordered Γ-AG-groupoid, then the following are true:
(i) $A \subseteq(A]$, for all $A \subseteq S$,
(ii) If $A \subseteq B \subseteq S$, then $(A] \subseteq(B]$,
(iii) $(A] \Gamma(B] \subseteq(A \Gamma B]$ for all subsets A, B of S,
(iv) $(A]=((A]]$ for all $A \subseteq S$,
(v) For every Γ-left (resp. Γ-right) ideal or Γ-bi-ideal T of $S,(T]=T$,
(vi) $((A] \Gamma(B]]=(A \Gamma B]$ for all subsets A, B of S.

Proof. It is same as in [11].
Lemma 2. ($S \Gamma a]$, $(a \Gamma S]$ and $(S \Gamma a \Gamma S]$ are $a \Gamma$-left, $a \Gamma$-right and $a \Gamma$-ideal of an ordered Γ-A $G^{* *}$-groupoid S respectively, for all a in S such that $(S]=(S \Gamma S]$.

Proof. Let a be any element of S. Then it has to be shown that $(S \Gamma a]$ is the Γ-left ideal of S. For this consider an element x in $S \Gamma(S \Gamma a]$, then $x=y \gamma z$ for some y in S and z in $(S \Gamma a]$ where $z \leq s \beta a$ for some $s \beta a$ in $S \Gamma a$ and $\gamma, \beta \in \Gamma$. Since $S=S \Gamma S$ so let $y=y_{1} \delta y_{2}$ for some $\delta \in \Gamma$ and $y_{1}, y_{2} \in S$, then by using (4) and (1), we have

$$
x \leq y \gamma(s \beta a)=\left(y_{1} \delta y_{2}\right) \gamma(s \beta a)=(a \delta s) \gamma\left(y_{2} \beta y_{1}\right)=\left(\left(y_{2} \beta y_{1}\right) \delta s\right) \gamma a \subseteq S \Gamma a .
$$

Which implies that x is in $(S \Gamma a]$. For the second condition of ($S \Gamma a]$ to be Γ-left ideal let x be any element in $(S \Gamma a]$, then $x \leq s \beta a$ for some $s \beta a$ in $S \Gamma a$. Let y be
any other element of S such that $y \leq x \leq s \beta a$, which implies that y is in $(S \Gamma a]$. Hence ($S \Gamma a]$ is the Γ-left ideal of S. It is to be noted that ($a \Gamma S]$ and ($S \Gamma a \Gamma S]$ can be shown Γ-right and Γ-two-sided ideal respectively with an analogy to the proof of $(S \Gamma a]$ to be Γ-left ideal of S.

Proposition 1. If S is an ordered Γ - $A G$-groupoid such that $S=S \Gamma S$, then every Γ-right ideal of S is a Γ-ideal.

Proof. Let I be a Γ-right ideal of an ordered Γ-AG-groupoid S. Let $x \in S \Gamma(I]$ which implies that $x=y \gamma z$ for some $y \in S$ and $z \in(I]$ where $z \leq i$ for some $i \in I$. Since $S=S \Gamma S$ so let $y=y_{1} \delta y_{2}$ for some $\delta \in \Gamma$ and $y_{1}, y_{2} \in S$, then by (1), we get

$$
x \leq y \gamma i=\left(y_{1} \delta y_{2}\right) \gamma i=\left(i \delta y_{2}\right) \gamma y_{1} \subseteq(I \Gamma S) \Gamma S \subseteq I
$$

Which implies that $x \in(I]$ and the second condition of $(I]$ to be Γ-left ideal holds obviously. Hence I is a Γ-ideal of S.

Remark 1.

(1) If $(S]=(S \Gamma S]$ then every Γ-right ideal is also a Γ-left ideal and $S \Gamma I \subseteq I \Gamma S$.
(2) If I is a Γ-right ideal of S, then $S \Gamma I$ is a Γ-left and $I \Gamma S$ is a Γ-right ideal of S.

Lemma 3. If I is a Γ-left ideal of an ordered Γ - $A G^{* *}$-groupoid S, then ($\left.a \Gamma I\right]$ is $a \Gamma$-left ideal of S.

Proof. Let I be a Γ-left ideal of an ordered Γ - $\mathrm{AG}^{* *}$-groupoid S. Let $x \in S \Gamma(a \Gamma I]$ which implies that $x=y \beta z$ for some $y \in S$ and $z \in(a \Gamma I]$ where $z \leq a \gamma i$ for some $a \gamma i \in a \Gamma I$ and $\beta, \gamma \in \Gamma$. Then by using (3), we get

$$
x \leq y \beta(a \gamma i)=a \beta(y \gamma i) \subseteq a \Gamma(S \Gamma I) \subseteq a \Gamma I .
$$

Which implies that $x \in(a \Gamma I]$ and for the second condition of $(a \Gamma I]$ to be Γ-left ideal let x be any element in $(a \Gamma I]$ then $x \leq a \gamma i$ for some $a \gamma i$ in $a \Gamma I$. Let y be any other element of S such that $y \leq x \leq a \gamma i$, which implies that y is in $(a \Gamma I]$. Hence $(a \Gamma I]$ is a Γ-left ideal of S.

Lemma 4. Intersection of two Γ-ideals of an ordered Γ - $A G$-groupoid S is a Γ ideal.

