SOME FINITE DIRECTLY INDECOMPOSABLE NON-MONOGENIC ENTROPIC QUASIGROUPS WITH QUASI-IDENTITY

Grzegorz Bińczak
Faculty of Mathematics and Information Sciences
Warsaw University of Technology
00-661 Warsaw, Poland
e-mail: binczak@mini.pw.edu.pl
AND
Joanna Kaleta
Department of Applied Mathematics
Warsaw University of Agriculture
02-787 Warsaw, Poland
e-mail: joanna_kaleta@sggw.pl

Abstract

In this paper we show that there exists an infinite family of pairwise non-isomorphic entropic quasigroups with quasi-identity which are directly indecomposable and they are two-generated.

Keywords: quasigroups, entropic quasigroups, abelian groups, involution.
2010 Mathematics Subject Classification: 20N05.

1. Introduction

This paper consists of two parts.
The first part of this work concerns of introducing definitions and theorems about entropic quasigroups with quasi-identity, abelian groups with involutions and some connections between them.

In the second part we define an Abelian group with involution of the form $W_{n, x_{0}}(\mathcal{G})$ and describe subalgebras of it. In the Theorem 17 we prove that if some conditions are satisfied and $W_{n, x_{0}}(\mathcal{G})$ is directly decomposable then \mathcal{G} is
also directly decomposable. Next we describe subalgebras of $Q_{2^{m}, 2}^{0}$ and show that quasigroups $\Psi\left(W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{n}, 2}^{0}\right)\right)$ are directly indecomposable for $m-1 \geq n \geq 1$. Contrary to Abelian groups there are two-generated (and not one-generated) entropic quasigroups beeing directly indecomposable. We show that there exists an infinite family of pairwise not-isomorphic entropic quasigroups with quasiidentity which are directly indecomposable and they are two-generated.
Definition. An Abelian group with involution is a set G, where are defined the binary operation + , the unary operations - and ${ }^{*}$, and the constant 0 , which verify the following properties:

1. $(G,+,-, 0)$ is an Abelian group,
2. $0^{*}=0, a^{* *}=a,(a+b)^{*}=a^{*}+b^{*}$.

In such a case we will denote $\left(G,+,-, 0,{ }^{*}\right)$. The operation - takes each element a to its inverse $-a$ and * is the involution.
Moreover $(-a)^{*}=-\left(a^{*}\right)$ since $(-a)^{*}+a^{*} \stackrel{(2)}{=}(-a+a)^{*}=0^{*}=0$ so we use further the notation $-a^{*}$ instead of $(-a)^{*}$ and $-(a)^{*}$.

We denote the class of all Abelian groups with involution by $A G I$.
Definition. An entropic quasigroup is a set Q, where are defined the binary operations $\cdot, /, \backslash$, which verify the following properties:

1. $a \cdot(a \backslash b)=b,(b / a) \cdot a=b$,
2. $a \backslash(a \cdot b)=b,(b \cdot a) / a=b$,
3. $(a \cdot b) \cdot(c \cdot d)=(a \cdot c) \cdot(b \cdot d)$.

In such a case we will denote $(Q, \cdot, /, \backslash)$. If there exists an element (which we will denote as 1) such that
(4) $a \cdot 1=a, 1 \cdot(1 \cdot a)=a$,
then we will say that $(Q, \cdot, /, \backslash)$ has a quasi-identity and denote $(Q, \cdot, /, \backslash, 1)$.
We denote the class of all entropic quasigroups with quasi-identity by EQ1.
Definition. If $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ is an Abelian group with involution then we define $\Psi(\mathcal{G}):=(G, \cdot, /, \backslash, 1)$, where $a \cdot b:=a+\left(b^{*}\right), a \backslash b:=b^{*}+\left(-a^{*}\right), a / b:=$ $a+\left(-b^{*}\right), 1:=0$.

If $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ is an entropic quasigroup with quasi-identity then we define $\Phi(\mathcal{Q}):=\left(Q,+,-, 0,^{*}\right)$, where $a+b:=a \cdot(1 \cdot b), \quad(-a):=1 /(1 \cdot a), 0:=1$, $a^{*}:=1 \cdot a$.

The next result corresponds to Theorem 3 and 4 in [1]:
Theorem 1. If $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ is an Abelian group with involution then $\Psi(\mathcal{G})=(G, \cdot, /, \backslash, 1)$ is an entropic quasigroup with quasi-identity, where $a \cdot b:=$ $a+\left(b^{*}\right), a \backslash b:=b^{*}+\left(-a^{*}\right), a / b:=a+\left(-b^{*}\right), 1:=0$.

If $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ is an entropic quasigroup with quasi-identity then $\Phi(\mathcal{Q})=$ $\left(Q,+,-, 0,{ }^{*}\right)$ is an Abelian group with involution, where $a+b:=a \cdot(1 \cdot b)$, $(-a):=1 /(1 \cdot a), 0:=1, \quad a^{*}:=1 \cdot a$.

By the Theorem given above we see that $\Psi: A G I \rightarrow E Q 1$ and $\Phi: E Q 1 \rightarrow A G I$.
The next result corresponds to Theorem 5 and 6 in [1]:
Theorem 2. If $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ is an entropic quasigroup with quasi-identity then $\Psi(\Phi(\mathcal{Q}))=\mathcal{Q}$.

If $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ is an Abelian group with involution then $\Phi(\Psi(\mathcal{G}))=\mathcal{G}$.
Theorem 3. The functions Ψ and Φ defined above satisfy that $\Psi=\Phi^{-1}$.
Lemma 4. If $\mathcal{G}_{1}=\left(G_{1},{ }_{1},{ }_{1}, 0_{1},{ }^{{ }^{*}}{ }_{1}\right)$ and $\mathcal{G}_{2}=\left(G_{2},{ }_{2},{ }_{-2}, 0_{2},{ }^{{ }^{*}}\right)$ are Abelian groups with involution then $\Psi\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)=\Psi\left(\mathcal{G}_{1}\right) \times \Psi\left(\mathcal{G}_{2}\right)$.

Proof. We know that $\Psi\left(\mathcal{G}_{1}\right)=\left(G_{1},{ }_{1}, /{ }_{1}, \backslash_{1}, 0_{1}\right)$, where $a \cdot{ }_{1} b=a+{ }_{1}\left(b^{* 1}\right), a \backslash_{1} b=$ $b^{* 1}+\left({ }_{1} a^{* 1}\right), a /{ }_{1} b=a+{ }_{1}\left(-{ }_{1} b^{* 1}\right)$, for all $a, b \in G_{1}$ and $\Psi\left(\mathcal{G}_{2}\right)=\left(G_{2},{ }_{2}, /_{2}, \backslash_{2}, 0_{2}\right)$, where $a \cdot{ }_{2} b=a+2\left(b^{*_{2}}\right), a \backslash_{2} b=b^{*_{1}}+\left({ }_{2} a^{*_{2}}\right), a /{ }_{2} b:=a+2\left({ }_{2} b^{*_{2}}\right)$, for every $a, b \in G_{2}$.

Then $\mathcal{G}_{1} \times \mathcal{G}_{2}=\left(G_{1} \times G_{2},+_{3},-_{3},\left(0_{1}, 0_{2}\right)\right)^{*_{3}}$, where $\left(a_{1}, a_{2}\right)+_{3}\left(b_{1}, b_{2}\right)=\left(a_{1}+{ }_{1}\right.$ $\left.b_{1}, a_{2}+b_{2}\right),-{ }_{3}\left(a_{1}, a_{2}\right)=\left(-{ }_{1} a_{1},-{ }_{2} a_{2}\right),\left(a_{1}, a_{2}\right)^{*_{3}}=\left(a_{1}^{*_{1}}, a_{2}^{*_{2}}\right)$ for all $a_{1}, b_{1} \in G_{1}$ and $b_{1}, b_{2} \in G_{2}$.

We have $\Psi\left(\mathcal{G}_{1}\right) \times \Psi\left(\mathcal{G}_{2}\right)=\left(G_{1} \times G_{2}, \cdot{ }_{4}, /_{4}, \backslash_{4},\left(0_{1}, 0_{2}\right)\right)$, where $\left(a_{1}, a_{2}\right) \cdot 4\left(b_{1}, b_{2}\right)=$ $\left(a_{1} \cdot{ }_{1} b_{1}, a_{2} \cdot{ }_{2} b_{2}\right)=\left(a_{1}+{ }_{1}\left(b_{1}^{* 1}\right), a_{2}+{ }_{1}\left(b_{2}^{* 2}\right)\right)$ for all $a_{1}, b_{1} \in G_{1}, a_{2}, b_{2} \in G_{2}$, similarly for $/{ }_{4}, \backslash_{4}$.

Moreover $\Psi\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)=\left(G_{1} \times G_{2}, \cdot, /, \backslash,\left(0_{1}, 0_{2}\right)\right)$, where $\left(a_{1}, a_{2}\right) \cdot\left(b_{1}, b_{2}\right)=$ $\left(a_{1}, a_{2}\right)+_{3}\left(b_{1}, b_{2}\right)^{*_{3}}=\left(a_{1}+{ }_{1}\left(b_{1}^{* 1}\right), a_{2}+2\left(b_{2}^{* 2}\right)\right)$ for every $a_{1}, b_{1} \in G_{1}, a_{2}, b_{2} \in G_{2}$ similarly for $/, \backslash$.

Hence $\cdot{ }_{4}=\cdot$ and similarly $/ 4=/, \backslash_{4}=\backslash$. Thus $\Psi\left(G_{1} \times G_{2}\right)=\Psi\left(G_{1}\right) \times \Psi\left(G_{2}\right)$.

If $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ is an entropic quasigroup with quasi-identity then $|\mathcal{Q}|$ indicates the cardinality of Q.

Definition. An entropic quasigroup with quasi-identity $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ is directly indecomposable if $|\mathcal{Q}| \neq 1$ and if $\mathcal{Q} \cong \mathcal{Q}_{1} \times \mathcal{Q}_{2}$, where $Q_{1}, Q_{2} \in E Q 1$, then either $\left|\mathcal{Q}_{1}\right|=1$ or $\left|\mathcal{Q}_{2}\right|=1$.

Similarly directly indecomposability for Abelian groups with involution is defined.
Definition. Let $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right) \in A G I$. A subset $X \subseteq G$ is a subalgebra of \mathcal{G} if and only if $0 \in X, x_{1}+x_{2} \in X, x^{*} \in X,-x \in X$ for every $x, x_{1}, x_{2} \in X$.

