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1. Introduction

This paper consists of two parts.
The first part of this work concerns of introducing definitions and theorems

about entropic quasigroups with quasi-identity, abelian groups with involutions
and some connections between them.

In the second part we define an Abelian group with involution of the form
Wn,x0

(G) and describe subalgebras of it. In the Theorem 17 we prove that if
some conditions are satisfied and Wn,x0

(G) is directly decomposable then G is
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6 G. Bińczak and J. Kaleta

also directly decomposable. Next we describe subalgebras of Q0
2m,2 and show that

quasigroups Ψ(Wn,(2m−1,0)(Q
0
2n,2)) are directly indecomposable for m−1 ≥ n ≥ 1.

Contrary to Abelian groups there are two-generated (and not one-generated)
entropic quasigroups beeing directly indecomposable. We show that there exists
an infinite family of pairwise not-isomorphic entropic quasigroups with quasi-
identity which are directly indecomposable and they are two-generated.

Definition. An Abelian group with involution is a set G, where are defined the
binary operation +, the unary operations − and ∗, and the constant 0, which
verify the following properties:

1. (G,+,−, 0) is an Abelian group,

2. 0∗ = 0, a∗∗ = a, (a+ b)∗ = a∗ + b∗.

In such a case we will denote (G,+,−, 0,∗ ). The operation − takes each element
a to its inverse −a and ∗ is the involution.

Moreover (−a)∗ = −(a∗) since (−a)∗+a∗
(2)
= (−a+a)∗ = 0∗ = 0 so we use further

the notation −a∗ instead of (−a)∗ and −(a)∗.
We denote the class of all Abelian groups with involution by AGI.

Definition. An entropic quasigroup is a set Q, where are defined the binary
operations ·, /, \, which verify the following properties:

1. a · (a\b) = b, (b/a) · a = b,

2. a\(a · b) = b, (b · a)/a = b,

3. (a · b) · (c · d) = (a · c) · (b · d).

In such a case we will denote (Q, ·, /, \). If there exists an element (which we will
denote as 1) such that

(4) a · 1 = a, 1 · (1 · a) = a,

then we will say that (Q, ·, /, \) has a quasi-identity and denote (Q, ·, /, \, 1).

We denote the class of all entropic quasigroups with quasi-identity by EQ1.

Definition. If G = (G,+,−, 0,∗ ) is an Abelian group with involution then we
define Ψ(G) := (G, ·, /, \, 1), where a · b := a + (b∗), a\b := b∗ + (−a∗), a/b :=
a+ (−b∗), 1 := 0.

If Q =(Q, ·, /, \, 1) is an entropic quasigroup with quasi-identity then we define
Φ(Q) := (Q,+,−, 0,∗ ), where a + b := a · (1 · b), (−a) := 1/(1 · a), 0 := 1,
a∗ := 1 · a.
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The next result corresponds to Theorem 3 and 4 in [1]:

Theorem 1. If G = (G,+,−, 0,∗ ) is an Abelian group with involution then
Ψ(G) = (G, ·, /, \, 1) is an entropic quasigroup with quasi-identity, where a · b :=
a+ (b∗), a\b := b∗ + (−a∗), a/b := a+ (−b∗), 1 := 0.

If Q =(Q, ·, /, \, 1) is an entropic quasigroup with quasi-identity then Φ(Q) =
(Q,+,−, 0,∗ ) is an Abelian group with involution, where a + b := a · (1 · b),
(−a) := 1/(1 · a), 0 := 1, a∗ := 1 · a.

By the Theorem given above we see that Ψ:AGI → EQ1 and Φ:EQ1 → AGI.

The next result corresponds to Theorem 5 and 6 in [1]:

Theorem 2. If Q =(Q, ·, /, \, 1) is an entropic quasigroup with quasi-identity
then Ψ(Φ(Q)) = Q.

If G = (G,+,−, 0,∗ ) is an Abelian group with involution then Φ(Ψ(G)) = G.

Theorem 3. The functions Ψ and Φ defined above satisfy that Ψ = Φ−1.

Lemma 4. If G1 = (G1,+1,−1, 01,
∗1 ) and G2 = (G2,+2,−2, 02,

∗2 ) are Abelian
groups with involution then Ψ(G1 × G2) = Ψ(G1)×Ψ(G2).

Proof. We know that Ψ(G1) = (G1, ·1, /1, \1, 01), where a ·1 b = a+1 (b
∗1), a\1b =

b∗1+(−1a
∗1), a/1b = a+1(−1b

∗1), for all a, b ∈ G1 and Ψ(G2) = (G2, ·2, /2, \2, 02),
where a ·2 b = a +2 (b

∗2), a\2b = b∗1 + (−2a
∗2), a/2b := a +2 (−2b

∗2), for every
a, b ∈ G2.

Then G1×G2 = (G1×G2,+3,−3, (01, 02))
∗3 , where (a1, a2)+3 (b1, b2) = (a1+1

b1, a2 +2 b2), −3(a1, a2) = (−1a1,−2a2), (a1, a2)
∗3 = (a∗11 , a∗22 ) for all a1, b1 ∈ G1

and b1, b2 ∈ G2.

We have Ψ(G1)×Ψ(G2) = (G1×G2, ·4, /4, \4, (01, 02)), where (a1, a2)·4(b1, b2) =
(a1 ·1b1, a2 ·2b2) = (a1+1 (b

∗1
1 ), a2+1 (b

∗2
2 )) for all a1, b1 ∈ G1, a2, b2 ∈ G2, similarly

for /4, \4.
Moreover Ψ(G1 × G2) = (G1 × G2, ·, /, \, (01 , 02)), where (a1, a2) · (b1, b2) =

(a1, a2) +3 (b1, b2)
∗3 = (a1 +1 (b

∗1
1 ), a2 +2 (b

∗2
2 )) for every a1, b1 ∈ G1, a2, b2 ∈ G2

similarly for /, \.
Hence ·4 = · and similarly /4 = /, \4 = \. Thus Ψ(G1×G2) = Ψ(G1)×Ψ(G2).

If Q = (Q, ·, /, \, 1) is an entropic quasigroup with quasi-identity then |Q| indi-
cates the cardinality of Q.

Definition. An entropic quasigroup with quasi-identity Q = (Q, ·, /, \, 1) is di-
rectly indecomposable if |Q| 6= 1 and if Q ∼= Q1 ×Q2, where Q1, Q2 ∈ EQ1, then
either |Q1| = 1 or |Q2| = 1.
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Similarly directly indecomposability for Abelian groups with involution is defined.

Definition. Let G = (G,+,−, 0,∗ ) ∈ AGI. A subset X ⊆ G is a subalgebra of
G if and only if 0 ∈ X, x1 + x2 ∈ X, x∗ ∈ X, −x ∈ X for every x, x1, x2 ∈ X.

Let X ⊆ G. The intersection of all subalgebras of G containing X we denote
by 〈X〉 (if X = {x} then we use 〈x〉 instead of 〈{x}〉). We say that the set X
generates G if and only if 〈X〉 = G.