Proof. Assume that P and Q are any two Γ-ideals of an ordered Γ-AG-groupoid S. Let $x \in S \Gamma(P \cap Q]$, then $x=y \beta z$ for some $\beta \in \Gamma, y \in S$ and $z \in(P \cap Q]$ where $z \in(P]$ which implies that $z \leq a$ for some $a \in P$ and also $z \in(Q]$ which
implies that $z \leq b$ for some $b \in Q$. Then by using (2), we have

$$
x \leq y \beta a \subseteq S \Gamma P \subseteq P \text { and } x \leq y \beta b \subseteq S \Gamma Q \subseteq Q
$$

This shows that $x \in(P] \cap(Q]=(P \cap Q]$ and the second condition of $(P \cap Q]$ to be Γ-left ideal is obvious. Similarly $(P \cap Q]$ is a Γ-right ideal of S. Hence $(P \cap Q]$ is a Γ-ideal of S.

Lemma 5. If I is a Γ-left ideal of an ordered Γ - $A G^{* *}$-groupoid S, then (IГI] is $a \Gamma$-ideal of S.

Proof. Let I be a Γ-left ideal of an ordered Γ-AG ${ }^{* *}$-groupoid S. Let $x \in(I \Gamma I] \Gamma S$, then $x=k \alpha s$ for some k in (IГI] and s in S, where $k \leq i \beta j$ for some $i \beta j \in I \Gamma I$ and $\alpha, \beta \in \Gamma$. Now by using (1), we get

$$
x \leq(i \beta j) \alpha s=(s \beta j) \alpha i \subseteq I \Gamma I
$$

Now let $x \in S \Gamma(I \Gamma I]$, then $x=s \alpha k$ for some s in S and k in (IГI], where $k \leq i \beta j$ for some $i \beta j \in I \Gamma I$ and $\alpha, \beta \in \Gamma$. Now by using (3), we get

$$
x \leq s \alpha(i \beta j)=i \alpha(s \beta j) \subseteq I \Gamma I .
$$

This implies that $x \in(I \Gamma I]$ and for the second condition of $(I \Gamma I]$ to be a Γ-ideal, let x be any element in ($I \Gamma I]$ then $x \leq i \beta j$ for some $i \beta j$ in $I \Gamma I$. Let y be any other element of S such that $y \leq x \leq i \beta j$, which implies that y is in (IГI]. Hence ($Г Г I]$ a Γ-ideal of S.

Remark 2. If I is a Γ-left ideal of S then (IГI] is a Γ-ideal of S.
Proposition 2. A proper Γ-ideal (M] of an ordered Γ - $A G^{* *}$-groupoid S is minimal if and only if $(M]=((a \Gamma a) \Gamma M]$ for all $a \in S$.

Proof. Let $(M]$ be the minimal Γ-ideal of S, as $(M \Gamma M]$ is a Γ-ideal so $(M]=$ $(M \Gamma M]$. Now let $x \in((a \Gamma a) \Gamma M] \Gamma S$ then $x=y \alpha z$ for some y in $((a \Gamma a) \Gamma M]$ and z in S, where $y \leq(a \gamma a) \beta m$ for some ($a \gamma a) \beta m$ in $(a \Gamma a) \Gamma M$ and $\alpha, \beta, \gamma \in \Gamma$. Now by using (1) and (4), we have

$$
\begin{aligned}
x & \leq((a \gamma a) \beta m) \alpha z=(z \beta m) \alpha(a \gamma a)=(a \beta a) \alpha(m \gamma z) \\
& \subseteq(a \Gamma a) \Gamma(M \Gamma S) \subseteq(a \Gamma a) \Gamma M .
\end{aligned}
$$

Which implies that $x \in((a \Gamma a) \Gamma M]$.
Now let $x \in S((a \Gamma a) \Gamma M]$ then $x=s \alpha t$ for some s in S and t in $((a \Gamma a) \Gamma M]$, where $t \leq(a \gamma a) \beta m$ for some $(a \gamma a) \beta m$ in $(a \Gamma a) \Gamma M$ and $\alpha, \beta, \gamma \in \Gamma$, then by
using (3), we have

$$
x \leq s \alpha((a \gamma a) \beta m)=(a \gamma a) \alpha(s \beta m) \subseteq(a \Gamma a) \Gamma(S \Gamma M) \subseteq(a \Gamma a) \Gamma M .
$$

Which implies that $x \in((a \Gamma a) \Gamma M]$, and for the second condition of $((a \Gamma a) \Gamma M]$ to be a Γ-ideal let x be any element in $((a \Gamma a) \Gamma M]$ then $x \leq(a \gamma a) \beta m$ for some ($a \gamma a) \beta m$ in $(a \Gamma a) \Gamma M$. Let y be any other element of S such that $y \leq x \leq$ (aүa) βm, which implies that y is in $((a \Gamma a) \Gamma M]$. Hence $((a \Gamma a) \Gamma M]$ a Γ-ideal of S contain in $(M]$ and as $(M]$ is minimal so $(M]=((a \Gamma a) \Gamma M]$.

Conversely, assume that $(M]=((a \Gamma a) \Gamma M]$ for all $a \in S$. Let $(A]$ be the minimal Γ-ideal properly contain in ($M]$ containing a, then $(M]=((a \Gamma a) \Gamma M] \subseteq$ $(A]$, which is a contradiction. Hence $(M]$ is a minimal Γ-ideal.

A Γ-ideal I of an ordered Γ-AG-groupoid S is called minimal if and only if it does not contain any Γ-ideal of S other than itself.

Theorem 6. If I is a minimal Γ-left ideal of an ordered Γ - $A G^{* *}$-groupoid S, then $((a \Gamma a) \Gamma(I \Gamma I)]$ is a minimal Γ-ideal of S.