Let $X \subseteq G$. The intersection of all subalgebras of \mathcal{G} containing X we denote by $\langle X\rangle$ (if $X=\{x\}$ then we use $\langle x\rangle$ instead of $\langle\{x\}\rangle$). We say that the set X generates \mathcal{G} if and only if $\langle X\rangle=G$.

A \mathcal{G} has k generators if and only if there exists k-element set X which generates \mathcal{G} and there does not exist $k-1$-element set X which generates \mathcal{G}.

The following lemma concerning Abelian groups with involution can be proved similarly as for Abelian groups.

Lemma 5. Let $\mathcal{G} \in A G I$ be a finite Abelian group and $|\mathcal{G}|>1$. Then \mathcal{G} is directly decomposable if and only if there are B and C being subalgebras of \mathcal{G} such that $B \cap C=\{0\}, B+C=G,|B|>1$ and $|C|>1$.

Theorem 6. Let $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ be an Abelian group with involution. If \mathcal{G} is directly indecomposable then $\Psi(\mathcal{G})$ is directly indecomposable.

Proof. Let $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ be an Abelian group with involution. Assume that \mathcal{G} is directly indecomposable. We show that $\Psi(\mathcal{G})$ is directly indecomposable. If $\Psi(\mathcal{G}) \cong Q_{1} \times Q_{2}$ then let $\mathcal{G}_{1}=\Phi\left(Q_{1}\right)$ and $\mathcal{G}_{2}=\Phi\left(Q_{2}\right)$. By Theorem 2 we have $\Psi\left(\mathcal{G}_{1}\right)=Q_{1}$ and $\Psi\left(\mathcal{G}_{2}\right)=Q_{2}$ so $\Psi\left(\mathcal{G}_{1} \times \mathcal{G}_{2}\right)=\Psi\left(\mathcal{G}_{1}\right) \times \Psi\left(\mathcal{G}_{2}\right)=Q_{1} \times Q_{2} \cong \Psi(\mathcal{G})$ by Lemma 4 . Hence $\mathcal{G}_{1} \times \mathcal{G}_{2} \cong \mathcal{G}$ and $\left|G_{1}\right|=1$ or $\left|G_{2}\right|=1$ since \mathcal{G} is directly indecomposable. Thus $\left|Q_{1}\right|=\left|G_{1}\right|=1$ or $\left|Q_{2}\right|=\left|G_{2}\right|=1$ so $\Psi(\mathcal{G})$ is directly indecomposable.

Obviously every finite abelian group with involution G is isomorphic to a finite product of directly indecomposable finite abelian groups with involution. Moreover using Theorem [5, Theorem 6.39] this decomposition into directly indecomposable factors is unique (up to reindexing and isomorphism). After applying Theorem 6 and Lemma 4 we obtain similar result for finite entropic quasigroups with quasi-identity.

Hence to obtain structural theorem describing finite entropic quasigroups with quasi-identity it remains to find all finite directly indecomposable entropic quasigroups with quasi-identity.

We have already described (in [3]) directly indecomposable finite entropic quasigroups with quasi-identity having one generator.

In this paper we investigate finite two-generated directly indecomposable finite entropic quasigroups with quasi-identity.

More information concerning entropic quasigroups may be found in [4] and [6].

Definition. One-generated entropic quasigroups with quasi-identity are called monogenic.

Let $\mathcal{Q}=(Q, \cdot, /, \backslash, 1)$ be a monogenic entropic quasigroup with quasi-identity. Let $Q=\langle x\rangle$. We define three types of rank of the generator x :

$$
\begin{aligned}
r_{+}(x) & =\min \{n \in \mathbb{N} \mid n x=0, n \geq 1\}, \text { (additive rank) } \\
r_{*}(x) & =\min \left\{n \in \mathbb{N} \mid n \geq 1, \exists_{k \in \mathbb{Z}} n x^{*}=k x\right\} \\
r_{*+}(x) & =\min \left\{n \in \mathbb{N} \mid r_{*}(x) x^{*}=\left(r_{*}(x)+n\right) x\right\}
\end{aligned}
$$

Note that $r_{+}(x)$ is the usual rank of x in an Abelian group.
Then we define

$$
r_{+}(\mathcal{Q})=r_{+}(x), r_{*}(\mathcal{Q})=r_{*}(x), r_{*+}(\mathcal{Q})=r_{*+}(x)
$$

This definition does not depend on the choice of the generator x (see [1]).
We denote the integer part of $a \in \mathbb{R}$ by $E(a)$, whereas $(a)_{b}$ denotes the remainder obtained after dividing a by b.

Definition. Let $a, b, k \in \mathbb{N}$ and $a, b \geq 1$. Let $\gamma_{a, b}^{k}: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a mapping such that

$$
\gamma_{a, b}^{k}(x, y)=\left(\left(x+E\left(\frac{y}{b}\right)(b+k)\right)_{a},(y)_{b}\right)
$$

Definition. Let $a, b, k \in \mathbb{Z}$ and $a \geq 1, b \geq 1, k \geq 0$. Define

$$
Q_{a, b}^{k}=\left(\mathbb{Z}_{a} \times \mathbb{Z}_{b}, \oplus_{a, b}^{k}, \ominus_{a, b}^{k},(0,0),^{*}\right)
$$

where $\ominus_{a, b}^{k}(x, y)=\gamma_{a, b}^{k}(-x,-y),(x, y) \oplus_{a, b}^{k}(z, t)=\gamma_{a, b}^{k}(x+z, y+t)$ and $(x, y)^{*}=$ $\gamma_{a, b}^{k}(y, x)$.

Theorem 7 ([1], Theorem 10). Let $a, b, k \in \mathbb{Z}$ with $a \geq 1, b \geq 1, k \geq 0$ and $b|a, b| k, 0 \leq k<a, a \left\lvert\,\left(2 k+\frac{k^{2}}{b}\right)\right.$. Then $Q_{a, b}^{k}$ is an Abelian group with involution.

2. MAIN THEOREM

We have already characterized all one-generated, directly indecomposable, entropic quasigroups with quasi-identity (see [3]).

In this section we find some two-generated, directly indecomposable, entropic quasigroups with quasi-identity.

For any abelian group with involution $\mathcal{G}=\left(G,+,-, 0,{ }^{*}\right)$ and some element $x_{0} \in$ G, and positive integer n we define $W_{n, x_{0}}(\mathcal{G})$ which is also abelian group with involution (Theorem 9).

We can obtain from one-generated abelian group with involution \mathcal{G} two-generated $W_{n, x_{0}}(\mathcal{G})$ just by means of $W_{n, x_{0}}$.

If $W_{n, x_{0}}(\mathcal{G})$ satisfies (H) then we can describe all subalgebras of $W_{n, x_{0}}(\mathcal{G})$ in order to decide when $W_{n, x_{0}}(\mathcal{G})$ is directly indecomposable.

In the Theorem 17 we prove that if some conditions are satisfied and \mathcal{G} is directly indecomposable then $W_{n, x_{0}}(\mathcal{G})$ is also directly indecomposable. Next we describe subalgebras of $Q_{2^{m}, 2}^{0}$ and show that quasigroups $\Psi\left(W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{n}, 2}^{0}\right)\right)$ are directly indecomposable for $m-1 \geq n \geq 1$.

Definition. Let $\mathcal{G}=\left(G,+,-{ }^{*}\right) \in A G I$ and $x_{0}=x_{0}^{*}, 2 x_{0}=0$ for some $x_{0} \in G$. Let $n \in \mathbb{N}$ and $n \geq 1$.

Let $W_{n, x_{0}}(\mathcal{G})=\left(G \times \mathbb{Z}_{2^{n}},+,-,(0,0),{ }^{*}\right)$, where

$$
\begin{aligned}
&(g, y)+\left(g^{\prime}, y^{\prime}\right):=\left(g+g^{\prime},\left(y+y^{\prime}\right) 2_{2^{n}}\right), \\
&-(g, y):=\left(-g,(-y)_{2^{n}}\right), \\
&(g, y)^{*}= \begin{cases}\left(g^{*}, y\right) & \text { for } 2 \mid y \\
\left(g^{*}+x_{0}, y\right) & \text { for } 2 \nmid y\end{cases}
\end{aligned}
$$

Example 8. Let $m \in \mathbb{N}$ and $m>1$. Let $\mathcal{G}=Q_{2^{m}, 2}^{0} \in A G I$ and $x_{0}=\left(2^{m-1}, 0\right) \in$ $\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Then $2 x_{0}=\gamma_{2^{m}, 2}^{0}\left(2^{m}, 0\right)=(0,0)$ and $x_{0}^{*}=\gamma_{2^{m}, 2}^{0}\left(0,2^{m-1}\right)=\left(2^{m-1}, 0\right)$ $=x_{0}$.

Theorem 9. Let $\mathcal{G}=\left(G,+,-,{ }^{*}\right) \in A G I$ and $x_{0}=x_{0}^{*}, 2 x_{0}=0$ for some $x_{0} \in G$. Let $n \in \mathbb{N}$ and $n \geq 1$. Then $W_{n, x_{0}}(\mathcal{G}) \in A G I$.

Proof. It is obvoius that the reduct $\left(G \times \mathbb{Z}_{2^{n}},+,-,(0,0)\right)$ is an Abelian group.
Let $(g, y) \in G \times \mathbb{Z}_{2^{n}}$. If $2 \mid y$ then $(g, y)^{* *}=(g, y)$. If $2 \nmid y$ then $(g, y)^{* *}=$ $\left(g^{*}+x_{0}, y\right)^{*}=\left(\left(g^{*}+x_{0}\right)^{*}+x_{0}, y\right)=\left(g^{* *}+x_{0}^{*}+x_{0}, y\right)=\left(g+x_{0}+x_{0}, y\right)=(g, y)$. Let $(g, y),\left(g^{\prime}, y^{\prime}\right) \in G \times \mathbb{Z}_{2^{n}}$.

