Discussiones Mathematicae General Algebra and Applications 34 (2014) 5–26 doi:10.7151/dmgaa.1214

SOME FINITE DIRECTLY INDECOMPOSABLE NON-MONOGENIC ENTROPIC QUASIGROUPS WITH QUASI-IDENTITY

Grzegorz Bińczak

Faculty of Mathematics and Information Sciences Warsaw University of Technology 00-661 Warsaw, Poland

e-mail: binczak@mini.pw.edu.pl

AND

Joanna Kaleta

Department of Applied Mathematics Warsaw University of Agriculture 02-787 Warsaw, Poland

e-mail: joanna_kaleta@sggw.pl

Abstract

In this paper we show that there exists an infinite family of pairwise non-isomorphic entropic quasigroups with quasi-identity which are directly indecomposable and they are two-generated.

Keywords: quasigroups, entropic quasigroups, abelian groups, involution. **2010** Mathematics Subject Classification: 20N05.

1. Introduction

This paper consists of two parts.

The first part of this work concerns of introducing definitions and theorems about entropic quasigroups with quasi-identity, abelian groups with involutions and some connections between them.

In the second part we define an Abelian group with involution of the form $W_{n,x_0}(\mathcal{G})$ and describe subalgebras of it. In the Theorem 17 we prove that if some conditions are satisfied and $W_{n,x_0}(\mathcal{G})$ is directly decomposable then \mathcal{G} is

also directly decomposable. Next we describe subalgebras of $Q_{2^m,2}^0$ and show that quasigroups $\Psi(W_{n,(2^{m-1},0)}(Q_{2^n,2}^0))$ are directly indecomposable for $m-1 \geq n \geq 1$. Contrary to Abelian groups there are two-generated (and not one-generated) entropic quasigroups beeing directly indecomposable. We show that there exists an infinite family of pairwise not-isomorphic entropic quasigroups with quasi-identity which are directly indecomposable and they are two-generated.

Definition. An Abelian group with involution is a set G, where are defined the binary operation +, the unary operations - and *, and the constant 0, which verify the following properties:

- 1. (G, +, -, 0) is an Abelian group,
- 2. $0^* = 0$, $a^{**} = a$, $(a+b)^* = a^* + b^*$.

In such a case we will denote $(G, +, -, 0, ^*)$. The operation – takes each element a to its inverse -a and * is the involution.

Moreover $(-a)^* = -(a^*)$ since $(-a)^* + a^* \stackrel{(2)}{=} (-a+a)^* = 0^* = 0$ so we use further the notation $-a^*$ instead of $(-a)^*$ and $-(a)^*$.

We denote the class of all Abelian groups with involution by AGI.

Definition. An *entropic* quasigroup is a set Q, where are defined the binary operations \cdot , /, \setminus , which verify the following properties:

- 1. $a \cdot (a \setminus b) = b$, $(b/a) \cdot a = b$,
- 2. $a \setminus (a \cdot b) = b$, $(b \cdot a)/a = b$,
- 3. $(a \cdot b) \cdot (c \cdot d) = (a \cdot c) \cdot (b \cdot d)$.

In such a case we will denote $(Q, \cdot, /, \setminus)$. If there exists an element (which we will denote as 1) such that

$$(4) \ a \cdot 1 = a, \ 1 \cdot (1 \cdot a) = a,$$

then we will say that $(Q, \cdot, /, \setminus)$ has a quasi-identity and denote $(Q, \cdot, /, \setminus, 1)$.

We denote the class of all entropic quasigroups with quasi-identity by EQ1.

Definition. If $\mathcal{G} = (G, +, -, 0, ^*)$ is an Abelian group with involution then we define $\Psi(\mathcal{G}) := (G, \cdot, /, \setminus, 1)$, where $a \cdot b := a + (b^*)$, $a \setminus b := b^* + (-a^*)$, $a/b := a + (-b^*)$, 1 := 0.

If $Q = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity then we define $\Phi(Q) := (Q, +, -, 0,^*)$, where $a + b := a \cdot (1 \cdot b)$, $(-a) := 1/(1 \cdot a)$, 0 := 1, $a^* := 1 \cdot a$.