Proof. Assume that I is a minimal Γ-left ideal of an ordered Γ-AG ${ }^{* *}$-groupoid S. Now let $x \in((a \Gamma a) \Gamma(I \Gamma I)] \Gamma S$ then $x=y \alpha z$ for some y in $((a \Gamma a) \Gamma(I \Gamma I)]$ and z in S where $y \leq(a \delta a) \beta(i \gamma j)$ for some i, j in I and $\alpha, \beta, \gamma, \delta \in \Gamma$, then by using (1) and (4), we have

$$
\begin{aligned}
x & \leq((a \delta a) \beta(i \gamma j)) \alpha z=(z \beta(i \gamma j)) \alpha(a \delta a)=(a \beta a) \alpha((i \gamma j) \delta z) \\
& =(a \delta a) \alpha((z \gamma j) \delta i) \subseteq(a \Gamma a) \Gamma((S \Gamma I) \Gamma I) \subseteq(a \Gamma a) \Gamma(I \Gamma I) .
\end{aligned}
$$

Which implies that $x \in((a \Gamma a) \Gamma(I \Gamma I)]$ and for the second condition of $((a \Gamma a) \Gamma(I \Gamma I)]$ to be a Γ-ideal let x be any element in $((a \Gamma a) \Gamma(I \Gamma I)]$ then $x \leq$ $(a \delta a) \beta(i \gamma j)$ for some $(a \delta a) \beta(i \gamma j)$ in $((a \Gamma a) \Gamma(I \Gamma I)]$. Which shows that $((a \Gamma a) \Gamma(I \Gamma I)]$ is a Γ-right ideal of S. Similarly $((a \Gamma a) \Gamma(I \Gamma I)]$ is a Γ-left ideal so is Γ-ideal. Let H be a non-empty Γ-ideal of S properly contained in $((a \Gamma a) \Gamma(I \Gamma I)]$. Define $H^{\prime}=\{r \in I: a \psi r \in H\}$. Then $a \psi(s \xi y)=s \psi(a \xi y) \in S \Gamma H \subseteq H$ imply that H^{\prime} is a Γ-left ideal of S properly contained in I. But this is a contradiction to the minimality of I. Hence $((a \Gamma a) \Gamma(I \Gamma I)]$ is a minimal Γ-ideal of S.

Theorem 7. An ordered Γ - $A G^{* *}$-groupoid S is Γ-fully prime if and only if every Γ-ideal is Γ-idempotent and Γ-ideal (S) is Γ-totally ordered under inclusion.

Proof. Assume that an ordered Γ - $\mathrm{AG}^{* *}$-groupoid S is Γ-fully prime. Let I be the Γ-ideal of S. Then by Lemma $5,(I \Gamma I]$ becomes a Γ-ideal of S and obviously $I \Gamma I \subseteq I$ and by Lemma $1,(I \Gamma I] \subseteq(I]$. Now

$$
(I \Gamma I] \subseteq(I \Gamma I] \text { yields }(I] \subseteq(I \Gamma I] \text { and hence }
$$

$(I]=(I \Gamma I]$. Let P, Q be Γ-ideals of S and $P \Gamma Q \subseteq P, P \Gamma Q \subseteq Q$ imply that $P \Gamma Q \subseteq P \cap Q$. Since $P \cap Q$ is Γ-prime, so $P \subseteq P \cap Q$ or $Q \subseteq P \cap Q$ which further imply that $P \subseteq Q$ or $Q \subseteq P$. Hence Γ-ideal (S) is Γ-totally ordered under inclusion.

Converse is same as in [19].
If S is an ordered Γ-AG**-groupoid then the principal Γ-left ideal generated by a is defined by $\langle a\rangle=S \Gamma a=\{s \gamma a: s \in S, \gamma \in \Gamma\}$, where a is any element of S. Let P be a Γ-left ideal of an ordered Γ-AG-groupoid S, P is called Γ-quasi-prime if for Γ-left ideals A, B of S such that $A \Gamma B \subseteq P$, we have $A \subseteq P$ or $B \subseteq P$. P is called Γ-quasi-semiprime if for any Γ-left ideal I of S such that $I \Gamma I \subseteq P$, we have $I \subseteq P$.

Theorem 8. If S is an ordered Γ - $A G^{* *}$-groupoid, then a Γ-left ideal P of S is Γ-quasi-prime if and only if $a \Gamma(S \Gamma b) \subseteq P$ implies that either $a \in P$ or $b \in P$, where $a, b \in S$.

Proof. The proof is same as in [19].
Corollary 1. If S is an ordered Γ - $A G^{* *}$-groupoid, then a Γ-left ideal P of S is Γ-quasi-semiprime if and only if $a \Gamma(S \Gamma a) \subseteq P$ implies $a \in P$, for all $a \in S$.

Proposition 3. $A \Gamma$-ideal I of an ordered Γ - $A G$-groupoid S is Γ-prime if and only if it is Γ-semiprime and Γ-strongly irreducible.

Proof. The proof is obvious.
Theorem 9. Let S be an ordered Γ-AG-groupoid and $\left\{P_{i}: i \in N\right\}$ be a family of Γ-prime ideals Γ-totally ordered under inclusion in S. Then $\cap P_{i}$ is a Γ-prime ideal.

Proof. The proof is same as in [19].
Theorem 10. For each Γ-ideal I there exists a minimal Γ-prime ideal of I in an ordered Γ-AG-groupoid S.

Proof. The proof is same as in [19].
Definition 15. An ordered Γ-AG-groupoid (S, Γ, \leq) is called regular if $a \in$ $((a \Gamma S) \Gamma a]$ for every $a \in S$, or
(1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq(a \beta x) \gamma a$.
(2) $A \subseteq((A \Gamma S) \Gamma A]$ for every $A \subseteq S$.