Consider the following cases:

1. If $2 \mid y$ and $2 \mid y^{\prime}$ then $2 \mid\left(y+y^{\prime}\right)_{2^{n}}$ and

$$
\begin{aligned}
\left((g, y)+\left(g^{\prime}, y^{\prime}\right)\right)^{*} & =\left(g+g^{\prime},\left(y+y^{\prime}\right)_{2^{n}}\right)^{*} \\
& \left.=\left(\left(g+g^{\prime}\right)^{*},\left(y+y^{\prime}\right)\right)^{n}\right)=\left(g^{*}+g^{\prime *},\left(y+y^{\prime}\right)_{2^{n}}\right) \\
& =\left(g^{*}, y\right)+\left(g^{\prime *}, y^{\prime}\right)=(g, y)^{*}+\left(g^{\prime}, y^{\prime}\right)^{*} .
\end{aligned}
$$

2. If $2 \nmid y$ and $2 \mid y^{\prime}$ then $2 \nmid\left(y+y^{\prime}\right)_{2^{n}}$ and

$$
\begin{aligned}
\left((g, y)+\left(g^{\prime}, y^{\prime}\right)\right)^{*} & =\left(g+g^{\prime},\left(y+y^{\prime}\right)_{2^{n}}\right)^{*} \\
& =\left(\left(g+g^{\prime}\right)^{*}+x_{0},\left(y+y^{\prime}\right)_{2^{n}}\right) \\
& =\left(g^{*}+x_{0}+g^{\prime *},\left(y+y^{\prime}\right)_{2^{n}}\right) \\
& =\left(g^{*}+x_{0}, y\right)+\left(g^{\prime *}, y^{\prime}\right)=(g, y)^{*}+\left(g^{\prime}, y^{\prime}\right)^{*} .
\end{aligned}
$$

3. If $2 \nmid y$ and $2 \nmid y^{\prime}$ then $2 \mid\left(y+y^{\prime}\right)_{2^{n}}$ and

$$
\begin{aligned}
\left((g, y)+\left(g^{\prime}, y^{\prime}\right)\right)^{*} & =\left(g+g^{\prime},\left(y+y^{\prime}\right)_{2^{n}}\right)^{*} \\
& =\left(\left(g+g^{\prime}\right)^{*},\left(y+y^{\prime}\right) 2^{n}\right) \\
& =\left(g^{*}+x_{0}+g^{\prime *}+x_{0},\left(y+y^{\prime}\right)_{2^{n}}\right) \\
& =\left(g^{*}+x_{0}, y\right)+\left(g^{\prime *}+x_{0}, y^{\prime}\right)=(g, y)^{*}+\left(g^{\prime}, y^{\prime}\right)^{*} .
\end{aligned}
$$

Definition. Let $\mathcal{G}=\left(G,+,-,^{*}\right) \in A G I, k, n \in \mathbb{Z}$ and $0 \leq k \leq n$. Let S be a subalgebra of \mathcal{G} and $a_{0} \in G$.

Then

$$
\left[S, n, k, a_{0}\right]:=\bigcup_{i=0}^{2^{n-k}-1}\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\} .
$$

In order to decide when $W_{n, x_{0}}(\mathcal{G})$ is directly indecomposable we have to describe subalgebras of $W_{n, x_{0}}(\mathcal{G})$. For given $\mathcal{G} \in A G I$ we defined $\left[S, n, k, a_{0}\right] \subset G \times \mathbb{Z}_{2^{n}}$. The following theorem says when $\left[S, n, k, a_{0}\right]$ is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$.

Theorem 10. Let $\mathcal{G}=\left(G,+,-,{ }^{*}\right) \in A G I$ and $x_{0}=x_{0}^{*}, 2 x_{0}=0$ for some $x_{0} \in G$. Let $n, k \in \mathbb{Z}, n \geq 1$ and $0 \leq k \leq n$. Let S be a subalgebra of \mathcal{G}, $a_{0} \in G$ and $a_{0}^{*}-a_{0} \in S, 2^{n-k} a_{0} \in S$. Assume that $k>0$ or $x_{0} \in S$.

Then $\left[S, n, k, a_{0}\right]$ is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$.
Proof. Let $a, b \in\left[S, n, k, a_{0}\right]$ then there exist $0 \leq i, j \leq 2^{n-k}-1$ such that $a \in\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}$ and $b \in\left(S+j a_{0}\right) \times\left\{j 2^{k}\right\}$.

Consider the following cases:

1. If $i+j \leq 2^{n-k}-1$ then $a+b \in\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}+\left(S+j a_{0}\right) \times\left\{j 2^{k}\right\}=$ $\left(S+(i+j) a_{0}\right) \times\left\{(i+j) 2^{k}\right\}$ so $a+b \in\left[S, n, k, a_{0}\right]$.
2. If $i+j>2^{n-k}-1$ then

$$
\begin{aligned}
a+b & \in\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}+\left(S+j a_{0}\right) \times\left\{j 2^{k}\right\} \\
& =\left(S+(i+j) a_{0}\right) \times\left\{\left((i+j) 2^{k}\right) 2^{n}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(S+2^{n-k} a_{0}+\left(i+j-2^{n-k}\right) a_{0}\right) \times\left\{\left(i+j-2^{n-k}\right) 2^{k}\right\} \\
& =\left(S+\left(i+j-2^{n-k}\right) a_{0}\right) \times\left\{\left(i+j-2^{n-k}\right) 2^{k}\right\}
\end{aligned}
$$

since $2^{n-k} a_{0} \in S$. Hence $a+b \in\left[S, n, k, a_{0}\right]$.

Therefore $\left[S, n, k, a_{0}\right.$] is closed under + .
Let $a \in\left[S, n, k, a_{0}\right]$ then there exist $0 \leq i \leq 2^{n-k}-1$ such that $a \in\left(S+i a_{0}\right) \times$ $\left\{i 2^{k}\right\}$. Then

$$
\begin{aligned}
-a & \in\left(S-i a_{0}\right) \times\left\{\left(-i 2^{k}\right)_{2^{n}}\right\} \\
& =\left(S-2^{n-k} a_{0}+\left(2^{n-k}-i\right) a_{0}\right) \times\left\{\left(2^{n-k}-i\right) 2^{k}\right\} \\
& =\left(S+\left(2^{n-k}-i\right) a_{0}\right) \times\left\{\left(2^{n-k}-i\right) 2^{k}\right\}
\end{aligned}
$$

and $0 \leq 2^{n-k}-i \leq 2^{n-k}-1$. Hence $-a \in\left[S, n, k, a_{0}\right]$ and $\left[S, n, k, a_{0}\right]$ is closed under - .

Let $a \in\left[S, n, k, a_{0}\right]$ then there exist $0 \leq i \leq 2^{n-k}-1$ such that $a \in\left(S+i a_{0}\right) \times$ $\left\{i 2^{k}\right\}$.

Consider the following cases:

1. If $2 \mid i 2^{k}$ then

$$
\begin{aligned}
a^{*} & \in\left(S+i a_{0}^{*}\right) \times\left\{i 2^{k}\right\} \\
& =\left(S-i\left(a_{0}^{*}-a_{0}\right)+i a_{0}^{*}\right) \times\left\{i 2^{k}\right\} \\
& =\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}
\end{aligned}
$$

2. If $2 \nmid i 2^{k}$ then $k=0$ hence $x_{0} \in S$ and

$$
\begin{aligned}
a^{*} & \in\left(S+i a_{0}^{*}+x_{0}\right) \times\left\{i 2^{k}\right\} \\
& =\left(S-i\left(a_{0}^{*}-a_{0}\right)+i a_{0}^{*}\right) \times\left\{i 2^{k}\right\} \\
& =\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}
\end{aligned}
$$

Therefore $\left[S, n, k, a_{0}\right]$ is closed under ${ }^{*}$.
Now, given $\mathcal{G}=\left(G,+,-,^{*}\right) \in A G I$ such that $x_{0}=x_{0}^{*}$ and $2 x_{0}=0$ suppose that there exists $r \geq 1$ such that
(i) $2^{r} g=0$ or $2^{r} g=x_{0}$ for all $g \in G$ and
(ii) $2^{r} g=0 \Rightarrow g=g^{*}$ for all $g \in G$

Example 11. Let $m \in \mathbb{N}$ and $m>1$. Let $\mathcal{G}=Q_{2^{m}, 2}^{0} \in A G I$ and $x_{0}=$ $\left(2^{m-1}, 0\right) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Then the hypotheses (H) hold for $r=m-1$:

Let $(a, b) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Then

$$
\begin{aligned}
2^{m-1}(a, b) & =\gamma_{2^{m}, 2}^{0}\left(2^{m-1} a, 2^{m-1} b\right)=\left(\left(2^{m-1} a+E\left(\frac{2^{m-1} b}{2}\right) 2\right)_{2^{m}},\left(2^{m-1} b\right)_{2}\right) \\
& =\left(\left(2^{m-1}(a+b)\right)_{2^{m}}, 0\right)=\left\{\begin{aligned}
(0,0) & 2 \mid a+b \\
\left(2^{m-1}, 0\right) & 2 \nmid a+b
\end{aligned}\right.
\end{aligned}
$$

Hence if $2 \mid a+b$ then $2^{m-1}(a, b)=(0,0)$ and if $2 \nmid a+b$ then $2^{m-1}(a, b)=$ $\left(2^{m-1}, 0\right)=x_{0}$. So the first hypothesis (H) is fullfilled.

Let $(a, b) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$ and $2^{m-1}(a, b)=0$. Then $2 \mid a+b$.
If $b=0$ then $2 \mid a$ and $b+E\left(\frac{a}{2}\right) 2=0+\frac{a}{2} 2=a$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a, 0)=(a, b)$.

If $b=1$ then $2 \nmid a$ and $b+E\left(\frac{a}{2}\right) 2=1+E\left(\frac{a}{2}\right) 2=a$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a, 1)=(a, b)$.

Therefore the second hypothesis (H) is satisfied, too.
Lemma 12. Let $\mathcal{G}=\left(G,+,-{ }^{*}\right) \in A G I$ such that $x_{0}=x_{0}^{*}$ and $2 x_{0}=0$ for some $x_{0} \in G$, and assume hypotheses (H) hold. Let $n \in \mathbb{N}$ and $r \geq n \geq 1$.

If T is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$ then $\left(x_{0}, 0\right) \in T$ or for all $(g, i) \in T$ we have $2 \mid i$.