A G has k generators if and only if there exists k-element setX which generates
G and there does not exist k − 1-element set X which generates G.

The following lemma concerning Abelian groups with involution can be proved
similarly as for Abelian groups.

Lemma 5. Let G ∈ AGI be a finite Abelian group and |G| > 1. Then G is directly
decomposable if and only if there are B and C being subalgebras of G such that
B ∩ C = {0}, B + C = G, |B| > 1 and |C| > 1.

Theorem 6. Let G = (G,+,−, 0,∗ ) be an Abelian group with involution. If G
is directly indecomposable then Ψ(G) is directly indecomposable.

Proof. Let G = (G,+,−, 0,∗ ) be an Abelian group with involution. Assume that
G is directly indecomposable. We show that Ψ(G) is directly indecomposable. If
Ψ(G) ∼= Q1 ×Q2 then let G1 = Φ(Q1) and G2 = Φ(Q2). By Theorem 2 we have
Ψ(G1) = Q1 and Ψ(G2) = Q2 so Ψ(G1 ×G2) = Ψ(G1)×Ψ(G2) = Q1 ×Q2

∼= Ψ(G)
by Lemma 4. Hence G1 × G2

∼= G and |G1| = 1 or |G2| = 1 since G is directly
indecomposable. Thus |Q1| = |G1| = 1 or |Q2| = |G2| = 1 so Ψ(G) is directly
indecomposable.

Obviously every finite abelian group with involution G is isomorphic to a finite
product of directly indecomposable finite abelian groups with involution. More-
over using Theorem [5, Theorem 6.39] this decomposition into directly indecom-
posable factors is unique (up to reindexing and isomorphism). After applying
Theorem 6 and Lemma 4 we obtain similar result for finite entropic quasigroups
with quasi-identity.

Hence to obtain structural theorem describing finite entropic quasigroups with
quasi-identity it remains to find all finite directly indecomposable entropic quasi-
groups with quasi-identity.

We have already described (in [3]) directly indecomposable finite entropic
quasigroups with quasi-identity having one generator.

In this paper we investigate finite two-generated directly indecomposable finite
entropic quasigroups with quasi-identity.

More information concerning entropic quasigroups may be found in [4] and [6].
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Definition. One-generated entropic quasigroups with quasi-identity are called
monogenic.

Let Q = (Q, ·, /, \, 1) be a monogenic entropic quasigroup with quasi-identity.
Let Q = 〈x〉. We define three types of rank of the generator x:

r+(x) = min {n ∈ N | nx = 0, n ≥ 1} , (additive rank)

r∗(x) = min {n ∈ N | n ≥ 1, ∃k∈Z nx∗ = kx} ,

r∗+(x) = min {n ∈ N | r∗(x)x
∗ = (r∗(x) + n)x} .

Note that r+(x) is the usual rank of x in an Abelian group.

Then we define

r+(Q) = r+(x), r∗(Q) = r∗(x), r∗+(Q) = r∗+(x).

This definition does not depend on the choice of the generator x (see [1]).

We denote the integer part of a ∈ R by E(a), whereas (a)b denotes the re-
mainder obtained after dividing a by b.

Definition. Let a, b, k ∈ N and a, b ≥ 1. Let γka,b : Z× Z → Z× Z be a mapping
such that

γka,b(x, y) = ((x+ E
(y

b

)

(b+ k))a, (y)b).

Definition. Let a, b, k ∈ Z and a ≥ 1, b ≥ 1, k ≥ 0. Define

Qk
a,b =

(

Za × Zb,⊕
k
a,b,⊖

k
a,b, (0, 0),

∗
)

,

where ⊖k
a,b(x, y) = γka,b(−x,−y), (x, y)⊕k

a,b (z, t) = γka,b(x+ z, y+ t) and (x, y)∗ =

γka,b(y, x).

Theorem 7 ([1], Theorem 10). Let a, b, k ∈ Z with a ≥ 1, b ≥ 1, k ≥ 0 and

b|a, b|k, 0 ≤ k < a, a|(2k + k2

b
). Then Qk

a,b is an Abelian group with involution.

2. Main theorem

We have already characterized all one-generated, directly indecomposable, en-
tropic quasigroups with quasi-identity (see [3]).

In this section we find some two-generated, directly indecomposable, entropic
quasigroups with quasi-identity.
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For any abelian group with involution G = (G,+,−, 0,∗ ) and some element x0 ∈
G, and positive integer n we define Wn,x0

(G) which is also abelian group with
involution (Theorem 9).

We can obtain from one-generated abelian group with involution G two-gene-
rated Wn,x0

(G) just by means of Wn,x0
.

If Wn,x0
(G) satisfies (H) then we can describe all subalgebras of Wn,x0

(G) in
order to decide when Wn,x0

(G) is directly indecomposable.

In the Theorem 17 we prove that if some conditions are satisfied and G is
directly indecomposable then Wn,x0

(G) is also directly indecomposable. Next we
describe subalgebras of Q0

2m,2 and show that quasigroups Ψ(Wn,(2m−1,0)(Q
0
2n,2))

are directly indecomposable for m− 1 ≥ n ≥ 1.

Definition. Let G = (G,+,−,∗ ) ∈ AGI and x0 = x∗0, 2x0 = 0 for some x0 ∈ G.
Let n ∈ N and n ≥ 1.

Let Wn,x0
(G) = (G× Z2n ,+,−, (0, 0),∗ ), where

(g, y) + (g′, y′) := (g + g′, (y + y′)2n),

− (g, y) := (−g, (−y)2n),

(g, y)∗ =

{

(g∗, y) for 2 | y
(g∗ + x0, y) for 2 ∤ y

Example 8. Let m ∈ N and m > 1. Let G = Q0
2m,2 ∈ AGI and x0 = (2m−1, 0) ∈

Z2m × Z2. Then 2x0 = γ02m,2(2
m, 0) = (0, 0) and x∗0 = γ02m,2(0, 2

m−1) = (2m−1, 0)
= x0.

Theorem 9. Let G = (G,+,−,∗ ) ∈ AGI and x0 = x∗0, 2x0 = 0 for some x0 ∈ G.
Let n ∈ N and n ≥ 1. Then Wn,x0

(G) ∈ AGI.

Proof. It is obvoius that the reduct (G× Z2n ,+,−, (0, 0)) is an Abelian group.

Let (g, y) ∈ G × Z2n . If 2|y then (g, y)∗∗ = (g, y). If 2 ∤ y then (g, y)∗∗ =
(g∗ +x0, y)

∗ = ((g∗ +x0)
∗ +x0, y) = (g∗∗ +x∗0 +x0, y) = (g+x0+x0, y) = (g, y).

Let (g, y), (g′ , y′) ∈ G× Z2n .