Definition 16. An ordered Γ-AG-groupoid (S, Γ, \leq) is called weakly regular if $a \in((a \Gamma S) \Gamma(a \Gamma S)]$ for every $a \in S$, or
(1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq$ $(a \beta x) \delta(a \gamma y)$.
(2) $A \subseteq((A \Gamma S) \Gamma(A \Gamma S)]$ for every $A \subseteq S$.

Definition 17. An ordered Γ-AG-groupoid (S, Γ, \leq) is called intra-regular if $a \in((S \Gamma(a \delta a)) \Gamma S]$ for every $a \in S$ and $\delta \in \Gamma$, or
(1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq$ $(x \beta(a \delta a)) \gamma y$.
(2) $A \subseteq((S \Gamma(A \Gamma A)) \Gamma S]$ for every $A \subseteq S$.

Definition 18. An ordered Γ-AG-groupoid (S, Γ, \leq) is called right regular if $a \in((a \delta a) \Gamma S]$ for every $a \in S$ and $\delta \in \Gamma$, or
(1) For every $a \in S$ there exist $x \in S$ and $\beta, \delta \in \Gamma$ such that $a \leq(a \delta a) \beta x$.
(2) $A \subseteq((A \Gamma A) \Gamma S]$ for every $A \subseteq S$.

Definition 19. An ordered Γ-AG-groupoid (S, Γ, \leq) is called left regular if $a \in$ ($S \Gamma(a \delta a)$] for every $a \in S$ and $\delta \in \Gamma$, or
(1) For every $a \in S$ there exist $x \in S$ and $\beta, \delta \in \Gamma$ such that $a \leq x \beta(a \delta a)$.
(2) $A \subseteq(S \Gamma(A \Gamma A)]$ for every $A \subseteq S$.

Definition 20. An ordered Γ-AG-groupoid (S, Γ, \leq) is called left quasi regular if $a \in((S \Gamma a) \Gamma(S \Gamma a)]$ for every $a \in S$, or
(1) For every $a \in S$ there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq$ $(x \beta a) \delta(y \gamma a)$.
(2) $A \subseteq((S \Gamma A) \Gamma(S \Gamma A)]$ for every $A \subseteq S$.

Definition 21. An ordered Γ-AG-groupoid (S, Γ, \leq) is called completely regular if S is regular, left regular and right regular.

Definition 22. An ordered Γ-AG-groupoid (S, Γ, \leq) is called (2,2)-regular if $a \in(((a \delta a) \Gamma S) \Gamma(a \delta a)]$ for every $a \in S$ and $\delta \in \Gamma$, or
(1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq((a \delta a) \beta x) \gamma(a \delta a)$.
(2) $A \subseteq(((A \Gamma A) \Gamma S) \Gamma(A \Gamma A)]$ for every $A \subseteq S$.

Definition 23. An ordered Γ-AG-groupoid (S, Γ, \leq) is called strongly regular if $a \in((a \Gamma S) \Gamma a]$ and $a \beta x=x \beta a$ for every $a \in S$ and $\beta \in \Gamma$, or
(1) For every $a \in S$ there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq(a \beta x) \gamma a$ and $a \beta x=x \beta a$.
(2) $A \subseteq((A \Gamma S) \Gamma A]$ for every $A \subseteq S$.

Example 1. Let us consider an ordered AG-groupoid $S=\{1,2,3\}$ in the following multiplication table.

.	1	2	3
1	1	3	3
2	1	2	2
3	1	2	2

Let us define $\Gamma=\{\alpha, \beta, \gamma\}$ as follows.

α	1	2	3
1	1	1	1
2	1	1	1
3	1	1	1

β	1	2	3
1	2	2	2
2	2	2	2
3	2	2	2

γ	1	2	3
1	2	2	2
2	2	2	2
3	2	2	3

Here S is a Γ-AG-groupoid because $(a \beta b) \gamma c=(c \beta b) \gamma a$ for all $a, b, c \in S$ and S is non-associative, because $(1 \alpha 2) \beta 3 \neq 1 \alpha(2 \beta 3)$. We define order \leq as:

$$
\leq:=\{(1,1),(2,2),(3,3),(2,1),(2,3),(3,1)\}
$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S, a \leq b$ implies $a \beta x \leq b \beta x$ and $x \beta a \leq x \beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ-AG-groupoid.

Note that S is a Γ-ideal itself so by Lemma $1,(S \Gamma S] \subseteq S$.
Lemma 11. If S is regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular ordered Γ-AG-groupoid, then $S=(S \Gamma S]$.

Proof. Assume that S is a regular ordered Γ-AG-groupoid, then $(S \Gamma S] \subseteq S$ is obvious. Let for any $a \in S, a \in((a \Gamma S) \Gamma a]$, then there exists $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq(a \beta x) \gamma a$. Now $a \leq(a \beta x) \gamma a \in S \Gamma S$, thus $a \in(S \Gamma S]$. Similarly if S is weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular or strongly regular, then we can show that $S=(S \Gamma S]$.

The converse is not true in general, because in Example 2, $S=(S \Gamma S]$ holds but S is not regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular and strongly regular, because $1 \in S$ is not regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular.

Example 2. Let us consider an ordered Γ-AG-groupoid $S=\{1,2,3,4\}$ in the following Cayley's table.