Proof. Assume that $(g, i) \in T$ and $2 \nmid i$ for some $g \in G$ and $i \in \mathbb{Z}_{2^{n}}$.
We will show that $\left(x_{0}, 0\right) \in T$. Observe that $2^{r}(g, i)=\left(2^{r} g,\left(2^{r} i\right)_{2^{n}}\right)=$ $\left(2^{r} g, 0\right) \in T$ since $r \geq n$. If $2^{r} g=x_{0}$ then $\left(x_{0}, 0\right) \in T$. If $2^{r} g \neq x_{0}$ then $2^{r} g=0$ and $g=g^{*}$. Moreover $(g, i)^{*}=\left(g^{*}+x_{0}, i\right) \in T$. Hence

$$
\begin{aligned}
T & \ni\left(g^{*}+x_{0}, i\right)+\left(2^{r}-1\right)(g, i) \\
& =\left(g^{*}+x_{0}+2^{r} g-g,\left(2^{r} i\right)_{2^{n}}\right) \\
& =\left(g+x_{0}-g, 0\right)=\left(x_{0}, 0\right)
\end{aligned}
$$

Theorem 13. Let $\mathcal{G}=\left(G,+,-,{ }^{*}\right) \in A G I$ and $x_{0}=x_{0}^{*}, 2 x_{0}=0$ for some $x_{0} \in G$. Let $n \in \mathbb{N}$ and $n \geq 1$.

If T is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$ and $S=\{s \in G:(s, 0) \in T\}$ then $T=$ [$\left.S, n, k, a_{0}\right]$ for some $0 \leq k \leq n$ and $a_{0} \in G$.

Proof. Let T be a subalgebra of $W_{n, x_{0}}(\mathcal{G})$ and $S=\{s \in G:(s, 0) \in T\}$.
It is obvious that S is a subalgebra of \mathcal{G}.
Let $P=\left\{i \in \mathbb{Z}_{2^{n}}: \exists_{g \in G}(g, i) \in T\right\}$. Then P is a subgroup of $\mathbb{Z}_{2^{n}}$. Hence there exists $0 \leq k \leq n$ such that $P=\left\{i 2^{k}: 0 \leq i<2^{n-k}\right\}$.

If $k<n$ then $2^{k} \in P$ and there exists $a_{0}:=g \in G$ such that $\left(a_{0}, 2^{k}\right) \in T$.
If $k=n$ then $a_{0}:=0$.

1. We show that $\left[S, n, k, a_{0}\right] \subseteq T$.

Let $a \in\left[S, n, k, a_{0}\right]$ then there exists $0 \leq i \leq 2^{n-k}-1$ such that $a \in$ $\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}$. Hence $a=\left(s+i a_{0}, i 2^{k}\right)$ for some $s \in S$. Moreover $(s, 0) \in T$.

Consider the following cases:
(a) If $k<n$ then $\left(a_{0}, 2^{k}\right) \in T$ and $i\left(a_{0}, 2^{k}\right)=\left(i a_{0}, i 2^{k}\right) \in T$ so $a=$ $\left(s+i a_{0}, i 2^{k}\right)=(s, 0)+\left(i a_{0}, i 2^{k}\right) \in T$.
(b) If $k=n$ then $i=0$ and $a=(s, 0) \in T$.
2. We show that $T \subseteq\left[S, n, k, a_{0}\right]$.

Let $y \in T$ then there exist $g \in G$ and $i \in \mathbb{Z}_{2^{n}}$ such that $y=(g, i)$. Hence $i \in P$ so there exists $0 \leq j<2^{n-k}$ such that $i=j 2^{k}$.

Consider the following cases:
(a) If $k<n$ then $\left(a_{0}, 2^{k}\right) \in T$ thus $\left(j a_{0}, j 2^{k}\right) \in T$. Hence $\left(g, j 2^{k}\right)-$ $\left(j a_{0}, j 2^{k}\right)=\left(g-j a_{0}, 0\right) \in T$ and $g-j a_{0} \in S$ so $y=(g, i)=\left(g-j a_{0}+\right.$ $\left.j a_{0}, j 2^{k}\right) \in\left(S+j a_{0}\right) \times\left\{j 2^{k}\right\} \subseteq\left[S, n, k, a_{0}\right]$.
(b) If $k=n$ then $i=0$ and $g \in S$ so $y=(g, 0) \in S \times\{0\}=\left[S, n, k, a_{0}\right]$.

Hence $T=\left[S, n, k, a_{0}\right]$.
The following theorem given the converse of Lemma 12 and uses Theorem 10 , Lemma 12 and Theorem 13. In particular it allows to characterize all subalgebras of $W_{n, x_{0}}(\mathcal{G})$ which satisty the hypotheses (H).

Theorem 14. Let $\mathcal{G}=\left(G,+,-,{ }^{*}\right) \in A G I$ such that $x_{0}=x_{0}^{*}$ and $2 x_{0}=0$ for some $x_{0} \in G$ and assume hypotheses (H) hold. T is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$ if and only if both conditions given below hold
(i) $\left(x_{0}, 0\right) \in T$ or for all $(g, i) \in T$ we have $2 \mid i$,
(ii) $T=\left[S, n, k, a_{0}\right]$ for some S beeing a subalgebra of $\mathcal{G}, 0 \leq k \leq n$ and $a_{0} \in G$ such that $a_{0}^{*}-a_{0} \in S$ and $2^{n-k} a_{0} \in S$.

Proof. \Rightarrow From Lemma 12, if T is a subalgebra then (i) holds. Furtheremore, from Theorem 13 we have that $T=\left[S, n, k, a_{0}\right]$ with $S=\{s \in G:(s, 0) \in T\}$ and for some $0 \leq k \leq n$ and $a_{0} \in G$. Therefore we only need to show that $a_{0}^{*}-a_{0} \in S$ and $2^{n-k} a_{0} \in S$.

Consider the following cases:
(a) if $k=n$ then $a_{0}=0$ and $a_{0}^{*}-a_{0}=0 \in S$ and $2^{n-k} a_{0}=0 \in S$.
(b) if $k<n$ then $\left(a_{0}, 2^{k}\right) \in T$ so $2^{n-k}\left(a_{0}, 2^{k}\right)=\left(2^{n-k} a_{0},\left(2^{n}\right)_{2^{n}}\right)=\left(2^{n-k} a_{0}, 0\right) \in$ T so $2^{n-k} a_{0} \in S$.
(i) if $k>0$ then $\left(a_{0}, 2^{k}\right)^{*}=\left(a_{0}^{*}, 2^{k}\right) \in T$ hence $\left(a_{0}^{*}, 2^{k}\right)-\left(a_{0}, 2^{k}\right)=$ $\left(a_{0}^{*}-a_{0}, 0\right) \in T$ and $a_{0}^{*}-a_{0} \in S$.
(ii) if $k=0$ then $\left(a_{0}, 2^{k}\right)=\left(a_{0}, 1\right) \in T$ and $2 \nmid 1$ so $\left(x_{0}, 0\right) \in T$ by Lemma 12. Moreover $T \ni\left(a_{0}, 1\right)^{*}-\left(a_{0}, 1\right)=\left(a_{0}^{*}+x_{0}, 1\right)-\left(a_{0}, 1\right)=\left(a_{0}^{*}-a_{0}+\right.$ $\left.x_{0}, 0\right)$ and $\left(x_{0}, 0\right) \in T$ hence $\left(a_{0}^{*}-a_{0}+x_{0}, 0\right)-\left(x_{0}, 0\right)=\left(a_{0}^{*}-a_{0}, 0\right) \in T$ and $a_{0}^{*}-a_{0} \in S$.
\Leftarrow Suppose (i) and (ii) hold. We only need to show that $x_{0} \in S$ or $k>0$ and, then, we can conclude using Theorem 10.
(a) If $\left(x_{0}, 0\right) \in T$ then $\left(x_{0}, 0\right) \in T=\left[S, n, k, a_{0}\right]=\bigcup_{i=0}^{2^{n-k}-1}\left(S+i a_{0}\right) \times\left\{i 2^{k}\right\}$ so $\left(x_{0}, 0\right) \in S \times\{0\}$ and $x_{0} \in S$.
(b) If for all $(g, i) \in T$ we have $2 \mid i$ then
(i) if $k=n$ then $k>0$ since $n \geq 1$.
(ii) if $k<n$ then $\left(a_{0}, 2^{k}\right) \in\left(S+1 \cdot a_{0}\right) \times\left\{1 \cdot 2^{k}\right\} \subseteq\left[S, n, k, a_{0}\right]=T$ so $2 \mid 2^{k}$ and $k>0$.

By Theorem $10 T=\left[S, n, k, a_{0}\right]$ is a subalgebra of $W_{n, x_{0}}(\mathcal{G})$.
Lemma 15. Let \mathcal{C} be an Abelian group, $A, B \leq \mathcal{C}$ and $a, b \in C$ then $(A+a) \cap$ $(B+b)=\emptyset$ if and only if $a-b \notin A+B$

Proof. If $x \in(A+a) \cap(B+b) \neq \emptyset$ then there exist $a^{\prime} \in A$ and $b^{\prime} \in B$ such that $x=a^{\prime}+a=b^{\prime}+b$ so $a-b=\left(-a^{\prime}\right)+b^{\prime} \in A+B$.

If $a-b \in A+B$ then there exist $a^{\prime} \in A$ and $b^{\prime} \in B$ such that $a-b=a^{\prime}+b^{\prime}$. Then $x:=\left(-a^{\prime}\right)+a=b^{\prime}+b \in(A+a) \cap(B+b)$ so $(A+a) \cap(B+b) \neq \emptyset$.

Lemma 16. Let \mathcal{G} be an Abelian group, $S \leq \mathcal{G}, a \in G, b \in G$ and $j \in \mathbb{Z}$. If there exists $w \in \mathbb{Z}$ such that $w>0$, $w a \in S, w b \in S, S+a=S+j b$ and $\operatorname{gcd}(j, w)=1$ then

$$
\left\{S+i a: i \in \mathbb{Z}_{w}\right\}=\left\{S+i b: i \in \mathbb{Z}_{w}\right\}
$$

Proof. Let $L=\left\{S+i a: i \in \mathbb{Z}_{w}\right\}$ and $R=\left\{S+i b: i \in \mathbb{Z}_{w}\right\}$. First we show that $L \subseteq R$.

We know that $S+a=S+j b$ hence $a-j b \in S$ so if $i \in \mathbb{Z}_{w}$ then $i(a-j b) \in S$ and $S+i a=S+i j b \stackrel{w b \in S}{=} S+(i j)_{w} b \in R$. Therefore $L \subseteq R$.

Now we show that $R \subseteq L$.