The next result corresponds to Theorem 3 and 4 in [1]:

Theorem 1. If $\mathcal{G} = (G, +, -, 0,^*)$ is an Abelian group with involution then $\Psi(\mathcal{G}) = (G, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity, where $a \cdot b := a + (b^*)$, $a \mid b := b^* + (-a^*)$, $a \mid b := a + (-b^*)$, 1 := 0.

If $Q = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity then $\Phi(Q) = (Q, +, -, 0,^*)$ is an Abelian group with involution, where $a + b := a \cdot (1 \cdot b)$, $(-a) := 1/(1 \cdot a)$, 0 := 1, $a^* := 1 \cdot a$.

By the Theorem given above we see that $\Psi: AGI \to EQ1$ and $\Phi: EQ1 \to AGI$. The next result corresponds to Theorem 5 and 6 in [1]:

Theorem 2. If $Q = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity then $\Psi(\Phi(Q)) = Q$.

If $\mathcal{G} = (G, +, -, 0, *)$ is an Abelian group with involution then $\Phi(\Psi(\mathcal{G})) = \mathcal{G}$.

Theorem 3. The functions Ψ and Φ defined above satisfy that $\Psi = \Phi^{-1}$.

Lemma 4. If $G_1 = (G_1, +_1, -_1, 0_1, *_1)$ and $G_2 = (G_2, +_2, -_2, 0_2, *_2)$ are Abelian groups with involution then $\Psi(G_1 \times G_2) = \Psi(G_1) \times \Psi(G_2)$.

Proof. We know that $\Psi(\mathcal{G}_1) = (G_1, \cdot_1, /_1, \setminus_1, 0_1)$, where $a \cdot_1 b = a +_1(b^{*1})$, $a \setminus_1 b = b^{*1} + (-1a^{*1})$, $a \setminus_1 b = a +_1(-1b^{*1})$, for all $a, b \in G_1$ and $\Psi(\mathcal{G}_2) = (G_2, \cdot_2, /_2, \setminus_2, 0_2)$, where $a \cdot_2 b = a +_2(b^{*2})$, $a \setminus_2 b = b^{*1} + (-2a^{*2})$, $a \setminus_2 b := a +_2(-2b^{*2})$, for every $a, b \in G_2$.

Then $\mathcal{G}_1 \times \mathcal{G}_2 = (G_1 \times G_2, +_3, -_3, (0_1, 0_2))^{*_3}$, where $(a_1, a_2) +_3 (b_1, b_2) = (a_1 +_1 b_1, a_2 +_2 b_2), -_3(a_1, a_2) = (-_1a_1, -_2a_2), (a_1, a_2)^{*_3} = (a_1^{*_1}, a_2^{*_2})$ for all $a_1, b_1 \in G_1$ and $b_1, b_2 \in G_2$.

We have $\Psi(\mathcal{G}_1) \times \Psi(\mathcal{G}_2) = (G_1 \times G_2, \cdot_4, /_4, /_4, (0_1, 0_2))$, where $(a_1, a_2) \cdot_4 (b_1, b_2) = (a_1 \cdot_1 b_1, a_2 \cdot_2 b_2) = (a_1 +_1 (b_1^{*1}), a_2 +_1 (b_2^{*2}))$ for all $a_1, b_1 \in G_1$, $a_2, b_2 \in G_2$, similarly for $/4, /_4$.

Moreover $\Psi(\mathcal{G}_1 \times \mathcal{G}_2) = (G_1 \times G_2, \cdot, /, \setminus, (0_1, 0_2))$, where $(a_1, a_2) \cdot (b_1, b_2) = (a_1, a_2) +_3 (b_1, b_2)^{*3} = (a_1 +_1 (b_1^{*1}), a_2 +_2 (b_2^{*2}))$ for every $a_1, b_1 \in G_1$, $a_2, b_2 \in G_2$ similarly for /, \setminus .

Hence $\cdot_4 = \cdot$ and similarly $/_4 = /$, $/_4 = \setminus$. Thus $\Psi(G_1 \times G_2) = \Psi(G_1) \times \Psi(G_2)$.