.	1	2	3	4
1	4	4	2	4
2	4	4	1	4
3	1	2	3	4
4	4	4	4	4

Let us define $\Gamma=\{\alpha, \beta, \gamma\}$ as follows:

α	1	2	3	4
1	1	1	1	1
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1

β	1	2	3	4
1	2	2	2	2
2	2	2	2	2
3	2	2	2	2
4	2	2	2	3

γ	1	2	3	4
1	2	2	2	2
2	2	2	2	2
3	2	2	2	2
4	2	2	2	4

Here S is a Γ-AG-groupoid because $(a \beta b) \gamma c=(c \beta b) \gamma a$ for all $a, b, c \in S$ and S is non-associative, because $(1 \alpha 2) \beta 3 \neq 1 \alpha(2 \beta 3)$. We define the order \leq as:

$$
\leq:=\{(1,1),(2,2),(3,3),(4,4),(1,4),(2,4),(3,4)\} .
$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S, a \leq b$ implies $a \beta x \leq b \beta x$ and $x \beta a \leq x \beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ-AG-groupoid. $A=\{1,2,4\}$ is an ideal of S as $A \Gamma S \subseteq A$ and $S \Gamma A \subseteq A$, also for every $1 \in A$ there exists $4 \in S$ such that $4 \leq 1 \in A$ implies that $4 \in A$, similarly for every $4 \in A$ there exists $2 \in S$ such that $2 \leq 4 \in A$ implies that $4 \in A$.

Theorem 12. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then S is an intra-regular if and only if for all $a \in(S], a \leq(x \beta a) \delta(a \gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$.

Proof. Assume that S is an intra-regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid. Let $a \in$ $((S \Gamma(a \gamma a)) \Gamma S]$ for any $a \in S$ and $\gamma \in \Gamma$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq(x \beta(a \gamma a)) \delta y$. Now by using Lemma 11, $y \leq u \gamma v$ for some $u, v \in S$. Thus by using (2), (1) and (4), we have

$$
\begin{aligned}
a & \leq(x \beta(a \gamma a)) \delta y=(a \beta(x \gamma a)) \delta y=(y \beta(x \gamma a)) \delta a=(y \beta(x \gamma a)) \delta((x \beta(a \gamma a)) \delta y) \\
& \leq((u \gamma v) \beta(x \gamma a)) \delta((x \beta(a \gamma a)) \delta y)=((a \gamma x) \beta(v \gamma u)) \delta((x \beta(a \gamma a)) \delta y) \\
& \leq((a \gamma x) \beta t) \delta((x \beta(a \gamma a)) \delta y)=(((x \beta(a \gamma a)) \delta y) \beta t) \delta(a \gamma x) \\
& =((t \delta y) \beta(x \beta(a \gamma a))) \delta(a \gamma x)=(((a \gamma a) \delta x) \beta(y \beta t)) \delta(a \gamma x)
\end{aligned}
$$

$$
\begin{aligned}
& \leq(((a \gamma a) \delta x) \beta s) \delta(a \gamma x)=((s \delta x) \beta(a \gamma a)) \delta(a \gamma x)=((a \delta a) \beta(x \gamma s)) \delta(a \gamma x) \\
& \leq((a \delta a) \beta w) \delta(a \gamma x)=((w \delta a) \beta a) \delta(a \gamma x) \leq(z \beta a) \delta(a \gamma x) \\
& =(x \beta a) \delta(a \gamma z),
\end{aligned}
$$

where $v \gamma u \leq t, y \beta t \leq s, x \gamma s \leq w$ and $w \delta a \leq z$ for some $t, s, w, z \in S$.
Conversely, let for all $a \in(S], a \leq(x \beta a) \delta(a \gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$. Now by using (3), (1), (2) and (4), we have

$$
\begin{aligned}
a & \leq(x \beta a) \delta(a \gamma z)=a \delta((x \beta a) \gamma z) \leq((x \beta a) \delta(a \gamma z)) \delta((x \beta a) \gamma z) \\
& =(a \delta((x \beta a) \gamma z)) \delta((x \beta a) \gamma z)=(((x \beta a) \gamma z) \delta((x \beta a) \gamma z)) \delta a \\
& =(((x \beta a) \gamma(x \beta a)) \delta(z \gamma z)) \delta a=(((a \beta x) \gamma(a \beta x)) \delta(z \gamma z)) \delta a \\
& =((a \gamma((a \beta x) \beta x)) \delta(z \gamma z)) \delta a=(((z \gamma z) \delta((a \beta x) \beta x)) \gamma a) \delta a \\
& =(((a \beta x) \delta((z \gamma z) \beta x)) \gamma a) \delta a=(((((z \gamma z) \beta x) \beta x) \delta a) \gamma a) \delta a \\
& =((((x \beta x) \beta(z \gamma z)) \delta a) \gamma a) \delta a=((a \delta a) \gamma((x \beta x) \beta(z \gamma z))) \delta a \\
& =(a \gamma((x \beta x) \beta(z \gamma z))) \delta(a \delta a) \\
& \leq(a \gamma t) \delta(a \delta a), \text { where }(x \beta x) \beta(z \gamma z) \leq t \text { for some } t \in S .
\end{aligned}
$$

Now by using (4) and (1), we have

$$
\begin{aligned}
a & \leq(a \gamma t) \delta(a \delta a) \leq(((a \gamma t) \delta(a \delta a)) \gamma t) \delta(a \delta a)=(((a \gamma a) \delta(t \delta a)) \gamma t) \delta(a \delta a) \\
& =(((a \gamma a) \delta(t \delta a)) \gamma t) \delta(a \delta a)=((t \delta(t \delta a)) \gamma(a \gamma a)) \delta(a \delta a) \\
& \leq(u \gamma(a \gamma a)) \delta v, \text { where } t \delta(t \delta a) \leq u \text { and } a \delta a \leq v \text { for some } u, v \in S \\
& \in(S \Gamma(a \gamma a)) \Gamma S .
\end{aligned}
$$