We know that $S+a=S+j b$ and $\operatorname{gcd}(j, w)=1$ hence $a-j b \in S$ and there exist $p, q \in \mathbb{Z}$ such that $p j+q w=1$. Thus $S \ni p a-p j b=p a-(1-q w) b=$ $p a-b+q w b$ and $p a-b \in S$ since $w b \in S$. If $i \in \mathbb{Z}_{w}$ then $i(p a-b) \in S$ and $S+i b=S+i p a \stackrel{w a \in S}{=} S+(i p)_{w} a \in L$. Therefore $R \subseteq L$.

We show that if some conditions are fulfilled and \mathcal{G} is directly indecomposable then $W_{n, x_{0}}(\mathcal{G})$ is directly indecomposable.
Theorem 17. Let $\mathcal{G}=\left(G,+,-,{ }^{*}\right) \in A G I$ such that $x_{0}=x_{0}^{*} \neq 0$ and $2 x_{0}=0$ for some $x_{0} \in G$, and assume hypotheses (H) hold.

Let $n \in \mathbb{N}$ and $r \geq n \geq 1$. Let $G_{n-1}:=\left\{g \in G: \exists_{x \in G} 2^{n-1} x=g\right\}$. Moreover in case $n>1$ assume that $\frac{|G|}{2^{n}}=\left|G_{n-1}\right|$ and for all subalgebras $S \leq \mathcal{G}$ such that $\left|G_{n-1}\right|<|S|$ we obtain that $G_{n-1} \subseteq S$.

If \mathcal{G} is directly indecomposable then $W_{n, x_{0}}(\mathcal{G})$ is directly indecomposable.
Proof. Assume that $W_{n, x_{0}}(\mathcal{G})$ is directly decomposable. Then there exist subalgebras T_{1}, T_{2} of the algebra $W_{n, x_{0}}(\mathcal{G})$ such that $T_{1} \cap T_{2}=\{(0,0)\},\left|T_{1}\right|>1$, $\left|T_{2}\right|>1$ and $T_{1}+T_{2}=G \times \mathbb{Z}_{2^{n}}$.

We know that $\left(x_{0}, 0\right) \notin T_{1} \cap T_{2}$ so $\left(x_{0}, 0\right) \notin T_{1}$ or $\left(x_{0}, 0\right) \notin T_{2}$. We can assume that $\left(x_{0}, 0\right) \notin T_{2}$. By Lemma 12 we have $T_{2} \subseteq G \times\left\{i \in \mathbb{Z}_{2^{n}}: 2 \mid i\right\}$.

By Theorem 14 we have

$$
T_{1}=\left[S_{1}, n, k_{1}, b_{0}\right]=\bigcup_{i=0}^{2^{n-k_{1}}-1}\left(S_{1}+i b_{0}\right) \times\left\{i 2^{k_{1}}\right\}
$$

for some S_{1} beeing a subalgebra of $\mathcal{G}, 0 \leq k_{1} \leq n, b_{0} \in G$ such that $b_{0}^{*}-b_{0} \in S_{1}$ and $2^{n-k_{1}} b_{0} \in S_{1}$.

If $k_{1}>0$ then $T_{1} \subseteq G \times\left\{i \in \mathbb{Z}_{2^{n}}: 2 \mid i\right\}$ and $T_{1}+T_{2} \subseteq G \times\left\{i \in \mathbb{Z}_{2^{n}}: 2 \mid i\right\}$ and we obtain a contradiction since $T_{1}+T_{2}=G \times \mathbb{Z}_{2^{n}}$. Hence $k_{1}=0$ and $T_{1} \nsubseteq G \times\left\{i \in \mathbb{Z}_{2^{n}}: 2 \mid i\right\}$ and by Lemma 12 we have $\left(x_{0}, 0\right) \in T_{1}$. Thus

$$
\begin{align*}
& T_{1}=\left(S_{1} \times\{0\}\right) \\
& \cup\left(\left(S_{1}+b_{0}\right) \times\{1\}\right) \cup \ldots \cup\left(\left(S_{1}+\left(2^{n}-1\right) b_{0}\right) \times\left\{2^{n}-1\right\}\right), \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
b_{0}^{*}-b_{0} \in S_{1}, \quad 2^{n} b_{0} \in S_{1} \tag{2}
\end{equation*}
$$

By Theorem 14 we have

$$
T_{2}=\left[S_{2}, n, k, a_{0}\right]=\bigcup_{i=0}^{2^{n-k}-1}\left(S_{2}+i a_{0}\right) \times\left\{i 2^{k}\right\}
$$

for some S_{2} beeing a subalgebra of $\mathcal{G}, 0 \leq k \leq n, a_{0} \in G$ such that $a_{0}^{*}-a_{0} \in S_{2}$ and $2^{n-k} a_{0} \in S_{2}$.

Consider the following cases:

1. If $k=n$ then $T_{2}=S_{2} \times\{0\}$ and $T_{1} \cap T_{2}=\left(S_{1} \cap S_{2}\right) \times\{0\}$ so $S_{1} \cap S_{2}=\{0\}$ and by 1 we have

$$
\begin{aligned}
& G \times \mathbb{Z}_{2^{n}}=T_{1}+T_{2}=\left(\left(S_{1}+S_{2}\right) \times\{0\}\right) \\
& \cup\left(\left(S_{1}+S_{2}+b_{0}\right) \times\{1\} \cup \ldots \cup\left(S_{1}+S_{2}+\left(2^{n}-1\right) b_{0}\right) \times\left\{2^{n}-1\right\}\right.
\end{aligned}
$$

so $S_{1}+S_{2}=G$. Moreover $\left(x_{0}, 0\right) \in T_{1}$ and $x_{0} \neq 0$ hence $x_{0} \in S_{1}$ and $\left|S_{1}\right|>1$. We know that $T_{2}=S_{2} \times\{0\}$ so $\left|S_{2}\right|=\left|T_{2}\right|>1$. Therefore \mathcal{G} is directly decomposable.
2. If $k<n$ then

$$
\begin{align*}
T_{2}= & \left(S_{2} \times\{0\}\right) \cup\left(\left(S_{2}+a_{0}\right) \times\left\{2^{k}\right\}\right) \\
& \cup \ldots \cup\left(\left(S_{2}+\left(2^{n-k}-1\right) a_{0}\right) \times\left\{\left(2^{n-k}-1\right) 2^{k}\right\}\right) \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
a_{0}^{*}-a_{0} \in S_{2}, \quad 2^{n-k} a_{0} \in S_{2} \tag{4}
\end{equation*}
$$

and $0<k<n$ because if $k=0$ then $2^{k}=1$ and $T_{2} \nsubseteq G \times\left\{i \in \mathbb{Z}_{2^{n}}: 2 \mid i\right\}$, so $k>0$. Let $0<i<2^{n-k}$ by (3) we have

$$
T_{2} \cap\left(G \times\left\{i 2^{k}\right\}\right)=\left(S_{2}+i a_{0}\right) \times\left\{i 2^{k}\right\} .
$$

Moreover $T_{1} \cap\left(G \times\left\{i 2^{k}\right\}\right)=\left(S_{1}+i 2^{k} b_{0}\right) \times\left\{i 2^{k}\right\}$ by (1). We know that $T_{1} \cap T_{2}=$ $\{(0,0)\}$ thus $T_{1} \cap T_{2} \cap\left(G \times\left\{i 2^{k}\right\}\right)=\emptyset$ since $i 2^{k} \neq 0$. Hence $\left(S_{1}+i 2^{k} b_{0}\right) \cap$ $\left(S_{2}+i a_{0}\right)=\emptyset$ so by Lemma 15 we have

$$
\begin{equation*}
i\left(a_{0}-2^{k} b_{0}\right) \notin S_{1}+S_{2} \tag{5}
\end{equation*}
$$

for every $0<i<2^{n-k}$.
Let $0<i<2^{n-k}$. By (1) we have $T_{1} \cap\left(G \times\left\{2^{n}-i 2^{k}\right\}\right)=\left(S_{1}+\left(2^{n}-i 2^{k}\right) b_{0}\right) \times$ $\left\{2^{n}-i 2^{k}\right\}$. By (3) we have $T_{2} \cap\left(G \times\left\{i 2^{k}\right\}\right)=\left(S_{2}+i a_{0}\right) \times\left\{i 2^{k}\right\}$ hence

$$
\begin{aligned}
& \left(T_{1} \cap\left(G \times\left\{2^{n}-i 2^{k}\right\}\right)\right)+\left(T_{2} \cap\left(G \times\left\{i 2^{k}\right\}\right)\right) \\
& =\left(S_{1}+\left(2^{n}-i 2^{k}\right) b_{0}+S_{2}+i a_{0}\right) \times\left\{\left(2^{n}\right)_{2^{n}}\right\} \\
& =\left(S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right)\right) \times\{0\}
\end{aligned}
$$

since $2^{n} b_{0} \in S_{1}$ by (2).

Hence $\left(T_{1}+T_{2}\right) \cap(G \times\{0\})=\left(\left(S_{1}+S_{2}\right) \cup \bigcup_{i=1}^{2^{n-k}-1}\left(S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right)\right)\right) \times\{0\}$ and

$$
\begin{equation*}
G=\bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right)\right) \tag{6}
\end{equation*}
$$

since $T_{1}+T_{2}=G \times \mathbb{Z}_{2^{n}}$. Therefore there exists $0 \leq i_{0}<2^{n-k}$ such that

$$
\begin{equation*}
a_{0} \in S_{1}+S_{2}+i_{0}\left(a_{0}-2^{k} b_{0}\right) \tag{7}
\end{equation*}
$$

Consider the following cases:
(a) If $2 \nmid i_{0}$ then $\operatorname{gcd}\left(i_{0}, 2^{n-k}\right)=1$.

We show that \mathcal{G} is isomorphic to direct product of S_{1} and B, where B is generated by $S_{2} \cup\left\{a_{0}\right\}$. By (4) we have $B=\bigcup_{i=0}^{2^{n-k}-1}\left(S_{2}+i a_{0}\right)$.

Let $L=\left\{S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right): i \in \mathbb{Z}_{2^{n-k}}\right\}$ and $R=\left\{S_{1}+S_{2}+i a_{0}: i \in \mathbb{Z}_{2^{n-k}}\right\}$. By lemma 16 (taking $a:=a_{0}, b:=a_{0}-2^{k} b_{0}, j:=i_{0}, S:=S_{1}+S_{2}, w:=2^{n-k}$) we obtain that $L=R$ since $S_{1}+S_{2}+a_{0}=S_{1}+S_{2}+i_{0}\left(a_{0}-2^{k} b_{0}\right)$ by (7).