Consider the following cases:

1. If 2|y and 2|y′ then 2|(y + y′)2n and

((g, y) + (g′, y′))∗ = (g + g′, (y + y′)2n)
∗

= ((g + g′)∗, (y + y′)2n) = (g∗ + g′∗, (y + y′)2n)

= (g∗, y) + (g′∗, y′) = (g, y)∗ + (g′, y′)∗.
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2. If 2 ∤ y and 2|y′ then 2 ∤ (y + y′)2n and

((g, y) + (g′, y′))∗ = (g + g′, (y + y′)2n)
∗

= ((g + g′)∗ + x0, (y + y′)2n)

= (g∗ + x0 + g′∗, (y + y′)2n)

= (g∗ + x0, y) + (g′∗, y′) = (g, y)∗ + (g′, y′)∗.

3. If 2 ∤ y and 2 ∤ y′ then 2|(y + y′)2n and

((g, y) + (g′, y′))∗ = (g + g′, (y + y′)2n)
∗

= ((g + g′)∗, (y + y′)2n)

= (g∗ + x0 + g′∗ + x0, (y + y′)2n)

= (g∗ + x0, y) + (g′∗ + x0, y
′) = (g, y)∗ + (g′, y′)∗.

Definition. Let G = (G,+,−,∗ ) ∈ AGI, k, n ∈ Z and 0 ≤ k ≤ n. Let S be a
subalgebra of G and a0 ∈ G.

Then

[S, n, k, a0] :=

2n−k−1
⋃

i=0

(S + ia0)× {i2k}.

In order to decide when Wn,x0
(G) is directly indecomposable we have to describe

subalgebras of Wn,x0
(G). For given G ∈ AGI we defined [S, n, k, a0] ⊂ G × Z2n .

The following theorem says when [S, n, k, a0] is a subalgebra of Wn,x0
(G).

Theorem 10. Let G = (G,+,−,∗ ) ∈ AGI and x0 = x∗0, 2x0 = 0 for some
x0 ∈ G. Let n, k ∈ Z, n ≥ 1 and 0 ≤ k ≤ n. Let S be a subalgebra of G, a0 ∈ G
and a∗0 − a0 ∈ S, 2n−ka0 ∈ S. Assume that k > 0 or x0 ∈ S.

Then [S, n, k, a0] is a subalgebra of Wn,x0
(G).

Proof. Let a, b ∈ [S, n, k, a0] then there exist 0 ≤ i, j ≤ 2n−k − 1 such that
a ∈ (S + ia0)× {i2k} and b ∈ (S + ja0)× {j2k}.

Consider the following cases:

1. If i + j ≤ 2n−k − 1 then a + b ∈ (S + ia0) × {i2k} + (S + ja0) × {j2k} =
(S + (i+ j)a0)× {(i+ j)2k} so a+ b ∈ [S, n, k, a0].

2. If i+ j > 2n−k − 1 then

a+ b ∈ (S + ia0)× {i2k}+ (S + ja0)× {j2k}

= (S + (i+ j)a0)× {((i+ j)2k)2n}
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= (S + 2n−ka0 + (i+ j − 2n−k)a0)× {(i+ j − 2n−k)2k}

= (S + (i+ j − 2n−k)a0)× {(i+ j − 2n−k)2k}

since 2n−ka0 ∈ S. Hence a+ b ∈ [S, n, k, a0].

Therefore [S, n, k, a0] is closed under +.

Let a ∈ [S, n, k, a0] then there exist 0 ≤ i ≤ 2n−k−1 such that a ∈ (S+ ia0)×
{i2k}. Then

−a ∈ (S − ia0)× {(−i2k)2n}

= (S − 2n−ka0 + (2n−k − i)a0)× {(2n−k − i)2k}

= (S + (2n−k − i)a0)× {(2n−k − i)2k}

and 0 ≤ 2n−k − i ≤ 2n−k − 1. Hence −a ∈ [S, n, k, a0] and [S, n, k, a0] is closed
under −.

Let a ∈ [S, n, k, a0] then there exist 0 ≤ i ≤ 2n−k−1 such that a ∈ (S+ ia0)×
{i2k}.

Consider the following cases:

1. If 2|i2k then

a∗ ∈ (S + ia∗0)× {i2k}

= (S − i(a∗0 − a0) + ia∗0)× {i2k}

= (S + ia0)× {i2k}

2. If 2 ∤ i2k then k = 0 hence x0 ∈ S and

a∗ ∈ (S + ia∗0 + x0)× {i2k}

= (S − i(a∗0 − a0) + ia∗0)× {i2k}

= (S + ia0)× {i2k}

Therefore [S, n, k, a0] is closed under ∗.

Now, given G = (G,+,−,∗ ) ∈ AGI such that x0 = x∗0 and 2x0 = 0 suppose that
there exists r ≥ 1 such that

(i) 2rg = 0 or 2rg = x0 for all g ∈ G and

(ii) 2rg = 0 ⇒ g = g∗ for all g ∈ G
(H)
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Example 11. Let m ∈ N and m > 1. Let G = Q0
2m,2 ∈ AGI and x0 =

(2m−1, 0) ∈ Z2m × Z2. Then the hypotheses (H) hold for r = m− 1:
Let (a, b) ∈ Z2m × Z2. Then

2m−1(a, b) = γ02m,2(2
m−1a, 2m−1b) = ((2m−1a+ E(2

m−1b
2 )2)2m , (2m−1b)2)

= ((2m−1(a+ b))2m , 0) =

{

(0, 0) 2 | a+ b
(2m−1, 0) 2 ∤ a+ b

.

Hence if 2|a + b then 2m−1(a, b) = (0, 0) and if 2 ∤ a + b then 2m−1(a, b) =
(2m−1, 0) = x0. So the first hypothesis (H) is fullfilled.

Let (a, b) ∈ Z2m × Z2 and 2m−1(a, b) = 0. Then 2|a+ b.
If b = 0 then 2|a and b + E(a2 )2 = 0 + a

22 = a so (a, b)∗ = γ02n,2(b, a) =
((b+ E(a2 )2)2n , (a)2) = (a, 0) = (a, b).

If b = 1 then 2 ∤ a and b + E(a2 )2 = 1 + E(a2 )2 = a so (a, b)∗ = γ02n,2(b, a) =
((b+ E(a2 )2)2n , (a)2) = (a, 1) = (a, b).

Therefore the second hypothesis (H) is satisfied, too.

Lemma 12. Let G = (G,+,−,∗ ) ∈ AGI such that x0 = x∗0 and 2x0 = 0 for
some x0 ∈ G, and assume hypotheses (H) hold. Let n ∈ N and r ≥ n ≥ 1.

If T is a subalgebra of Wn,x0
(G) then (x0, 0) ∈ T or for all (g, i) ∈ T we

have 2|i.

Proof. Assume that (g, i) ∈ T and 2 ∤ i for some g ∈ G and i ∈ Z2n .
We will show that (x0, 0) ∈ T . Observe that 2r(g, i) = (2rg, (2ri)2n) =

(2rg, 0) ∈ T since r ≥ n. If 2rg = x0 then (x0, 0) ∈ T . If 2rg 6= x0 then
2rg = 0 and g = g∗. Moreover (g, i)∗ = (g∗ + x0, i) ∈ T . Hence

T ∋ (g∗ + x0, i) + (2r − 1)(g, i)

= (g∗ + x0 + 2rg − g, (2ri)2n)

= (g + x0 − g, 0) = (x0, 0)

Theorem 13. Let G = (G,+,−,∗ ) ∈ AGI and x0 = x∗0, 2x0 = 0 for some
x0 ∈ G. Let n ∈ N and n ≥ 1.