If $Q = (Q, \cdot, /, \setminus, 1)$ is an entropic quasigroup with quasi-identity then |Q| indicates the cardinality of Q.

Definition. An entropic quasigroup with quasi-identity $\mathcal{Q} = (Q, \cdot, /, \setminus, 1)$ is directly indecomposable if $|\mathcal{Q}| \neq 1$ and if $\mathcal{Q} \cong \mathcal{Q}_1 \times \mathcal{Q}_2$, where $Q_1, Q_2 \in EQ1$, then either $|\mathcal{Q}_1| = 1$ or $|\mathcal{Q}_2| = 1$.

Similarly directly indecomposability for Abelian groups with involution is defined.

Definition. Let $\mathcal{G} = (G, +, -, 0,^*) \in AGI$. A subset $X \subseteq G$ is a subalgebra of \mathcal{G} if and only if $0 \in X$, $x_1 + x_2 \in X$, $x^* \in X$, $-x \in X$ for every $x, x_1, x_2 \in X$.

Let $X \subseteq G$. The intersection of all subalgebras of \mathcal{G} containing X we denote by $\langle X \rangle$ (if $X = \{x\}$ then we use $\langle x \rangle$ instead of $\langle \{x\} \rangle$). We say that the set X generates \mathcal{G} if and only if $\langle X \rangle = G$.

A \mathcal{G} has k generators if and only if there exists k-element set X which generates \mathcal{G} and there does not exist k-1-element set X which generates \mathcal{G} .

The following lemma concerning Abelian groups with involution can be proved similarly as for Abelian groups.

Lemma 5. Let $G \in AGI$ be a finite Abelian group and |G| > 1. Then G is directly decomposable if and only if there are B and C being subalgebras of G such that $B \cap C = \{0\}, B + C = G, |B| > 1$ and |C| > 1.

Theorem 6. Let $\mathcal{G} = (G, +, -, 0,^*)$ be an Abelian group with involution. If \mathcal{G} is directly indecomposable then $\Psi(\mathcal{G})$ is directly indecomposable.

Proof. Let $\mathcal{G} = (G, +, -, 0, ^*)$ be an Abelian group with involution. Assume that \mathcal{G} is directly indecomposable. We show that $\Psi(\mathcal{G})$ is directly indecomposable. If $\Psi(\mathcal{G}) \cong Q_1 \times Q_2$ then let $\mathcal{G}_1 = \Phi(Q_1)$ and $\mathcal{G}_2 = \Phi(Q_2)$. By Theorem 2 we have $\Psi(\mathcal{G}_1) = Q_1$ and $\Psi(\mathcal{G}_2) = Q_2$ so $\Psi(\mathcal{G}_1 \times \mathcal{G}_2) = \Psi(\mathcal{G}_1) \times \Psi(\mathcal{G}_2) = Q_1 \times Q_2 \cong \Psi(\mathcal{G})$ by Lemma 4. Hence $\mathcal{G}_1 \times \mathcal{G}_2 \cong \mathcal{G}$ and $|\mathcal{G}_1| = 1$ or $|\mathcal{G}_2| = 1$ since \mathcal{G} is directly indecomposable. Thus $|Q_1| = |\mathcal{G}_1| = 1$ or $|Q_2| = |\mathcal{G}_2| = 1$ so $\Psi(\mathcal{G})$ is directly indecomposable.

Obviously every finite abelian group with involution G is isomorphic to a finite product of directly indecomposable finite abelian groups with involution. Moreover using Theorem [5, Theorem 6.39] this decomposition into directly indecomposable factors is unique (up to reindexing and isomorphism). After applying Theorem 6 and Lemma 4 we obtain similar result for finite entropic quasigroups with quasi-identity.

Hence to obtain structural theorem describing finite entropic quasigroups with quasi-identity it remains to find all finite directly indecomposable entropic quasigroups with quasi-identity.

We have already described (in [3]) directly indecomposable finite entropic quasigroups with quasi-identity having one generator.

In this paper we investigate finite two-generated directly indecomposable finite entropic quasigroups with quasi-identity.