Then

$$
\begin{equation*}
i a_{0} \notin S_{1}+S_{2} \tag{8}
\end{equation*}
$$

for every $0<i<2^{n-k}$ by (5) and since $R=L$.
Hence $S_{1} \cap\left(S_{2}+i a_{0}\right)=\emptyset$ for every $0<i<2^{n-k}$ by Lemma 15 and $S_{1} \cap S_{2}=\{0\}$ since $T_{1} \cap T_{2}=\{(0,0)\}$. Therefore $S_{1} \cap B=\{0\}$.

Moreover

$$
\begin{aligned}
S_{1}+B & =S_{1}+\bigcup_{i=0}^{2^{n-k}-1}\left(S_{2}+i a_{0}\right)=\bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+S_{2}+i a_{0}\right) \\
& \stackrel{L}{=}=R \bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right)\right) \stackrel{(6)}{=} G
\end{aligned}
$$

and we have that \mathcal{G} is isomorphic to direct product of S_{1} and B.
Additionally $\left|S_{1}\right|>1$ since $0 \neq x_{0} \in S_{1}$ and $|B|>1$ since $a_{0} \in B$ and $a_{0} \neq 0$ by (8).

Hence \mathcal{G} is directly decomposable.
(b) If $2 \mid i_{0}$ then $\operatorname{gcd}\left(1-i_{0}, 2^{n-k}\right)=1$.

We show that \mathcal{G} is isomorphic to direct product of S_{2} and C, where C is generated by $S_{1} \cup\left\{2^{k} b_{0}\right\}$. By (2) we have

$$
\begin{equation*}
C=\bigcup_{i=0}^{2^{n-k}-1} S_{1}+i 2^{k} b_{0} \tag{9}
\end{equation*}
$$

Let $L_{1}=\left\{S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right): i \in \mathbb{Z}_{2^{n-k}}\right\}$ and $R_{1}=\left\{S_{1}+S_{2}+i 2^{k} b_{0}: i \in\right.$ $\left.\mathbb{Z}_{2^{n-k}}\right\}$. We know that $\operatorname{gcd}\left(1-i_{0}, 2^{n-k}\right)=1$ so there exist $t, s \in \mathbb{Z}$ such that $\left(1-i_{0}\right) t+s 2^{n-k}=1$.

We show that $S_{1}+S_{2}+a_{0}-2^{k} b_{0}=S_{1}+S_{2}+\left(-1-t i_{0}\right) 2^{k} b_{0}$. By (7) we have $\left(1-i_{0}\right) a_{0}+i_{0} 2^{k} b_{0} \in S_{1}+S_{2}$ so $S_{1}+S_{2} \ni t\left(1-i_{0}\right) a_{0}+t i_{0} 2^{k} b_{0}=\left(1-s 2^{n-k}\right) a_{0}+$ $t i_{0} 2^{k} b_{0}=a_{0}-s 2^{n-k} a_{0}+t i_{0} 2^{k} b_{0}$ and $a_{0}+t i_{0} 2^{k} b_{0} \in S_{1}+S_{2}$ by (4). Hence $a_{0}-2^{k} b_{0}+\left(1+t i_{0}\right) 2^{k} b_{0} \in S_{1}+S_{2}$ and $S_{1}+S_{2}+a_{0}-2^{k} b_{0}=S_{1}+S_{2}+\left(-1-t i_{0}\right) 2^{k} b_{0}$.

We know that $2 \mid i_{0}$ so $\operatorname{gcd}\left(2^{n-k},-1-t i_{0}\right)=1$ and by Lemma 16 (taking $j:=-1-t i_{0}, a:=a_{0}-2^{k} b_{0}, b:=2^{k} b_{0}, S:=S_{1}+S_{2}, w:=2^{n-k}$) we have that $L_{1}=R_{1}$.

Then

$$
\begin{equation*}
i 2^{k} b_{0} \notin S_{1}+S_{2} \tag{10}
\end{equation*}
$$

for every $0<i<2^{n-k}$ by (5) and since $R_{1}=L_{1}$.
Hence $S_{2} \cap\left(S_{1}+i 2^{k} b_{0}\right)=\emptyset$ for every $0<i<2^{n-k}$ by Lemma 15 and $S_{1} \cap S_{2}=\{0\}$ since $T_{1} \cap T_{2}=\{(0,0)\}$. Therefore $S_{2} \cap C=\{0\}$.

Moreover

$$
\begin{aligned}
S_{2}+C & =S_{2}+\bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+i 2^{k} b_{0}\right)=\bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+S_{2}+i 2^{k} b_{0}\right) \\
& \stackrel{L_{1}=R_{1}}{=} \bigcup_{i=0}^{2^{n-k}-1}\left(S_{1}+S_{2}+i\left(a_{0}-2^{k} b_{0}\right)\right) \stackrel{(6)}{=} G
\end{aligned}
$$

and we have that \mathcal{G} is isomorphic to direct product of S_{2} and C.
Additionally $\left|S_{1}\right|>1$ since $0 \neq x_{0} \in S_{1}$ so $|C|>1$.
We prove that $\left|S_{2}\right|>1$. Suppose that $\left|S_{2}\right|=1$ then $S_{1}+S_{2}=S_{1}$ and by (7) there exists $s_{1} \in S_{1}$ such that $a_{0}=s_{1}+i_{0}\left(a_{0}-2^{k} b_{0}\right)$ so

$$
\begin{align*}
& 2^{n-k-1} a_{0}=2^{n-k-1} s_{1}+2^{n-k-1} i_{0}\left(a_{0}-2^{k} b_{0}\right) \\
& =2^{n-k-1} s_{1}+2^{n-k} a_{0} \frac{i_{0}}{2}-2^{n} b_{0} \frac{i_{0}}{2}=2^{n-k-1} s_{1}-2^{n} b_{0} \frac{i_{0}}{2} \in S_{1} \tag{11}
\end{align*}
$$

since $2^{n-k} a_{0} \in S_{2}=\{0\}$ and $2^{n} b_{0} \in S_{1}$ by (2).
Moreover $|G|=|C| \cdot\left|S_{2}\right|=|C|=\left|S_{1}\right| 2^{n-k}$ by (9) and (10). Hence $\left|G_{n-1}\right|=$ $\frac{|G|}{2^{n}}<\frac{|G|}{2^{n-k}}=\left|S_{1}\right|$ thus $2^{n-1} b_{0} \in G_{n-1} \subseteq S_{1}$ and $2^{n-1} b_{0} \in S_{1}$ so by (11) we obtain $2^{n-k-1}\left(a_{0}-2^{k} b_{0}\right)=2^{n-k-1} a_{0}-2^{n-1} b_{0} \in S_{1}=S_{1}+S_{2}$ which contradicts (5). Hence $\left|S_{2}\right|>1$ and \mathcal{G} is directly decomposable.

Now we shall study the case where $\mathcal{G}:=Q_{2^{n}, 2}^{0}$ (see Definition 1). In particular, in the following two lemmas we characterize the involution $*$ in $Q_{2^{n}, 2}^{0}$.

Lemma 18. Let $n \in \mathbb{Z}$ and $n \geq 1$. If $(a, b) \in \mathbb{Z}_{2^{n}} \times \mathbb{Z}_{2}$ and $2 \mid a+b$ then $(a, b)^{*}=(a, b)$ in $Q_{2^{n}, 2}^{0}$.

Proof. Consider the following cases:

1. If $b=0$ then $2 \mid a$ and $b+E\left(\frac{a}{2}\right) 2=0+\frac{a}{2} 2=a$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a, 0)=(a, b)$.
2. If $b=1$ then $2 \nmid a$ and $b+E\left(\frac{a}{2}\right) 2=1+E\left(\frac{a}{2}\right) 2=a$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a, 1)=(a, b)$.

Lemma 19. Let $n \in \mathbb{Z}, n \geq 1$. If $(a, b) \in \mathbb{Z}_{2^{n}} \times \mathbb{Z}_{2}$ and $2 \nmid a+b$ then

$$
(a, b)^{*}= \begin{cases}(a-1,1) & \text { for } b=0 \\ (a+1,0) & \text { for } b=1\end{cases}
$$

in $Q_{2^{n}, 2}^{0}$
Proof. Consider the following cases:

1. If $b=0$ then $2 \nmid a$ and $b+E\left(\frac{a}{2}\right) 2=0+\frac{a-1}{2} 2=a-1$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a-1,1)$.
2. If $b=1$ then $2 \mid a$ and $b+E\left(\frac{a}{2}\right) 2=1+\frac{a}{2} 2=a+1$ so $(a, b)^{*}=\gamma_{2^{n}, 2}^{0}(b, a)=$ $\left(\left(b+E\left(\frac{a}{2}\right) 2\right)_{2^{n}},(a)_{2}\right)=(a+1,0)$.

In the definition below we introduce three possible forms of nontrivial subalgebras of $Q_{2^{m}, 2}^{0}$.

Definition. Let $m . k \in \mathbb{Z}, m \geq 1,1 \leq k \leq m$. Let

$$
\begin{aligned}
& S_{k, m, 0}=\left\{\left(t 2^{k}, 0\right) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}: 0 \leq t<2^{m-k}\right\} \\
& S_{k, m, 1}=S_{k, m, 0} \cup\left\{\left(2^{k-1}-1+t 2^{k}, 1\right) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}: 0 \leq t<2^{m-k}\right\} \\
& S_{k, m, 2}=S_{k, m, 0} \cup\left\{\left(2^{k}-1+t 2^{k}, 1\right) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}: 0 \leq t<2^{m-k}\right\}
\end{aligned}
$$

Theorem 20. [3, Theorem 3.9] Let $\mathcal{Q} \in E Q 1$ be a finite and monogenic quasiqroup, $r_{+}(\mathcal{Q})=2^{n}, r_{*}(\mathcal{Q})=2^{m}$ and $n>0$ then \mathcal{Q} is directly indecomposable.

The followiong theorem describes all subalgebras of $Q_{2^{m}, 2}^{0}$.
Theorem 21. Let $m \in \mathbb{Z}$ and $m \geq 1$. Then S is a subalgebra of $Q_{2^{m}, 2}^{0}$ if and only if $S=\{(0,0)\}$ or $S=\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$, or $S=S_{k, m, 0}$ for $k=1, \ldots, m-1$, or $S=S_{k, m, 1}$ for $k=2, \ldots, m$, or $S=S_{k, m, 2}$ for $k=1, \ldots, m$.