If T is a subalgebra of Wn,x0
(G) and S = {s ∈ G: (s, 0) ∈ T} then T =

[S, n, k, a0] for some 0 ≤ k ≤ n and a0 ∈ G.

Proof. Let T be a subalgebra of Wn,x0
(G) and S = {s ∈ G: (s, 0) ∈ T}.

It is obvious that S is a subalgebra of G.
Let P = {i ∈ Z2n :∃g∈G(g, i) ∈ T}. Then P is a subgroup of Z2n . Hence there

exists 0 ≤ k ≤ n such that P = {i2k: 0 ≤ i < 2n−k}.
If k < n then 2k ∈ P and there exists a0 := g ∈ G such that (a0, 2

k) ∈ T .
If k = n then a0 := 0.
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1. We show that [S, n, k, a0] ⊆ T .

Let a ∈ [S, n, k, a0] then there exists 0 ≤ i ≤ 2n−k − 1 such that a ∈
(S + ia0) × {i2k}. Hence a = (s + ia0, i2

k) for some s ∈ S. Moreover
(s, 0) ∈ T .

Consider the following cases:

(a) If k < n then (a0, 2
k) ∈ T and i(a0, 2

k) = (ia0, i2
k) ∈ T so a =

(s+ ia0, i2
k) = (s, 0) + (ia0, i2

k) ∈ T .

(b) If k = n then i = 0 and a = (s, 0) ∈ T .

2. We show that T ⊆ [S, n, k, a0].

Let y ∈ T then there exist g ∈ G and i ∈ Z2n such that y = (g, i). Hence
i ∈ P so there exists 0 ≤ j < 2n−k such that i = j2k.

Consider the following cases:

(a) If k < n then (a0, 2
k) ∈ T thus (ja0, j2

k) ∈ T . Hence (g, j2k) −
(ja0, j2

k) = (g− ja0, 0) ∈ T and g− ja0 ∈ S so y = (g, i) = (g− ja0+
ja0, j2

k) ∈ (S + ja0)× {j2k} ⊆ [S, n, k, a0].

(b) If k = n then i = 0 and g ∈ S so y = (g, 0) ∈ S × {0} = [S, n, k, a0].

Hence T = [S, n, k, a0].

The following theorem given the converse of Lemma 12 and uses Theorem 10 ,
Lemma 12 and Theorem 13. In particular it allows to characterize all subalgebras
of Wn,x0

(G) which satisty the hypotheses (H).

Theorem 14. Let G = (G,+,−,∗ ) ∈ AGI such that x0 = x∗0 and 2x0 = 0 for
some x0 ∈ G and assume hypotheses (H) hold. T is a subalgebra of Wn,x0

(G) if
and only if both conditions given below hold

(i) (x0, 0) ∈ T or for all (g, i) ∈ T we have 2|i,

(ii) T = [S, n, k, a0] for some S beeing a subalgebra of G, 0 ≤ k ≤ n and a0 ∈ G
such that a∗0 − a0 ∈ S and 2n−ka0 ∈ S.

Proof. ⇒ From Lemma 12, if T is a subalgebra then (i) holds. Furtheremore,
from Theorem 13 we have that T = [S, n, k, a0] with S = {s ∈ G: (s, 0) ∈ T} and
for some 0 ≤ k ≤ n and a0 ∈ G. Therefore we only need to show that a∗0−a0 ∈ S
and 2n−ka0 ∈ S.

Consider the following cases:

(a) if k = n then a0 = 0 and a∗0 − a0 = 0 ∈ S and 2n−ka0 = 0 ∈ S.
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(b) if k < n then (a0, 2
k) ∈ T so 2n−k(a0, 2

k) = (2n−ka0, (2
n)2n) = (2n−ka0, 0) ∈

T so 2n−ka0 ∈ S.

(i) if k > 0 then (a0, 2
k)∗ = (a∗0, 2

k) ∈ T hence (a∗0, 2
k) − (a0, 2

k) =
(a∗0 − a0, 0) ∈ T and a∗0 − a0 ∈ S.

(ii) if k = 0 then (a0, 2
k) = (a0, 1) ∈ T and 2 ∤ 1 so (x0, 0) ∈ T by Lemma

12. Moreover T ∋ (a0, 1)
∗− (a0, 1) = (a∗0+x0, 1)− (a0, 1) = (a∗0−a0+

x0, 0) and (x0, 0) ∈ T hence (a∗0−a0+x0, 0)−(x0, 0) = (a∗0−a0, 0) ∈ T
and a∗0 − a0 ∈ S.

⇐ Suppose (i) and (ii) hold. We only need to show that x0 ∈ S or k > 0 and,
then, we can conclude using Theorem 10.

(a) If (x0, 0) ∈ T then (x0, 0) ∈ T = [S, n, k, a0] =
⋃2n−k−1

i=0 (S + ia0)× {i2k} so
(x0, 0) ∈ S × {0} and x0 ∈ S.

(b) If for all (g, i) ∈ T we have 2|i then

(i) if k = n then k > 0 since n ≥ 1.

(ii) if k < n then (a0, 2
k) ∈ (S +1 · a0)×{1 · 2k} ⊆ [S, n, k, a0] = T so 2|2k

and k > 0.

By Theorem 10 T = [S, n, k, a0] is a subalgebra of Wn,x0
(G).

Lemma 15. Let C be an Abelian group, A,B ≤ C and a, b ∈ C then (A + a) ∩
(B + b) = ∅ if and only if a− b /∈ A+B

Proof. If x ∈ (A+ a)∩ (B+ b) 6= ∅ then there exist a′ ∈ A and b′ ∈ B such that
x = a′ + a = b′ + b so a− b = (−a′) + b′ ∈ A+B.

If a− b ∈ A+B then there exist a′ ∈ A and b′ ∈ B such that a− b = a′ + b′.
Then x := (−a′) + a = b′ + b ∈ (A+ a) ∩ (B + b) so (A+ a) ∩ (B + b) 6= ∅.

Lemma 16. Let G be an Abelian group, S ≤ G, a ∈ G, b ∈ G and j ∈ Z. If there
exists w ∈ Z such that w > 0, wa ∈ S, wb ∈ S, S + a = S + jb and gcd(j, w) = 1
then

{S + ia: i ∈ Zw} = {S + ib: i ∈ Zw}.

Proof. Let L = {S + ia: i ∈ Zw} and R = {S + ib: i ∈ Zw}. First we show that
L ⊆ R.

We know that S + a = S + jb hence a− jb ∈ S so if i ∈ Zw then i(a− jb) ∈ S

and S + ia = S + ijb
wb∈S
= S + (ij)wb ∈ R. Therefore L ⊆ R.