More information concerning entropic quasigroups may be found in [4] and [6].

Definition. One-generated entropic quasigroups with quasi-identity are called *monogenic*.

Let $Q = (Q, \cdot, /, \setminus, 1)$ be a monogenic entropic quasigroup with quasi-identity. Let $Q = \langle x \rangle$. We define three types of rank of the generator x:

$$r_{+}(x) = \min \{ n \in \mathbb{N} \mid nx = 0, n \ge 1 \}, \text{ (additive rank)}$$

 $r_{*}(x) = \min \{ n \in \mathbb{N} \mid n \ge 1, \exists_{k \in \mathbb{Z}} nx^{*} = kx \},$
 $r_{*+}(x) = \min \{ n \in \mathbb{N} \mid r_{*}(x)x^{*} = (r_{*}(x) + n)x \}.$

Note that $r_{+}(x)$ is the usual rank of x in an Abelian group.

Then we define

$$r_{+}(Q) = r_{+}(x), \ r_{*}(Q) = r_{*}(x), \ r_{*+}(Q) = r_{*+}(x).$$

This definition does not depend on the choice of the generator x (see [1]).

We denote the integer part of $a \in \mathbb{R}$ by E(a), whereas $(a)_b$ denotes the remainder obtained after dividing a by b.

Definition. Let $a, b, k \in \mathbb{N}$ and $a, b \geq 1$. Let $\gamma_{a,b}^k : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be a mapping such that

$$\gamma_{a,b}^k(x,y) = ((x + E\left(\frac{y}{b}\right)(b+k))_a, (y)_b).$$

Definition. Let $a, b, k \in \mathbb{Z}$ and $a \ge 1, b \ge 1, k \ge 0$. Define

$$Q_{a,b}^{k} = \left(\mathbb{Z}_a \times \mathbb{Z}_b, \bigoplus_{a,b}^k, \bigoplus_{a,b}^k, (0,0),^* \right),$$

where $\bigoplus_{a,b}^{k}(x,y) = \gamma_{a,b}^{k}(-x,-y), (x,y) \bigoplus_{a,b}^{k}(z,t) = \gamma_{a,b}^{k}(x+z,y+t)$ and $(x,y)^* = \gamma_{a,b}^{k}(y,x).$

Theorem 7 ([1], Theorem 10). Let $a, b, k \in \mathbb{Z}$ with $a \geq 1$, $b \geq 1$, $k \geq 0$ and $b|a, b|k, 0 \leq k < a, a|(2k + \frac{k^2}{b})$. Then $Q_{a,b}^k$ is an Abelian group with involution.

2. Main theorem

We have already characterized all one-generated, directly indecomposable, entropic quasigroups with quasi-identity (see [3]).

In this section we find some two-generated, directly indecomposable, entropic quasigroups with quasi-identity.

For any abelian group with involution $\mathcal{G} = (G, +, -, 0, ^*)$ and some element $x_0 \in G$, and positive integer n we define $W_{n,x_0}(\mathcal{G})$ which is also abelian group with involution (Theorem 9).

We can obtain from one-generated abelian group with involution \mathcal{G} two-generated $W_{n,x_0}(\mathcal{G})$ just by means of W_{n,x_0} .

If $W_{n,x_0}(\mathcal{G})$ satisfies (H) then we can describe all subalgebras of $W_{n,x_0}(\mathcal{G})$ in order to decide when $W_{n,x_0}(\mathcal{G})$ is directly indecomposable.

In the Theorem 17 we prove that if some conditions are satisfied and \mathcal{G} is directly indecomposable then $W_{n,x_0}(\mathcal{G})$ is also directly indecomposable. Next we describe subalgebras of $Q^0_{2^m,2}$ and show that quasigroups $\Psi(W_{n,(2^{m-1},0)}(Q^0_{2^n,2}))$ are directly indecomposable for $m-1 \geq n \geq 1$.

Definition. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ and $x_0 = x_0^*, 2x_0 = 0$ for some $x_0 \in G$. Let $n \in \mathbb{N}$ and $n \ge 1$.