Proof. It is easy to check that $S_{k, m, 0} \leq Q_{2^{m}, 2}^{0}$ for $k=1, \ldots, m-1, S_{k, m, 1} \leq Q_{2^{n}, 2}^{0}$ for $k=2, \ldots, m, S=S_{k, m, 2} \leq Q_{2^{m}, 2}^{0}$ for $k=1, \ldots, m$.

Suppose that $S \leq Q_{2^{m}, 2}^{0}$ and $S \neq\{(0,0)\}$, and $S \neq \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Let $U=\{x \in$ $\left.\mathbb{Z}_{2^{m}}:(x, 0) \in S\right\}$ then U is a subgroup of $\mathbb{Z}_{2^{m}}$ hence there exists $0 \leq k \leq m$ such that $U=\left\{t 2^{k} \in \mathbb{Z}_{2^{m}}: 0 \leq t<2^{m-k}\right\}$. Moreover

$$
\begin{equation*}
S \cap\left(\mathbb{Z}_{2^{m}} \times\{0\}\right)=\left\{\left(t 2^{k}, 0\right) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}: 0 \leq t<2^{m-k}\right\} \tag{12}
\end{equation*}
$$

If $k=0$ then $1 \cdot 2^{k}=1$ and $(1,0) \in S$ so $S=\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Hence $k>0$.
Consider the following cases:

1. If $S \cap\left(\mathbb{Z}_{2^{m}} \times\{1\}\right)=\emptyset$ then $S \subseteq \mathbb{Z}_{2^{m}} \times\{0\}$. If $k=m$ then $U=\{0\}$ and $S=\{(0,0)\}$. Hence $1 \leq k \leq m-1$ and $S=U \times\{0\}=S_{k, m, 0}$.
2. If $S \cap \mathbb{Z}_{2^{m}} \times\{1\} \neq \emptyset$ then there exists $x \in \mathbb{Z}_{2^{m}}$ such that $(x, 1) \in S$. Let $r=(x)_{2^{k}}$ and $t=E\left(\frac{x}{2^{k}}\right)$ then $x=t 2^{k}+r$, where $0 \leq r<2^{k}$. Thus $(x, 1)-t\left(2^{k}, 0\right)=(r, 1) \in S$. If $2 \mid r$ then $2 \nmid r+1$ and as it was shown in the proof of Theorem $20(r, 1)$ generates $Q_{2^{m}, 2}^{0}$ so $S=\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}$. Hence $2 \nmid r$ so $r=2 q+1$ for some $q \in \mathbb{Z}$. Thus

$$
\begin{aligned}
2(r, 1) & =2(2 q+1,1)=\gamma_{2^{m}, 2}^{0}(4 q+2,2) \\
& =\left(\left(4 q+2+E\left(\frac{2}{2}\right) 2\right)_{2^{m}}, 0\right)=\left((4 q+4)_{2^{m}}, 0\right) \in S
\end{aligned}
$$

so by (12)

$$
\begin{equation*}
2^{k} \mid 4 q+4 \tag{13}
\end{equation*}
$$

Consider the following cases:
(a) If $k=1$ then $(2,0) \in S$ by (12). Hence $(r, 1)-q(2,0)=(r-2 q, 1)=$ $(1,1) \in S$. It is easy to check that $S_{1, m, 2}$ is generated by $(1,1)$ and $(2,0)$. Thus $S_{1, m, 2} \subseteq S$. Moreover $S_{1, m, 2}=\left\{(x, y) \in \mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}: 2 \mid x+y\right\}$ so as it was shown in the proof of Theorem $20 S_{1, m, 2}$ is the bigest nontrivial subalgebra of $Q_{2^{m}, 2}^{0}$. Hence $S=S_{1, m, 2}$.
(b) If $k \geq 2$ then by (13) $2^{k-2} \mid q+1$ so there exists $w \in \mathbb{Z}$ such that $q+1=$ $w 2^{k-2}$. Hence $w 2^{k-1}-1=2(q+1)-1=2 q+1=r$ and $0<r<2^{k}$ so

$$
\begin{equation*}
0<w 2^{k-1}-1<2^{k} \tag{14}
\end{equation*}
$$

If $w \geq 3$ then $w 2^{k-1}-1 \geq 3 \cdot 2^{k-1}-1=2^{k-1}+2^{k}-1 \geq 2-1+2^{k}=1+2^{k}$ so by (14) $w=1$ or $w=2$.
(i) If $w=1$ then $r=w 2^{k-1}-1=2^{k-1}-1$ so $\left(2^{k-1}-1,1\right) \in S$ and $S_{k, m, 1} \subseteq S$ since $\left(2^{k-1}-1,1\right)$ generates $S_{k, m, 1}$. If $(y, 0) \in S$ then $2^{k} \mid y$ by (12) therefore $(y, 0) \in S_{k, m, 1}$. If $(y, 1) \in S$ then

$$
(y, 1)-\left(2^{k-1}-1,1\right)=\left(\left(y-2^{k-1}+1\right)_{2^{m}}, 0\right) \in S
$$

so $2^{k} \mid y-2^{k-1}+1$ by (12) and there exists $t \in \mathbb{Z}$ such that $y-2^{k-1}+1=t 2^{k}$ hence $y=2^{k-1}-1+t 2^{k}$ and $0 \leq t<2^{m-k}$ since $y \in \mathbb{Z}_{2^{m}}$. Thus $(y, 1) \in S_{k, m, 1}$ and $S \subseteq S_{k, m, 1}$. Therefore $S=S_{k, m, 1}$.
(ii) If $w=2$ then $r=w 2^{k-1}-1=2^{k}-1$ so $\left(2^{k}-1,1\right) \in S$ and $\left(2^{k}, 0\right) \in S$ by (12). Thus $S_{k, m, 2} \subseteq S$ since $S_{k, m, 2}$ is generated by $\left(2^{k}-1,1\right)$ and $\left(2^{k}, 0\right)$. If $(y, 0) \in S$ then $2^{k} \mid y$ by (12) therefore $(y, 0) \in S_{k, m, 2}$. If $(y, 1) \in S$ then

$$
(y, 1)-\left(2^{k}-1,1\right)=\left(\left(y-2^{k}+1\right)_{2^{m}}, 0\right) \in S
$$

so $2^{k} \mid y-2^{k}+1$ by (12) and there exists $t \in \mathbb{Z}$ such that $y-2^{k}+1=t 2^{k}$ hence $y=2^{k}-1+t 2^{k}$ and $0 \leq t<2^{m-k}$ since $y \in \mathbb{Z}_{2^{m}}$. Thus $(y, 1) \in S_{k, m, 2}$ and $S \subseteq S_{k, m, 2}$. Hence $S=S_{k, m, 2}$.

It turns out that:
Lemma 22. Let $m, n \in \mathbb{Z}, m-1 \geq n \geq 1, r=m-1$ and $x_{0}=\left(2^{m-1}, 0\right)$, $\mathcal{G}=Q_{2^{m}, 2}^{0}$.

Then $x_{0}=x_{0}^{*} \neq(0,0), 2 x_{0}=(0,0)$ and hypotheses (H) are satisfied for $r=m-1$.

Let $G_{n-1}:=\left\{g \in G: \exists_{x \in G} 2^{n-1} x=g\right\}$. If $n>1$ then $\frac{|G|}{2^{n}}=\left|G_{n-1}\right|$ and for all subalgebras $S \leq \mathcal{G}$ such that $\left|G_{n-1}\right|<|S|$ we obtain that $G_{n-1} \subseteq S$.

So all assumptions of Theorem 17 are satisfied.
Proof. By Lemma $18 x_{0}^{*}=x_{0}$ since $2 \mid 2^{m-1}$. Moreover

$$
2 x_{0}=\gamma_{2^{m}, 2}^{0}\left(2^{m}, 0\right)=(0,0)
$$

and $x_{0}=\left(2^{m-1}, 0\right) \neq(0,0)$.
The hypotheses (H) are satisfied for $r=m-1$ by Example 11.
Let $n>1$. We show that $G_{n-1}=S_{n-1, m, 0}$, where $G_{n-1}:=\left\{g \in G: \exists_{x \in G} 2^{n-1} x\right.$ $=g\}$.

If $(a, b) \in S_{n-1, m, 0}$ then $b=0$ and $a=t 2^{n-1}$ where $0 \leq t<2^{m-(n-1)}$ so $(a, b)=\left(t 2^{n-1}, 0\right)=2^{n-1}(t, 0) \in G_{n-1}$.

If $(a, b) \in G_{n-1}$ then there exists $(c, d) \in G$ such that $(a, b)=2^{n-1}(c, d)$. Moreover

$$
\begin{aligned}
2^{n-1}(c, d) & =\gamma_{2^{m}, 2}^{0}\left(2^{n-1} c, 2^{n-1} d\right)=\left(\left(2^{n-1} c+E\left(\frac{2^{n-1} d}{2}\right) 2\right)_{2^{m}},\left(2^{n-1} d\right)_{2}\right) \\
& \stackrel{n \geq 1}{=}\left(\left(2^{n-1}(c+d)\right)_{2^{m}}, 0\right) \in S_{n-1, m, 0} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left|G_{n-1}\right|=\left|S_{n-1, m, 0}\right|=2^{m-(n-1)}=\frac{|G|}{2^{n}} . \tag{15}
\end{equation*}
$$

Let $S \leq \mathcal{G}$ and $\left|G_{n-1}\right|<|S|$. We show that $G_{n-1} \subseteq S$. Obviously $S \neq\{(0,0)\}$ and if $S=G$ then $G_{n-1} \subseteq S$. By Theorem 21 it remains to consider the following cases

1. $S=S_{k, m, 0}$ for $1 \leq k \leq m-1$. Then $|S|=2^{m-k}>\left|G_{n-1}\right|=2^{m-n+1}$ by (15). Thus $m-k>m-n+1$ and $n-1>k$ so $G_{n-1}=S_{n-1, m, 0} \subseteq S_{k, m, 0}=S$.
2. $S=S_{k, m, 1}$ or $S=S_{k, m, 2}$. Then $|S|=22^{m-k}>\left|G_{n-1}\right|=2^{m-n+1}$ by (15). Hence $m-k+1>m-n+1$ and $n-1>k-1$ so $n-1 \geq k$ and $2^{k} \mid 2^{n-1}$ thus $\left(2^{n-1}, 0\right) \in S_{k, m, 0} \subseteq S$. Then $G_{n-1}=S_{n-1, m, 0} \subseteq S$.