Which implies that $a \in((S \Gamma(a \gamma a)) \Gamma S]$, thus S is intra-regular.
Theorem 13. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is weakly regular.
(ii) S is intra-regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid. Let $a \in((a \Gamma S) \Gamma(a \Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$
such that $a \leq(a \beta x) \delta(a \gamma y)$. Now by Lemma 11, let $x \leq s \psi t$ for some $s, t \in S$, $\psi \in \Gamma$ and $t \gamma s \leq u \in S$, then by using (4) and (1), we have

$$
\begin{aligned}
a & \leq(a \beta x) \delta(a \gamma y)=(y \beta a) \delta(x \gamma a)=((x \gamma a) \beta a) \delta y \leq(((s \psi t) \gamma a) \beta a) \delta y \\
& =((a \gamma a) \beta(s \psi t)) \delta y=((t \gamma s) \beta(a \psi a)) \delta y=((t \gamma s) \beta(a \psi a)) \delta y \leq(u \beta(a \psi a)) \delta y \\
& \in(S \Gamma(a \psi a)) \Gamma S .
\end{aligned}
$$

Which implies that $a \in((S \Gamma(a \psi a)) \Gamma S]$, thus S is intra-regular.
(ii) \Longrightarrow (i) is the same as $(\mathrm{i}) \Longrightarrow$ (ii).

Theorem 14. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is weakly regular.
(ii) S is right regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ-AG ${ }^{* *}$-groupoid. Let $a \in((a \Gamma S) \Gamma(a \Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq(a \beta x) \delta(a \gamma y)$ and by using Lemma 11, let $x \gamma y \leq t$ for some $t \in S$. Now by using (2), we have

$$
a \leq(a \beta x) \delta(a \gamma y)=(a \beta a) \delta(x \gamma y) \leq(a \beta a) \delta t \in(a \beta a) \Gamma S
$$

Which implies that $a \in((a \beta a) \Gamma S]$, thus S is right regular.
(ii) \Longrightarrow (i) It follows from Lemma 11 and (2).

Theorem 15. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is weakly regular.
(ii) S is left regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a weakly regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid. Let $a \in((a \Gamma S) \Gamma(a \Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq(a \beta x) \delta(a \gamma y)$. Now let $y \beta x \leq t$ for some $t \in S$ then by (2) and (4), we have

$$
\begin{aligned}
a & \leq(a \beta x) \delta(a \gamma y)=(a \beta a) \delta(x \gamma y)=(y \beta x) \delta(a \gamma a)=(y \beta x) \delta(a \gamma a) \\
& \leq t \delta(a \gamma a) \in S \Gamma(a \gamma a) .
\end{aligned}
$$

Which implies that $a \in(S \Gamma(a \gamma a)]$, thus S is left regular.
(ii) \Longrightarrow (i) It follows from Lemma 11, (4) and (2).

Lemma 16. Every weakly regular ordered $\Gamma-A G^{* *}$-groupoid is regular.
Proof. Assume that S is a weakly regular ordered Γ-AG**-groupoid. Let $a \in$ $((a \Gamma S) \Gamma(a \Gamma S)]$ for any $a \in S$, then there exist $x, y \in S$ and $\beta, \gamma, \delta \in \Gamma$ such that $a \leq(a \beta x) \delta(a \gamma y)$. Let $x \gamma y \leq t \in S$ and by using (1), (2), (4) and (3), we have

$$
\begin{aligned}
a & \leq(a \beta x) \delta(a \gamma y)=((a \gamma y) \beta x) \delta a=((x \gamma y) \beta a) \delta a \leq(t \beta a) \delta a \\
& \leq(t \beta((a \beta x) \delta(a \gamma y))) \delta a=(t \beta((a \beta a) \delta(x \gamma y))) \delta a \\
& =(t \beta((y \beta x) \delta(a \gamma a))) \delta a=(t \beta(a \delta((y \beta x) \gamma a))) \delta a \\
& =(a \beta(t \delta((y \beta x) \gamma a))) \delta a \leq(a \beta u) \delta a, \text { where } t \delta((y \beta x) \gamma a) \leq u \in S \\
& \in(a \Gamma S) \Gamma a .
\end{aligned}
$$

Which implies that $a \in((a \Gamma S) \Gamma a]$, thus S is regular.
The converse of above Lemma is not true in general, as can be seen from the following example.

Example 3 [24]. Let us consider an AG-groupoid $S=\{1,2,3,4\}$ in the following Cayley's table.

.	1	2	3	4
1	2	2	4	4
2	2	2	2	2
3	1	2	3	4
4	1	2	1	2

Let us define $\Gamma=\{\alpha, \beta, \gamma\}$ as follows:

α	1	2	3	4
1	1	1	1	1
2	1	1	1	1
3	1	1	1	1
4	1	1	1	1

β	1	2	3	4
1	2	2	2	2
2	2	2	2	2
3	2	2	4	4
4	2	2	2	2

γ	1	2	3	4
1	2	2	2	2
2	2	2	2	2
3	2	2	2	2
4	2	2	3	4

Here S is a Γ-AG-groupoid because $(a \beta b) \gamma c=(c \beta b) \gamma a$ for all $a, b, c \in S$. We define order \leq as:

$$
\leq:=\{(1,1),(2,2),(3,3),(4,4),(1,2),(4,2)\}
$$

Clearly (S, \leq) is a poset and for all a, b and $x \in S, a \leq b$ implies $a \beta x \leq b \beta x$ and $x \beta a \leq x \beta b$ for some $\beta \in \Gamma$ so S is a ordered Γ-AG-groupoid. Also S is regular, because $1 \leq(1 \alpha 3) \alpha 1,2 \leq(2 \beta 1) \gamma 2,3 \leq(3 \beta 3) \gamma 3$ and $4 \leq(4 \gamma 3) \beta 4$, but S is not weakly regular, because $1 \notin((1 \Gamma S) \Gamma(1 \Gamma S)]$.