Let
$$W_{n,x_0}(\mathcal{G}) = (G \times \mathbb{Z}_{2^n}, +, -, (0,0),^*)$$
, where

$$(g,y) + (g',y') := (g+g',(y+y')_{2^n}),$$
$$-(g,y) := (-g,(-y)_{2^n}),$$
$$(g,y)^* = \begin{cases} (g^*,y) & \text{for } 2 \mid y \\ (g^*+x_0,y) & \text{for } 2 \nmid y \end{cases}$$

Example 8. Let $m \in \mathbb{N}$ and m > 1. Let $\mathcal{G} = Q_{2^m,2}^0 \in AGI$ and $x_0 = (2^{m-1},0) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Then $2x_0 = \gamma_{2^m,2}^0(2^m,0) = (0,0)$ and $x_0^* = \gamma_{2^m,2}^0(0,2^{m-1}) = (2^{m-1},0) = x_0$.

Theorem 9. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ and $x_0 = x_0^*$, $2x_0 = 0$ for some $x_0 \in G$. Let $n \in \mathbb{N}$ and $n \ge 1$. Then $W_{n,x_0}(\mathcal{G}) \in AGI$.

Proof. It is obvoius that the reduct $(G \times \mathbb{Z}_{2^n}, +, -, (0,0))$ is an Abelian group. Let $(g,y) \in G \times \mathbb{Z}_{2^n}$. If 2|y then $(g,y)^{**} = (g,y)$. If $2 \nmid y$ then $(g,y)^{**} = (g^* + x_0, y)^* = ((g^* + x_0)^* + x_0, y) = (g^{**} + x_0^* + x_0, y) = (g + x_0 + x_0, y) = (g,y)$. Let $(g,y), (g',y') \in G \times \mathbb{Z}_{2^n}$.

Consider the following cases:

1. If 2|y| and 2|y'| then $2|(y+y')_{2^n}|$ and

$$((g,y) + (g',y'))^* = (g+g',(y+y')_{2^n})^*$$

$$= ((g+g')^*,(y+y')_{2^n}) = (g^*+g'^*,(y+y')_{2^n})$$

$$= (g^*,y) + (g'^*,y') = (g,y)^* + (g',y')^*.$$

2. If $2 \nmid y$ and $2 \mid y'$ then $2 \nmid (y + y')_{2^n}$ and

$$((g,y) + (g',y'))^* = (g+g',(y+y')_{2^n})^*$$

$$= ((g+g')^* + x_0,(y+y')_{2^n})$$

$$= (g^* + x_0 + g'^*,(y+y')_{2^n})$$

$$= (g^* + x_0,y) + (g'^*,y') = (g,y)^* + (g',y')^*.$$

3. If $2 \nmid y$ and $2 \nmid y'$ then $2 \mid (y + y')_{2^n}$ and

$$((g,y) + (g',y'))^* = (g+g',(y+y')_{2^n})^*$$

$$= ((g+g')^*,(y+y')_{2^n})$$

$$= (g^* + x_0 + g'^* + x_0,(y+y')_{2^n})$$

$$= (g^* + x_0,y) + (g'^* + x_0,y') = (g,y)^* + (g',y')^*.$$

Definition. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$, $k, n \in \mathbb{Z}$ and $0 \le k \le n$. Let S be a subalgebra of \mathcal{G} and $a_0 \in G$.

Then

$$[S, n, k, a_0] := \bigcup_{i=0}^{2^{n-k}-1} (S + ia_0) \times \{i2^k\}.$$

In order to decide when $W_{n,x_0}(\mathcal{G})$ is directly indecomposable we have to describe subalgebras of $W_{n,x_0}(\mathcal{G})$. For given $\mathcal{G} \in AGI$ we defined $[S, n, k, a_0] \subset G \times \mathbb{Z}_{2^n}$. The following theorem says when $[S, n, k, a_0]$ is a subalgebra of $W_{n,x_0}(\mathcal{G})$.