Now we show that R ⊆ L.
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We know that S + a = S + jb and gcd(j, w) = 1 hence a − jb ∈ S and there
exist p, q ∈ Z such that pj + qw = 1. Thus S ∋ pa − pjb = pa − (1 − qw)b =
pa − b + qwb and pa − b ∈ S since wb ∈ S. If i ∈ Zw then i(pa − b) ∈ S and

S + ib = S + ipa
wa∈S
= S + (ip)wa ∈ L. Therefore R ⊆ L.

We show that if some conditions are fulfilled and G is directly indecomposable
then Wn,x0

(G) is directly indecomposable.

Theorem 17. Let G = (G,+,−,∗ ) ∈ AGI such that x0 = x∗0 6= 0 and 2x0 = 0
for some x0 ∈ G, and assume hypotheses (H) hold.

Let n ∈ N and r ≥ n ≥ 1. Let Gn−1 := {g ∈ G:∃x∈G2
n−1x = g}. Moreover

in case n > 1 assume that |G|
2n = |Gn−1| and for all subalgebras S ≤ G such that

|Gn−1| < |S| we obtain that Gn−1 ⊆ S.
If G is directly indecomposable then Wn,x0

(G) is directly indecomposable.

Proof. Assume that Wn,x0
(G) is directly decomposable. Then there exist sub-

algebras T1, T2 of the algebra Wn,x0
(G) such that T1 ∩ T2 = {(0, 0)}, |T1| > 1,

|T2| > 1 and T1 + T2 = G× Z2n .
We know that (x0, 0) /∈ T1 ∩T2 so (x0, 0) /∈ T1 or (x0, 0) /∈ T2. We can assume

that (x0, 0) /∈ T2. By Lemma 12 we have T2 ⊆ G× {i ∈ Z2n : 2|i}.
By Theorem 14 we have

T1 = [S1, n, k1, b0] =
2n−k1−1

⋃

i=0

(S1 + ib0)× {i2k1}

for some S1 beeing a subalgebra of G, 0 ≤ k1 ≤ n, b0 ∈ G such that b∗0 − b0 ∈ S1

and 2n−k1b0 ∈ S1.
If k1 > 0 then T1 ⊆ G × {i ∈ Z2n : 2|i} and T1 + T2 ⊆ G × {i ∈ Z2n : 2|i}

and we obtain a contradiction since T1 + T2 = G × Z2n . Hence k1 = 0 and
T1 6⊆ G× {i ∈ Z2n : 2|i} and by Lemma 12 we have (x0, 0) ∈ T1. Thus

T1 = (S1 × {0})

∪ ((S1 + b0)× {1}) ∪ . . . ∪ ((S1 + (2n − 1)b0)× {2n − 1}),
(1)

where

b∗0 − b0 ∈ S1, 2nb0 ∈ S1.(2)

By Theorem 14 we have

T2 = [S2, n, k, a0] =

2n−k−1
⋃

i=0

(S2 + ia0)× {i2k}

for some S2 beeing a subalgebra of G, 0 ≤ k ≤ n, a0 ∈ G such that a∗0 − a0 ∈ S2

and 2n−ka0 ∈ S2.
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Consider the following cases:

1. If k = n then T2 = S2×{0} and T1 ∩T2 = (S1 ∩S2)×{0} so S1 ∩S2 = {0}
and by 1 we have

G× Z2n = T1 + T2 = ((S1 + S2)× {0})

∪ ((S1 + S2 + b0)× {1} ∪ . . . ∪ (S1 + S2 + (2n − 1)b0)× {2n − 1}

so S1+S2 = G. Moreover (x0, 0) ∈ T1 and x0 6= 0 hence x0 ∈ S1 and |S1| > 1. We
know that T2 = S2×{0} so |S2| = |T2| > 1. Therefore G is directly decomposable.

2. If k < n then

T2 = (S2 × {0}) ∪ ((S2 + a0)× {2k})

∪ . . . ∪ ((S2 + (2n−k − 1)a0)× {(2n−k − 1)2k})
(3)

where

a∗0 − a0 ∈ S2, 2n−ka0 ∈ S2(4)

and 0 < k < n because if k = 0 then 2k = 1 and T2 6⊆ G × {i ∈ Z2n : 2|i}, so
k > 0. Let 0 < i < 2n−k by (3) we have

T2 ∩ (G× {i2k}) = (S2 + ia0)× {i2k}.

Moreover T1∩ (G×{i2k}) = (S1+ i2kb0)×{i2k} by (1). We know that T1∩ T2 =
{(0, 0)} thus T1 ∩ T2 ∩ (G × {i2k}) = ∅ since i2k 6= 0. Hence (S1 + i2kb0) ∩
(S2 + ia0) = ∅ so by Lemma 15 we have

i(a0 − 2kb0) /∈ S1 + S2(5)

for every 0 < i < 2n−k.

Let 0 < i < 2n−k. By (1) we have T1∩ (G×{2n− i2k}) = (S1+(2n− i2k)b0)×
{2n − i2k}. By (3) we have T2 ∩ (G× {i2k}) = (S2 + ia0)× {i2k} hence

(T1 ∩ (G× {2n − i2k})) + (T2 ∩ (G× {i2k}))

= (S1 + (2n − i2k)b0 + S2 + ia0)× {(2n)2n}

= (S1 + S2 + i(a0 − 2kb0))× {0}

since 2nb0 ∈ S1 by (2).
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Hence (T1+T2)∩ (G×{0}) = ((S1+S2)∪
⋃2n−k−1

i=1 (S1+S2+ i(a0−2kb0)))×{0}
and

G =
2n−k−1
⋃

i=0

(S1 + S2 + i(a0 − 2kb0))(6)

since T1 + T2 = G× Z2n . Therefore there exists 0 ≤ i0 < 2n−k such that

a0 ∈ S1 + S2 + i0(a0 − 2kb0).(7)

Consider the following cases:

(a) If 2 ∤ i0 then gcd(i0, 2
n−k) = 1.

We show that G is isomorphic to direct product of S1 and B, where B is generated

by S2 ∪ {a0}. By (4) we have B =
⋃2n−k−1

i=0 (S2 + ia0).

Let L = {S1+S2+ i(a0−2kb0): i ∈ Z2n−k} and R = {S1+S2+ ia0: i ∈ Z2n−k}.
By lemma 16 (taking a := a0, b := a0 − 2kb0, j := i0, S := S1 + S2, w := 2n−k)
we obtain that L = R since S1 + S2 + a0 = S1 + S2 + i0(a0 − 2kb0) by (7).

Then

ia0 /∈ S1 + S2(8)

for every 0 < i < 2n−k by (5) and since R = L.

Hence S1∩(S2+ia0) = ∅ for every 0 < i < 2n−k by Lemma 15 and S1∩S2 = {0}
since T1 ∩ T2 = {(0, 0)}. Therefore S1 ∩B = {0}.