Theorem 17. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is weakly regular.
(ii) S is completely regular.

Proof. (i) \Longrightarrow (ii) It follows from Theorems 14, 15 and Lemma 16.
(ii) \Longrightarrow (i) It follows from Theorem 15 .

Theorem 18. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is weakly regular.
(ii) S is left quasi regular.

Proof. The proof of this Lemma is straight forward.
Theorem 19. If S is an ordered $\Gamma-A G^{* *}$-groupoid, then the following are equivalent.
(i) S is $(2,2)$-regular.
(ii) S is completely regular.

Proof. (i) \Longrightarrow (ii) Assume that S is a (2,2)-regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid. Let $a \in(((a \delta a) \Gamma S) \Gamma(a \delta a)]$ for any $a \in S$ and $\delta \in$, then there exist $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq((a \delta a) \beta x) \gamma(a \delta a)$. Now let $(a \delta a) \beta x \leq y \in S$, then we have

$$
a \leq((a \delta a) \beta x) \gamma(a \delta a) \leq y \gamma(a \delta a) \in S \Gamma(a \delta a)
$$

Which implies that $a \in(S \Gamma(a \delta a)]$, thus S is left regular. Now by using (4), we have

$$
\begin{aligned}
a & \leq((a \delta a) \beta x) \gamma(a \delta a)=(a \beta a) \gamma(x \delta(a \delta a)) \\
& \leq(a \delta a) \gamma z, \text { where } x \delta(a \delta a) \leq z \in S \text { and } \delta \in \Gamma \\
& \in(a \delta a) \Gamma S .
\end{aligned}
$$

Which implies that $a \in((a \delta a) \Gamma S]$, thus S is right regular. Now let $x \leq u \psi v$ for some $u, v \in S$ and $\psi \in \Gamma$, then by using (4), (1) and (3), we have

$$
\begin{aligned}
a & \leq((a \delta a) \beta x) \gamma(a \delta a)=(a \beta a) \gamma(x \delta(a \delta a)) \leq(a \beta a) \gamma((u \psi v) \delta(a \delta a)) \\
& =(a \beta a) \gamma((a \psi a) \delta(v \delta u)) \leq(a \beta a) \gamma((a \psi a) \delta t), \text { where } v \delta u \leq t \in S \\
& =(((a \psi a) \delta t) \beta a) \gamma a=((a \delta t) \beta(a \psi a)) \gamma a=(a \beta((a \delta t) \psi a)) \gamma a
\end{aligned}
$$

$$
\begin{aligned}
& \leq(a \beta y) \gamma a, \text { where }(a \delta t) \psi a \leq y \in S \\
& \in(a \Gamma S) \Gamma a .
\end{aligned}
$$

Which implies that $a \in((a \Gamma S) \Gamma a]$, so S is regular. Thus S is completely regular. (ii) \Longrightarrow (i) Assume that S is a completely regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid. Let $a \in((a \Gamma S) \Gamma a], a \in((a \delta a) \Gamma S]$ and $a \in(S \Gamma(a \delta a)]$ for any $a \in S$, then there exist $x, y, z \in S$ and $\beta, \gamma, \psi, \xi, \delta \in \Gamma$ such that $a \leq(a \beta x) \gamma a, a \leq(a \delta a) \psi y$ and $a \leq z \xi(a \delta a)$. Now by using (4), (1) and (3), we have

$$
\begin{aligned}
a & \leq(a \beta x) \gamma a \leq(a \beta x) \gamma(z \xi(a \delta a))=((a \delta a) \beta z) \gamma(x \xi a)=((x \xi a) \beta z) \gamma(a \delta a) \\
& \leq((x \xi((a \delta a) \psi y)) \beta z) \gamma(a \delta a)=(((a \delta a) \xi(x \psi y)) \beta z) \gamma(a \delta a) \\
& \leq(((a \delta a) \xi t) \beta z) \gamma(a \delta a), \text { where } x \psi y \leq t \in S \\
& =((z \xi t) \beta(a \delta a)) \gamma(a \delta a)=((a \xi a) \beta(t \delta z)) \gamma(a \delta a) \\
& \leq((a \xi a) \beta w) \gamma(a \delta a), \text { where } t \delta z \leq w \in S \\
& =((a \xi a) \beta w) \gamma(a \delta a) \in((a \xi a) \Gamma S) \Gamma(a \delta a) .
\end{aligned}
$$

Which implies that $a \in(((a \xi a) \Gamma S) \Gamma(a \delta a)]$, this shows that S is (2,2)-regular.
Lemma 20. Every strongly regular ordered Γ - $A G^{* *}$-groupoid is completely regular.

Proof. Assume that S is a strongly regular ordered Γ - $\mathrm{AG}^{* *}$-groupoid, then for any $a \in S$ there exists $x \in S$ and $\beta, \gamma \in \Gamma$ such that $a \leq(a \beta x) \gamma a$ and $a \beta x=x \beta a$. Now by using (1), we have

$$
a \leq(a \beta x) \gamma a=(x \beta a) \gamma a=(a \beta a) \gamma x \subseteq(a \beta a) \Gamma S .
$$

Which implies that $a \in\left(a^{2} \Gamma S\right]$, this shows that S is right regular and by Theorems 14 and 17 , it is clear to see that S is completely regular.

Theorem 21. In an ordered $\Gamma-A G^{* *}$-groupoid S, the following are equivalent.
(i) S is weakly regular,
(ii) S is intra-regular,
(iii) S is right regular,
(iv) S is left regular,
(v) S is left quasi regular,
(vi) S is completely regular,
(vii) For all $a \in S$, there exist $x, y \in S$ such that $a \leq(x \beta a) \delta(a \gamma z)$ holds for some $x, z \in S$ and $\beta, \gamma, \delta \in \Gamma$,
(viii) S is (2,2)-regular.