Theorem 10. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ and $x_0 = x_0^*$, $2x_0 = 0$ for some $x_0 \in G$. Let $n, k \in \mathbb{Z}$, $n \ge 1$ and $0 \le k \le n$. Let S be a subalgebra of \mathcal{G} , $a_0 \in G$ and $a_0^* - a_0 \in S$, $2^{n-k}a_0 \in S$. Assume that k > 0 or $x_0 \in S$.

Then $[S, n, k, a_0]$ is a subalgebra of $W_{n,x_0}(\mathcal{G})$.

Proof. Let $a, b \in [S, n, k, a_0]$ then there exist $0 \le i, j \le 2^{n-k} - 1$ such that $a \in (S + ia_0) \times \{i2^k\}$ and $b \in (S + ja_0) \times \{j2^k\}$.

Consider the following cases:

- 1. If $i + j \le 2^{n-k} 1$ then $a + b \in (S + ia_0) \times \{i2^k\} + (S + ja_0) \times \{j2^k\} = (S + (i+j)a_0) \times \{(i+j)2^k\}$ so $a + b \in [S, n, k, a_0]$.
- 2. If $i + j > 2^{n-k} 1$ then

$$a+b \in (S+ia_0) \times \{i2^k\} + (S+ja_0) \times \{j2^k\}$$
$$= (S+(i+j)a_0) \times \{((i+j)2^k)_{2^n}\}$$

$$= (S + 2^{n-k}a_0 + (i+j-2^{n-k})a_0) \times \{(i+j-2^{n-k})2^k\}$$

= $(S + (i+j-2^{n-k})a_0) \times \{(i+j-2^{n-k})2^k\}$

since $2^{n-k}a_0 \in S$. Hence $a+b \in [S, n, k, a_0]$.

Therefore $[S, n, k, a_0]$ is closed under +.

Let $a \in [S, n, k, a_0]$ then there exist $0 \le i \le 2^{n-k} - 1$ such that $a \in (S + ia_0) \times \{i2^k\}$. Then

$$-a \in (S - ia_0) \times \{(-i2^k)_{2^n}\}$$

$$= (S - 2^{n-k}a_0 + (2^{n-k} - i)a_0) \times \{(2^{n-k} - i)2^k\}$$

$$= (S + (2^{n-k} - i)a_0) \times \{(2^{n-k} - i)2^k\}$$

and $0 \le 2^{n-k} - i \le 2^{n-k} - 1$. Hence $-a \in [S, n, k, a_0]$ and $[S, n, k, a_0]$ is closed under -.

Let $a \in [S, n, k, a_0]$ then there exist $0 \le i \le 2^{n-k} - 1$ such that $a \in (S + ia_0) \times \{i2^k\}$.

Consider the following cases:

1. If $2|i2^k$ then

$$a^* \in (S + ia_0^*) \times \{i2^k\}$$

$$= (S - i(a_0^* - a_0) + ia_0^*) \times \{i2^k\}$$

$$= (S + ia_0) \times \{i2^k\}$$

2. If $2 \nmid i2^k$ then k = 0 hence $x_0 \in S$ and

$$a^* \in (S + ia_0^* + x_0) \times \{i2^k\}$$

$$= (S - i(a_0^* - a_0) + ia_0^*) \times \{i2^k\}$$

$$= (S + ia_0) \times \{i2^k\}$$

Therefore $[S, n, k, a_0]$ is closed under *.

Now, given $\mathcal{G}=(G,+,-,^*)\in AGI$ such that $x_0=x_0^*$ and $2x_0=0$ suppose that there exists $r\geq 1$ such that

(i)
$$2^rg = 0$$
 or $2^rg = x_0$ for all $g \in G$ and
(ii) $2^rg = 0 \Rightarrow g = g^*$ for all $g \in G$

Example 11. Let $m \in \mathbb{N}$ and m > 1. Let $\mathcal{G} = Q_{2^m,2}^0 \in AGI$ and $x_0 = (2^{m-1},0) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Then the hypotheses (H) hold for r = m-1: Let $(a,b) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Then

$$2^{m-1}(a,b) = \gamma_{2^{m},2}^{0}(2^{m-1}a, 2^{m-1}b) = ((2^{m-1}a + E(\frac{2^{m-1}b}{2})2)_{2^{m}}, (2^{m-1}b)_{2})$$
$$= ((2^{m-1}(a+b))_{2^{m}}, 0) = \begin{cases} (0,0) & 2 \mid a+b \\ (2^{m-1},0) & 2 \nmid a+b \end{cases}.$$

Hence if 2|a+b then $2^{m-1}(a,b)=(0,0)$ and if $2\nmid a+b$ then $2^{m-1}(a,b)=(2^{m-1},0)=x_0$. So the first hypothesis (H) is fullfilled.