Moreover

S1 +B = S1 +
2n−k−1
⋃

i=0
(S2 + ia0) =

2n−k−1
⋃

i=0
(S1 + S2 + ia0)

L=R
=

2n−k−1
⋃

i=0
(S1 + S2 + i(a0 − 2kb0))

(6)
= G

and we have that G is isomorphic to direct product of S1 and B.

Additionally |S1| > 1 since 0 6= x0 ∈ S1 and |B| > 1 since a0 ∈ B and a0 6= 0
by (8).

Hence G is directly decomposable.

(b) If 2|i0 then gcd(1− i0, 2
n−k) = 1.

We show that G is isomorphic to direct product of S2 and C, where C is generated
by S1 ∪ {2kb0}. By (2) we have

C =

2n−k−1
⋃

i=0

S1 + i2kb0.(9)
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Let L1 = {S1 + S2 + i(a0 − 2kb0): i ∈ Z2n−k} and R1 = {S1 + S2 + i2kb0: i ∈
Z2n−k}. We know that gcd(1 − i0, 2

n−k) = 1 so there exist t, s ∈ Z such that
(1− i0)t+ s2n−k = 1.

We show that S1 +S2 + a0 − 2kb0 = S1 +S2 +(−1− ti0)2
kb0. By (7) we have

(1− i0)a0 + i02
kb0 ∈ S1 +S2 so S1 +S2 ∋ t(1− i0)a0 + ti02

kb0 = (1− s2n−k)a0 +
ti02

kb0 = a0 − s2n−ka0 + ti02
kb0 and a0 + ti02

kb0 ∈ S1 + S2 by (4). Hence
a0−2kb0+(1+ti0)2

kb0 ∈ S1+S2 and S1+S2+a0−2kb0 = S1+S2+(−1−ti0)2
kb0.

We know that 2|i0 so gcd(2n−k,−1 − ti0) = 1 and by Lemma 16 (taking
j := −1 − ti0, a := a0 − 2kb0, b := 2kb0, S := S1 + S2, w := 2n−k) we have that
L1 = R1.

Then

i2kb0 /∈ S1 + S2(10)

for every 0 < i < 2n−k by (5) and since R1 = L1.

Hence S2 ∩ (S1 + i2kb0) = ∅ for every 0 < i < 2n−k by Lemma 15 and
S1 ∩ S2 = {0} since T1 ∩ T2 = {(0, 0)}. Therefore S2 ∩ C = {0}.

Moreover

S2 + C = S2 +
2n−k−1
⋃

i=0
(S1 + i2kb0) =

2n−k−1
⋃

i=0
(S1 + S2 + i2kb0)

L1=R1=
2n−k−1
⋃

i=0
(S1 + S2 + i(a0 − 2kb0))

(6)
= G

and we have that G is isomorphic to direct product of S2 and C.

Additionally |S1| > 1 since 0 6= x0 ∈ S1 so |C| > 1.

We prove that |S2| > 1. Suppose that |S2| = 1 then S1 + S2 = S1 and by (7)
there exists s1 ∈ S1 such that a0 = s1 + i0(a0 − 2kb0) so

2n−k−1a0 = 2n−k−1s1 + 2n−k−1i0(a0 − 2kb0)

= 2n−k−1s1 + 2n−ka0
i0
2 − 2nb0

i0
2 = 2n−k−1s1 − 2nb0

i0
2 ∈ S1

(11)

since 2n−ka0 ∈ S2 = {0} and 2nb0 ∈ S1 by (2).

Moreover |G| = |C| · |S2| = |C| = |S1|2
n−k by (9) and (10). Hence |Gn−1| =

|G|
2n < |G|

2n−k = |S1| thus 2
n−1b0 ∈ Gn−1 ⊆ S1 and 2n−1b0 ∈ S1 so by (11) we obtain

2n−k−1(a0 − 2kb0) = 2n−k−1a0 − 2n−1b0 ∈ S1 = S1 + S2 which contradicts (5).
Hence |S2| > 1 and G is directly decomposable.

Now we shall study the case where G := Q0
2n,2 (see Definition 1). In particular,

in the following two lemmas we characterize the involution ∗ in Q0
2n,2.
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Lemma 18. Let n ∈ Z and n ≥ 1. If (a, b) ∈ Z2n × Z2 and 2|a + b then
(a, b)∗ = (a, b) in Q0

2n,2.

Proof. Consider the following cases:

1. If b = 0 then 2|a and b + E(a2 )2 = 0 + a
22 = a so (a, b)∗ = γ02n,2(b, a) =

((b+ E(a2 )2)2n , (a)2) = (a, 0) = (a, b).

2. If b = 1 then 2 ∤ a and b+E(a2 )2 = 1 +E(a2 )2 = a so (a, b)∗ = γ02n,2(b, a) =
((b+ E(a2 )2)2n , (a)2) = (a, 1) = (a, b).

Lemma 19. Let n ∈ Z, n ≥ 1. If (a, b) ∈ Z2n × Z2 and 2 ∤ a+ b then

(a, b)∗ =

{

(a− 1, 1) for b = 0

(a+ 1, 0) for b = 1

in Q0
2n,2

Proof. Consider the following cases:

1. If b = 0 then 2 ∤ a and b+E(a2 )2 = 0+ a−1
2 2 = a−1 so (a, b)∗ = γ02n,2(b, a) =

((b+ E(a2 )2)2n , (a)2) = (a− 1, 1).

2. If b = 1 then 2|a and b+ E(a2 )2 = 1 + a
22 = a+ 1 so (a, b)∗ = γ02n,2(b, a) =

((b+ E(a2 )2)2n , (a)2) = (a+ 1, 0).

In the definition below we introduce three possible forms of nontrivial subalgebras
of Q0

2m,2.

Definition. Let m.k ∈ Z, m ≥ 1, 1 ≤ k ≤ m. Let

Sk,m,0 = {(t2k, 0) ∈ Z2m × Z2: 0 ≤ t < 2m−k},

Sk,m,1 = Sk,m,0 ∪ {(2k−1 − 1 + t2k, 1) ∈ Z2m × Z2: 0 ≤ t < 2m−k},

Sk,m,2 = Sk,m,0 ∪ {(2k − 1 + t2k, 1) ∈ Z2m × Z2: 0 ≤ t < 2m−k}.

Theorem 20. [3, Theorem 3.9] Let Q ∈ EQ1 be a finite and monogenic quasiqroup,
r+(Q) = 2n, r∗(Q) = 2m and n > 0 then Q is directly indecomposable.

The followiong theorem describes all subalgebras of Q0
2m,2.

Theorem 21. Let m ∈ Z and m ≥ 1. Then S is a subalgebra of Q0
2m,2 if and

only if S = {(0, 0)} or S = Z2m × Z2, or S = Sk,m,0 for k = 1, . . . ,m − 1, or
S = Sk,m,1 for k = 2, . . . ,m, or S = Sk,m,2 for k = 1, . . . ,m.
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Proof. It is easy to check that Sk,m,0 ≤ Q0
2m,2 for k = 1, . . . ,m−1, Sk,m,1 ≤ Q0

2n,2

for k = 2, . . . ,m, S = Sk,m,2 ≤ Q0
2m,2 for k = 1, . . . ,m.