Theorem 23. Let $m, n \in \mathbb{Z}$ and $m-1 \geq n \geq 1$.
Then quasigroup $\Psi\left(W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)\right)$ is directly indecomposable.
Proof. By Theorem 6 it is sufficient to show that $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$ is directly indecomposable. Using 22 and 17 we conclude that $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$ is directly indecomposable since $Q_{2^{m}, 2}^{0}$ is directly indecomposable by Theorem 20 .

Moreover we obtain that:
Theorem 24. Let $m, n \in \mathbb{Z}$ and $m-1 \geq n \geq 1$.
Then quasigroup $\Psi\left(W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)\right)$ is two-generated.
Proof. It is sufficient to show that $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$ is two-generated.
Let $x=((1,0), 0)$ and $y=((0,0), 1)$. If $((a, b), c) \in\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}$ then $((a, b), c)=a x+b x^{*}+c y$ so x and y generates $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$.

Let

$$
\begin{aligned}
& A=\left\{((a, b), c) \in\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}: 2 \mid c\right\} \\
& B=\left\{((a, b), c) \in\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}: 2 \mid a+b\right\} \\
& C=\left\{((a, b), c) \in\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}: 2 \mid a+b+c\right\} .
\end{aligned}
$$

We show that $A \leq W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$.
If $((a, b), c),\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right) \in A$ then $2 \mid c$ and $2 \mid c^{\prime}$. Hence $((a, b), c)+\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right)=$ $\left((a, b)+{ }_{Q_{2 m, 2}^{0}}\left(a^{\prime}, b^{\prime}\right),\left(c+c^{\prime}\right)_{2^{n}}\right) \in A$ since $2 \mid c+c^{\prime}$. Moreover $((a, b), c)^{*}=\left((a, b)^{*}, c\right)$ $\in A$.

We show that $B \leq W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$.
If $((a, b), c),\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right) \in B$ then $2 \mid a+b$ and $2 \mid a^{\prime}+b^{\prime}$. Hence $2 \mid a+b+a^{\prime}+b^{\prime}$ and $2 \left\lvert\,\left(a+a^{\prime}+E\left(\frac{b+b^{\prime}}{2}\right) 2\right)_{2^{m}}+\left(b+b^{\prime}\right)_{2}\right.$ thus

$$
\begin{aligned}
((a, b), c) & +\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right)=\left(\gamma_{2^{m}}^{0}, 2\left(a+a^{\prime}, b+b^{\prime}\right),\left(c+c^{\prime}\right)_{2^{n}}\right) \\
& =\left(\left(\left(a+a^{\prime}+E\left(\frac{b+b^{\prime}}{2}\right) 2\right)_{2^{m}},\left(b+b^{\prime}\right)_{2}\right),\left(c+c^{\prime}\right)_{2^{n}}\right) \in B
\end{aligned}
$$

and

1. if $2 \mid c$ then $((a, b), c)^{*}=\left((a, b)^{*}, c\right) \stackrel{18}{=}((a, b), c) \in B$.
2. if $2 \nmid c$ then

$$
\begin{aligned}
((a, b), c)^{*} & =\left((a, b)^{*}++_{Q_{2}^{0}, 2}\right. \\
& \left.=\left(2^{m-1}, 0\right), c\right) \stackrel{18}{=}\left((a, b) \gamma_{2_{2}^{m}, 2}^{0}\left(a+2^{m-1}, b\right), c\right) \\
& =\left(\left(\left(a+2^{m-1}, 0\right), c\right)\right. \\
& \left.\left.\left.E\left(\frac{b}{2}\right) 2\right)_{2^{m}},(b)_{2}\right), c\right) .
\end{aligned}
$$

Moreover $m-1 \geq 1$ so $2 \mid 2^{m-1}$ thus $2 \left\lvert\,\left(a+2^{m-1}+E\left(\frac{b}{2}\right) 2\right)_{2^{m}}+(b)_{2}\right.$ since $2 \mid a+b$. Hence $((a, b), c)^{*} \in B$.
We show that $C \leq W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$.
If $((a, b), c),\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right) \in C$ then $2 \mid a+b+c$ and $2 \mid a^{\prime}+b^{\prime}+c^{\prime}$. Hence $2 \mid a+b+$ $c+a^{\prime}+b^{\prime}+c^{\prime}$ and $2 \left\lvert\,\left(a+a^{\prime}+E\left(\frac{b+b^{\prime}}{2}\right) 2\right)_{2^{m}}+\left(b+b^{\prime}\right)_{2}+\left(c+c^{\prime}\right)_{2^{n}}\right.$ thus

$$
\begin{aligned}
((a, b), c) & +\left(\left(a^{\prime}, b^{\prime}\right), c^{\prime}\right)=\left(\gamma_{2^{m}, 2}^{0}\left(a+a^{\prime}, b+b^{\prime}\right),\left(c+c^{\prime}\right)_{2^{n}}\right) \\
& =\left(\left(\left(a+a^{\prime}+E\left(\frac{b+b^{\prime}}{2}\right) 2\right)_{2^{m}},\left(b+b^{\prime}\right)_{2}\right),\left(c+c^{\prime}\right)_{2^{n}}\right) \in C
\end{aligned}
$$

and

1. if $2 \mid c$ then $((a, b), c)^{*}=\left((a, b)^{*}, c\right) \stackrel{18}{=}((a, b), c) \in C$
2. if $2 \nmid c$ then $2 \nmid a+b$.
(a) If $b=0$ then $2 \nmid a$ thus $2 \mid a+c$ so $2 \mid\left(a+1+2^{m-1}\right)_{2^{m}}+1+c$ and

$$
\begin{aligned}
((a, b), c)^{*} & =\left((a, b)^{*}+{Q_{2}^{0}, 2}\left(2^{m-1}, 0\right), c\right) \\
& \stackrel{19}{=}\left((a-1,1)+Q_{2^{m}, 2}^{0}\left(2^{m-1}, 0\right), c\right) \\
& =\left(\gamma_{2^{m}, 2}^{0}\left(a-1+2^{m-1}, 1\right), c\right) \\
& =\left(\left(\left(a-1+2^{m-1}+E\left(\frac{1}{2}\right) 2\right)_{2^{m}},(1)_{2}\right), c\right) \\
& =\left(\left(\left(a+1+2^{m-1}\right)_{2^{m}}, 1\right), c\right) \in C .
\end{aligned}
$$

(b) If $b=1$ then $2 \mid a$ thus $2 \mid a+1+c$ so $2 \mid\left(a+1+2^{m-1}\right) 2^{m}+c$ and

$$
\begin{aligned}
((a, b), c)^{*} & =\left((a, b)^{*}+_{Q_{2^{m}, 2}^{0}}\left(2^{m-1}, 0\right), c\right) \\
& \stackrel{19}{=}\left((a+1,0)+_{Q_{2 m}^{0}, 2}\left(2^{m-1}, 0\right), c\right) \\
& =\left(\gamma_{2^{m}, 2}^{0}\left(a+1+2^{m-1}, 0\right), c\right) \\
& =\left(\left(\left(a+1+2^{m-1}+E\left(\frac{0}{2}\right) 2\right)_{2^{m}},(0)_{2}\right), c\right) \\
& =\left(\left(\left(a+1+2^{m-1}\right)_{2^{m}}, 0\right), c\right) \in C
\end{aligned}
$$

We show that $A \cup B \cup C=\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}$.
Let $((a, b), c) \in\left(\mathbb{Z}_{2^{m}} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{2^{n}}$. If $2 \mid c$ then $((a, b), c) \in C$. If $2 \nmid c$ and $2 \mid a+b$ then $((a, b), c) \in B$. If $2 \nmid c$ and $2 \nmid a+b$ then $2 \mid a+b+c$ and $((a, b), c) \in C$.

Hence every one-generated subalgebra S of $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$ is contained in A or B, or C. Therefore $W_{n,\left(2^{m-1}, 0\right)}\left(Q_{2^{m}, 2}^{0}\right)$ is non-monogenic.

The following theorem summarizes all our considerations concerning quasigroups mentioned in the title of this paper.

Theorem 25. In the variety EQ1 there exists an infinite family of pairwise non-isomorphic quasigroups which are directly indecomposable and they are twogenerated and non-monogenic.

Proof. Let $R=\left\{\Psi\left(W_{n,\left(2^{n}, 0\right)}\left(Q_{2^{n+1}, 2}^{0}\right)\right): n \in \mathbb{Z}, n \geq 1\right\}$. By Theorem 24 every element of R is two-generated. From Theorem 23 it follows that every element of R is directly indecomposable. Moreover if $n_{1}<n_{2}, A_{1}=\Psi\left(W_{n_{1},\left(2^{n_{1}}, 0\right)}\left(Q_{2^{n_{1}+1}, 2}^{0}\right)\right)$, $A_{2}=\Psi\left(W_{n_{2},\left(2^{n_{2}}, 0\right)}\left(Q_{2^{n_{2}+1}, 2}^{0}\right)\right)$ then $\left|A_{1}\right|=2^{2 n_{1}+2}<2^{2 n_{2}+2}=\left|A_{2}\right|$ so A_{1} is not isomorphic to A_{2}.

References

[1] G. Bińczak and J. Kaleta, Cyclic entropic quasigroups, Demonstratio Math. 42 (2009) 269-281.
[2] G. Bińczak and J. Kaleta, Finite simple monogenic entropic quasigroups with quasiidentity, Demonstratio Math. 44 (2011) 17-27.
[3] G. Bińczak and J. Kaleta, Finite directly indecomposable monogenic entropic quasigroups with quasi-identity, Demonstratio Math. 45 (2012) 519-532.
[4] O. Chein, H.O. Pflugfelder and J.D.H. Smith, Quasigroups and Loops: Theory and Applications (Heldermann Verlag, Berlin, 1990).
[5] J.J. Rotman, An Introduction to the Theory of Groups (Springer-Verlag, New York, 1994).
[6] J.D.H. Smith, Representation Theory of Infinite Groups and Finite Quasigroups (Université de Montréal, 1986).

Received 14 March 2013
First Revision 8 April 2013
Second Revision 25 July 2013