Let $(a,b) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2$ and $2^{m-1}(a,b) = 0$. Then 2|a+b.

If b = 0 then 2|a and $b + E(\frac{a}{2})2 = 0 + \frac{a}{2}2 = a$ so $(a,b)^* = \gamma_{2^n,2}^0(b,a) = ((b + E(\frac{a}{2})2)_{2^n}, (a)_2) = (a,0) = (a,b)$.

If b = 1 then $2 \nmid a$ and $b + E(\frac{a}{2})2 = 1 + E(\frac{a}{2})2 = a$ so $(a, b)^* = \gamma_{2^n, 2}^0(b, a) = ((b + E(\frac{a}{2})2)_{2^n}, (a)_2) = (a, 1) = (a, b)$.

Therefore the second hypothesis (H) is satisfied, too.

Lemma 12. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ such that $x_0 = x_0^*$ and $2x_0 = 0$ for some $x_0 \in G$, and assume hypotheses (H) hold. Let $n \in \mathbb{N}$ and $r \geq n \geq 1$.

If T is a subalgebra of $W_{n,x_0}(\mathcal{G})$ then $(x_0,0) \in T$ or for all $(g,i) \in T$ we have 2|i.

Proof. Assume that $(g,i) \in T$ and $2 \nmid i$ for some $g \in G$ and $i \in \mathbb{Z}_{2^n}$.

We will show that $(x_0, 0) \in T$. Observe that $2^r(g, i) = (2^r g, (2^r i)_{2^n}) = (2^r g, 0) \in T$ since $r \geq n$. If $2^r g = x_0$ then $(x_0, 0) \in T$. If $2^r g \neq x_0$ then $2^r g = 0$ and $g = g^*$. Moreover $(g, i)^* = (g^* + x_0, i) \in T$. Hence

$$T \ni (g^* + x_0, i) + (2^r - 1)(g, i)$$
$$= (g^* + x_0 + 2^r g - g, (2^r i)_{2^n})$$
$$= (g + x_0 - g, 0) = (x_0, 0)$$

Theorem 13. Let $G = (G, +, -, ^*) \in AGI$ and $x_0 = x_0^*, 2x_0 = 0$ for some $x_0 \in G$. Let $n \in \mathbb{N}$ and $n \ge 1$.

If T is a subalgebra of $W_{n,x_0}(\mathcal{G})$ and $S = \{s \in G: (s,0) \in T\}$ then $T = [S, n, k, a_0]$ for some $0 \le k \le n$ and $a_0 \in G$.

Proof. Let T be a subalgebra of $W_{n,x_0}(\mathcal{G})$ and $S = \{s \in G: (s,0) \in T\}$.

It is obvious that S is a subalgebra of \mathcal{G} .

Let $P = \{i \in \mathbb{Z}_{2^n} : \exists_{g \in G}(g, i) \in T\}$. Then P is a subgroup of \mathbb{Z}_{2^n} . Hence there exists $0 \le k \le n$ such that $P = \{i2^k : 0 \le i < 2^{n-k}\}$.

If k < n then $2^k \in P$ and there exists $a_0 := g \in G$ such that $(a_0, 2^k) \in T$. If k = n then $a_0 := 0$.

1. We show that $[S, n, k, a_0] \subseteq T$.

Let $a \in [S, n, k, a_0]$ then there exists $0 \le i \le 2^{n-k} - 1$ such that $a \in (S + ia_0) \times \{i2^k\}$. Hence $a = (s + ia_0, i2^k)$ for some $s \in S$. Moreover $(s, 0) \in T$.