Suppose that S ≤ Q0
2m,2 and S 6= {(0, 0)}, and S 6= Z2m × Z2. Let U = {x ∈

Z2m : (x, 0) ∈ S} then U is a subgroup of Z2m hence there exists 0 ≤ k ≤ m such
that U = {t2k ∈ Z2m : 0 ≤ t < 2m−k}. Moreover

S ∩ (Z2m × {0}) = {(t2k, 0) ∈ Z2m × Z2: 0 ≤ t < 2m−k}.(12)

If k = 0 then 1 · 2k = 1 and (1, 0) ∈ S so S = Z2m × Z2. Hence k > 0.

Consider the following cases:

1. If S ∩ (Z2m × {1}) = ∅ then S ⊆ Z2m × {0}. If k = m then U = {0} and
S = {(0, 0)}. Hence 1 ≤ k ≤ m− 1 and S = U × {0} = Sk,m,0.

2. If S ∩ Z2m × {1} 6= ∅ then there exists x ∈ Z2m such that (x, 1) ∈ S.
Let r = (x)2k and t = E( x

2k
) then x = t2k + r, where 0 ≤ r < 2k. Thus

(x, 1)− t(2k , 0) = (r, 1) ∈ S. If 2|r then 2 ∤ r+1 and as it was shown in the proof
of Theorem 20 (r, 1) generates Q0

2m,2 so S = Z2m × Z2. Hence 2 ∤ r so r = 2q + 1
for some q ∈ Z. Thus

2(r, 1) = 2(2q + 1, 1) = γ02m,2(4q + 2, 2)

= ((4q + 2 + E(22 )2)2m , 0) = ((4q + 4)2m , 0) ∈ S

so by (12)

2k|4q + 4.(13)

Consider the following cases:

(a) If k = 1 then (2, 0) ∈ S by (12). Hence (r, 1) − q(2, 0) = (r − 2q, 1) =
(1, 1) ∈ S. It is easy to check that S1,m,2 is generated by (1, 1) and (2, 0). Thus
S1,m,2 ⊆ S. Moreover S1,m,2 = {(x, y) ∈ Z2m × Z2: 2|x + y} so as it was shown
in the proof of Theorem 20 S1,m,2 is the bigest nontrivial subalgebra of Q0

2m,2.
Hence S = S1,m,2.

(b) If k ≥ 2 then by (13) 2k−2|q + 1 so there exists w ∈ Z such that q + 1 =
w2k−2. Hence w2k−1 − 1 = 2(q + 1)− 1 = 2q + 1 = r and 0 < r < 2k so

0 < w2k−1 − 1 < 2k.(14)

If w ≥ 3 then w2k−1 − 1 ≥ 3 · 2k−1 − 1 = 2k−1 + 2k − 1 ≥ 2− 1 + 2k = 1 + 2k so
by (14) w = 1 or w = 2.
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(i) If w = 1 then r = w2k−1 − 1 = 2k−1 − 1 so (2k−1 − 1, 1) ∈ S and Sk,m,1 ⊆ S
since (2k−1 − 1, 1) generates Sk,m,1. If (y, 0) ∈ S then 2k|y by (12) therefore
(y, 0) ∈ Sk,m,1. If (y, 1) ∈ S then

(y, 1)− (2k−1 − 1, 1) = ((y − 2k−1 + 1)2m , 0) ∈ S

so 2k|y−2k−1+1 by (12) and there exists t ∈ Z such that y−2k−1+1 = t2k

hence y = 2k−1−1+t2k and 0 ≤ t < 2m−k since y ∈ Z2m . Thus (y, 1) ∈ Sk,m,1

and S ⊆ Sk,m,1. Therefore S = Sk,m,1.

(ii) If w = 2 then r = w2k−1 − 1 = 2k − 1 so (2k − 1, 1) ∈ S and (2k, 0) ∈ S by
(12). Thus Sk,m,2 ⊆ S since Sk,m,2 is generated by (2k − 1, 1) and (2k, 0). If
(y, 0) ∈ S then 2k|y by (12) therefore (y, 0) ∈ Sk,m,2. If (y, 1) ∈ S then

(y, 1) − (2k − 1, 1) = ((y − 2k + 1)2m , 0) ∈ S

so 2k|y − 2k + 1 by (12) and there exists t ∈ Z such that y − 2k + 1 = t2k

hence y = 2k−1+ t2k and 0 ≤ t < 2m−k since y ∈ Z2m. Thus (y, 1) ∈ Sk,m,2

and S ⊆ Sk,m,2. Hence S = Sk,m,2.

It turns out that:

Lemma 22. Let m,n ∈ Z, m − 1 ≥ n ≥ 1, r = m − 1 and x0 = (2m−1, 0),
G = Q0

2m,2.

Then x0 = x∗0 6= (0, 0), 2x0 = (0, 0) and hypotheses (H) are satisfied for
r = m− 1.

Let Gn−1 := {g ∈ G:∃x∈G2
n−1x = g}. If n > 1 then |G|

2n = |Gn−1| and for all
subalgebras S ≤ G such that |Gn−1| < |S| we obtain that Gn−1 ⊆ S.

So all assumptions of Theorem 17 are satisfied.

Proof. By Lemma 18 x∗0 = x0 since 2|2m−1. Moreover

2x0 = γ02m,2(2
m, 0) = (0, 0)

and x0 = (2m−1, 0) 6= (0, 0).

The hypotheses (H) are satisfied for r = m− 1 by Example 11.

Let n > 1. We show that Gn−1 = Sn−1,m,0, where Gn−1 := {g ∈ G:∃x∈G2
n−1x

= g}.

If (a, b) ∈ Sn−1,m,0 then b = 0 and a = t2n−1 where 0 ≤ t < 2m−(n−1) so
(a, b) = (t2n−1, 0) = 2n−1(t, 0) ∈ Gn−1.

If (a, b) ∈ Gn−1 then there exists (c, d) ∈ G such that (a, b) = 2n−1(c, d).
Moreover
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2n−1(c, d) = γ02m,2(2
n−1c, 2n−1d) = ((2n−1c+ E(2

n−1d
2 )2)2m , (2n−1d)2)

n>1
= ((2n−1(c+ d))2m , 0) ∈ Sn−1,m,0.

Hence

|Gn−1| = |Sn−1,m,0| = 2m−(n−1) =
|G|

2n
.(15)

Let S ≤ G and |Gn−1| < |S|. We show that Gn−1 ⊆ S. Obviously S 6= {(0, 0)}
and if S = G then Gn−1 ⊆ S. By Theorem 21 it remains to consider the following
cases

1. S = Sk,m,0 for 1 ≤ k ≤ m−1. Then |S| = 2m−k > |Gn−1| = 2m−n+1 by (15).
Thus m− k > m− n+ 1 and n− 1 > k so Gn−1 = Sn−1,m,0 ⊆ Sk,m,0 = S.