Proof. (i) \Longleftrightarrow (ii) It follows from Theorem 13.
(ii) \Longleftrightarrow (iii) It follows from Theorems 13 and 14 .
(iii) \Longleftrightarrow (iv) It follows from Theorems 14 and 15 .
(iv) \Longleftrightarrow (v) It follows from Theorems 15 and 18.
(v) \Longleftrightarrow (vi) It follows from Theorems 18 and 17 .
(vi) \Longleftrightarrow (i) It follows from Theorem 17.
(ii) \Longleftrightarrow (vii) It follows from Theorem 12 .
(vi) \Longleftrightarrow (viii) It follows from Theorem 19 .

Remark 3. Every intra-regular, right regular, left regular, left quasi regular $(2,2)$-regular and completely regular ordered $\Gamma-\mathrm{AG}^{* *}$-groupoids are regular.

The converse is not true in general, as can be seen from Example 3.
Theorem 22. Regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, $(2,2)$-regular and strongly regular Γ - $A G^{*}$ groupoids become a Γ-semigroups.

Proof. It follows from (6) and Lemma 11.

Acknowledgement

The authors are highly grateful to referee's for their valuable comments which were helpful in improvement of the paper.

References

[1] R. Chinram and K. Tinpun, A note on minimal bi-ideals in ordered Γ-semigroups, International Math. Forum 4 (1) (2009) 1-5.
[2] K. Hila, Filters in ordered Γ-semigroups, Rocky Mountain J. Math. 41 (1) (2011) 189-203. doi:10.1216/RMJ-2011-41-1-189
[3] K. Hila, On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups, Math. Slovaca 60 (2) (2010) 195-212. doi:10.2478/s12175-010-0006-x
[4] K. Hila and E. Pisha, On bi-ideals on ordered Γ-semigroups I, Hacettepe J. Math. and Stat. 40 (6) (2011) 793-804.
[5] K. Hila and E. Pisha, On lattice-ordered rees matrix Γ-semigroups, Annals of the Alexandru Ioan Cuza University - Mathematics LIX (1) (2013) 209-218.
doi:10.2478/v10157-012-0033-8
[6] K. Hila and E. Pisha, Characterizations on ordered Γ-semigroups, Inter. J. Pure and Appl. Math. 28 (3) (2006) 423-440.
[7] P. Holgate, Groupoids satisfying a simple invertive law, The Math. Student 61 (1992) 101-106.
[8] A. Iampan, Characterizing ordered bi-Ideals in ordered Γ-semigroups, Iranian J. Math. Sci. and Inf. 4 (1) (2009) 17-25.
[9] A. Iampan, Characterizing ordered quasi-ideals of ordered Γ-semigroups, Kragujevac J. Math. 35 (1) (2011) 13-23.
[10] M.A. Kazim and M. Naseeruddin, On almost semigroups, The Aligarh Bull. Math. 2 (1972) 1-7.
[11] N. Kehayopulu and M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inf. Sci. 176 (2006) 3675-3693. doi:10.1016/j.ins.2006.02.004
[12] M. Khan, Some studies in AG*-groupoids, Ph.D., thesis (Quaid-i-Azam University, Islamabad, Pakistan, 2008).
[13] M. Khan and N. Ahmad, Characterizations of left almost semigroups by their ideals, J. Adv. Res. Pure Math. 2 (2010) 61-73. doi:10.5373/jarpm.357.020210
[14] M. Khan, T. Asif and Faisal, Intra-regular left almost semigroups characterized by their anti fuzzy ideals, J. Math. Res. 4 (2010) 100-110.
[15] Y.I. Kwon and S.K. Lee, On weakly prime ideals of ordered Γ-semigroups, Comm. Korean Math. Society 13 (2) (1998) 251-256.
[16] Y.I. Kwon, Characterizations of regular ordered Γ-semigroups II, Far East J. Math. Sci. 11 (3) (2003) 281-287.
[17] Y.I. Kwon and S.K. Lee, Some special elements in ordered Γ-semigroups, Kyungpook Math. J. 35 (1996) 679-685.
[18] Y.I. Kwon and S.K. Lee, The weakly semi-prime ideals of po-Г-semigroups, Kangweon Kyungki Math. J. 5 (2) (1997) 135-139.
[19] Q. Mushtaq and M. Khan, Ideals in left almost semigroups, Proceedings of 4th International Pure Mathematics Conference (2003) 65-77.
[20] Q. Mushtaq and M.S. Kamran, On LA-semigroups with weak associative law, Scientific Khyber 1 (1989) 69-71.
[21] Q. Mushtaq and S.M. Yousuf, On LA-semigroups, Aligarh Bull. Math. 8 (1978) 65-70.
[22] Q. Mushtaq and S.M. Yousuf, On LA-semigroup defined by a commutative inverse semigroup, Math. Bech. 40 (1988) 59-62.
[23] M. Naseeruddin, Some studies in almost semigroups and flocks, Ph.D., thesis (Aligarh Muslim University, Aligarh, India, 1970).
[24] P.V. Protić and N. Stevanović, AG-test and some general properties of AbelGrassmann's groupoids, Pure Math. and Appl. 4 (6) (1995) 371-383.
[25] T. Shah and I. Rehman, On M-systems in Γ-AG-groupoids, Proceedings of the Pakistan Academy of Sciences 47 (1) (2010) 33-39.
[26] N. Stevanović and P.V. Protić, Composition of Abel-Grassmann's 3-bands, Novi Sad J. Math. 2 (34) (2004) 175-182.

Received 9 August 2013
Revised 24 January 2014