2. S = Sk,m,1 or S = Sk,m,2. Then |S| = 22m−k > |Gn−1| = 2m−n+1 by (15).
Hence m− k + 1 > m− n+ 1 and n− 1 > k − 1 so n− 1 ≥ k and 2k|2n−1

thus (2n−1, 0) ∈ Sk,m,0 ⊆ S. Then Gn−1 = Sn−1,m,0 ⊆ S.

Theorem 23. Let m,n ∈ Z and m− 1 ≥ n ≥ 1.
Then quasigroup Ψ(Wn,(2m−1,0)(Q

0
2m,2)) is directly indecomposable.

Proof. By Theorem 6 it is sufficient to show that Wn,(2m−1,0)(Q
0
2m,2) is directly

indecomposable. Using 22 and 17 we conclude that Wn,(2m−1,0)(Q
0
2m,2) is directly

indecomposable since Q0
2m,2 is directly indecomposable by Theorem 20.

Moreover we obtain that:

Theorem 24. Let m,n ∈ Z and m− 1 ≥ n ≥ 1.
Then quasigroup Ψ(Wn,(2m−1,0)(Q

0
2m,2)) is two-generated.

Proof. It is sufficient to show that Wn,(2m−1,0)(Q
0
2m,2) is two-generated.

Let x = ((1, 0), 0) and y = ((0, 0), 1). If ((a, b), c) ∈ (Z2m × Z2) × Z2n then
((a, b), c) = ax+ bx∗ + cy so x and y generates Wn,(2m−1,0)(Q

0
2m,2).

Let
A = {((a, b), c) ∈ (Z2m × Z2)× Z2n : 2|c}

B = {((a, b), c) ∈ (Z2m × Z2)× Z2n : 2|a+ b}

C = {((a, b), c) ∈ (Z2m × Z2)× Z2n : 2|a+ b+ c}.

We show that A ≤ Wn,(2m−1,0)(Q
0
2m,2).

If ((a, b), c), ((a′ , b′), c′) ∈ A then 2|c and 2|c′. Hence ((a, b), c) + ((a′, b′), c′) =
((a, b)+Q0

2m,2
(a′, b′), (c+c′)2n) ∈ A since 2|c+c′. Moreover ((a, b), c)∗ = ((a, b)∗, c)

∈ A.
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We show that B ≤ Wn,(2m−1,0)(Q
0
2m,2).

If ((a, b), c), ((a′ , b′), c′) ∈ B then 2|a+ b and 2|a′ + b′. Hence 2|a+ b+ a′ + b′

and 2|(a + a′ + E( b+b′

2 )2)2m + (b+ b′)2 thus

((a, b), c) + ((a′, b′), c′) = (γ02m,2(a+ a′, b+ b′), (c + c′)2n)

= (((a+ a′ +E( b+b′

2 )2)2m , (b+ b′)2), (c + c′)2n) ∈ B

and

1. if 2|c then ((a, b), c)∗ = ((a, b)∗, c)
18
= ((a, b), c) ∈ B.

2. if 2 ∤ c then

((a, b), c)∗ = ((a, b)∗ +Q0
2m,2

(2m−1, 0), c)
18
= ((a, b) +Q0

2m,2
(2m−1, 0), c)

= (γ02m,2(a+ 2m−1, b), c)

= (((a+ 2m−1 +E( b2 )2)2m , (b)2), c).

Moreover m − 1 ≥ 1 so 2|2m−1 thus 2|(a + 2m−1 + E( b2 )2)2m + (b)2 since
2|a+ b. Hence ((a, b), c)∗ ∈ B.

We show that C ≤ Wn,(2m−1,0)(Q
0
2m,2).

If ((a, b), c), ((a′ , b′), c′) ∈ C then 2|a+ b+ c and 2|a′ + b′ + c′. Hence 2|a+ b+
c+ a′ + b′ + c′ and 2|(a + a′ + E( b+b′

2 )2)2m + (b+ b′)2 + (c+ c′)2n thus

((a, b), c) + ((a′, b′), c′) = (γ02m,2(a+ a′, b+ b′), (c + c′)2n)

= (((a+ a′ + E( b+b′

2 )2)2m , (b+ b′)2), (c + c′)2n) ∈ C

and

1. if 2|c then ((a, b), c)∗ = ((a, b)∗, c)
18
= ((a, b), c) ∈ C

2. if 2 ∤ c then 2 ∤ a+ b.

(a) If b = 0 then 2 ∤ a thus 2|a+ c so 2|(a + 1 + 2m−1)2m + 1 + c and

((a, b), c)∗ = ((a, b)∗ +Q0
2m,2

(2m−1, 0), c)

19
= ((a− 1, 1) +Q0

2m,2
(2m−1, 0), c)

= (γ02m,2(a− 1 + 2m−1, 1), c)

= (((a− 1 + 2m−1 + E(12 )2)2m , (1)2), c)

= (((a+ 1 + 2m−1)2m , 1), c) ∈ C.
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(b) If b = 1 then 2|a thus 2|a+ 1 + c so 2|(a + 1 + 2m−1)2m + c and

((a, b), c)∗ = ((a, b)∗ +Q0
2m,2

(2m−1, 0), c)

19
= ((a+ 1, 0) +Q0

2m,2
(2m−1, 0), c)

= (γ02m,2(a+ 1 + 2m−1, 0), c)

= (((a+ 1 + 2m−1 + E(02 )2)2m , (0)2), c)

= (((a+ 1 + 2m−1)2m , 0), c) ∈ C.

We show that A ∪B ∪ C = (Z2m × Z2)× Z2n .

Let ((a, b), c) ∈ (Z2m ×Z2)×Z2n . If 2|c then ((a, b), c) ∈ C. If 2 ∤ c and 2|a+ b
then ((a, b), c) ∈ B. If 2 ∤ c and 2 ∤ a+ b then 2|a+ b+ c and ((a, b), c) ∈ C.

Hence every one-generated subalgebra S of Wn,(2m−1,0)(Q
0
2m,2) is contained in

A or B, or C. Therefore Wn,(2m−1,0)(Q
0
2m,2) is non-monogenic.

The following theorem summarizes all our considerations concerning quasigroups
mentioned in the title of this paper.

Theorem 25. In the variety EQ1 there exists an infinite family of pairwise
non-isomorphic quasigroups which are directly indecomposable and they are two-
generated and non-monogenic.

Proof. Let R = {Ψ(Wn,(2n,0)(Q
0
2n+1,2)):n ∈ Z, n ≥ 1}. By Theorem 24 every el-

ement of R is two-generated. From Theorem 23 it follows that every element of R
is directly indecomposable. Moreover if n1 < n2, A1 = Ψ(Wn1,(2n1 ,0)(Q

0
2n1+1,2

)),

A2 = Ψ(Wn2,(2n2 ,0)(Q
0
2n2+1,2

)) then |A1| = 22n1+2 < 22n2+2 = |A2| so A1 is not
isomorphic to A2.

References
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