Consider the following cases:

- (a) If k < n then $(a_0, 2^k) \in T$ and $i(a_0, 2^k) = (ia_0, i2^k) \in T$ so $a = (s + ia_0, i2^k) = (s, 0) + (ia_0, i2^k) \in T$.
- (b) If k = n then i = 0 and $a = (s, 0) \in T$.
- 2. We show that $T \subseteq [S, n, k, a_0]$.

Let $y \in T$ then there exist $g \in G$ and $i \in \mathbb{Z}_{2^n}$ such that y = (g, i). Hence $i \in P$ so there exists $0 \le j < 2^{n-k}$ such that $i = j2^k$.

Consider the following cases:

- (a) If k < n then $(a_0, 2^k) \in T$ thus $(ja_0, j2^k) \in T$. Hence $(g, j2^k) (ja_0, j2^k) = (g ja_0, 0) \in T$ and $g ja_0 \in S$ so $y = (g, i) = (g ja_0 + ja_0, j2^k) \in (S + ja_0) \times \{j2^k\} \subseteq [S, n, k, a_0].$
- (b) If k = n then i = 0 and $g \in S$ so $y = (g, 0) \in S \times \{0\} = [S, n, k, a_0]$.

Hence $T = [S, n, k, a_0].$

The following theorem given the converse of Lemma 12 and uses Theorem 10, Lemma 12 and Theorem 13. In particular it allows to characterize all subalgebras of $W_{n,x_0}(\mathcal{G})$ which satisfy the hypotheses (H).

Theorem 14. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ such that $x_0 = x_0^*$ and $2x_0 = 0$ for some $x_0 \in G$ and assume hypotheses (H) hold. T is a subalgebra of $W_{n,x_0}(\mathcal{G})$ if and only if both conditions given below hold

- (i) $(x_0, 0) \in T$ or for all $(g, i) \in T$ we have 2|i,
- (ii) $T = [S, n, k, a_0]$ for some S beeing a subalgebra of \mathcal{G} , $0 \le k \le n$ and $a_0 \in G$ such that $a_0^* a_0 \in S$ and $2^{n-k}a_0 \in S$.

Proof. \Rightarrow From Lemma 12, if T is a subalgebra then (i) holds. Furtheremore, from Theorem 13 we have that $T = [S, n, k, a_0]$ with $S = \{s \in G: (s, 0) \in T\}$ and for some $0 \le k \le n$ and $a_0 \in G$. Therefore we only need to show that $a_0^* - a_0 \in S$ and $2^{n-k}a_0 \in S$.

Consider the following cases:

(a) if k = n then $a_0 = 0$ and $a_0^* - a_0 = 0 \in S$ and $2^{n-k}a_0 = 0 \in S$.

- (b) if k < n then $(a_0, 2^k) \in T$ so $2^{n-k}(a_0, 2^k) = (2^{n-k}a_0, (2^n)_{2^n}) = (2^{n-k}a_0, 0) \in T$ so $2^{n-k}a_0 \in S$.
 - (i) if k > 0 then $(a_0, 2^k)^* = (a_0^*, 2^k) \in T$ hence $(a_0^*, 2^k) (a_0, 2^k) = (a_0^* a_0, 0) \in T$ and $a_0^* a_0 \in S$.
 - (ii) if k = 0 then $(a_0, 2^k) = (a_0, 1) \in T$ and $2 \nmid 1$ so $(x_0, 0) \in T$ by Lemma 12. Moreover $T \ni (a_0, 1)^* (a_0, 1) = (a_0^* + x_0, 1) (a_0, 1) = (a_0^* a_0 + x_0, 0)$ and $(x_0, 0) \in T$ hence $(a_0^* a_0 + x_0, 0) (x_0, 0) = (a_0^* a_0, 0) \in T$ and $a_0^* a_0 \in S$.

 \Leftarrow Suppose (i) and (ii) hold. We only need to show that $x_0 \in S$ or k > 0 and, then, we can conclude using Theorem 10.

- (a) If $(x_0, 0) \in T$ then $(x_0, 0) \in T = [S, n, k, a_0] = \bigcup_{i=0}^{2^{n-k}-1} (S + ia_0) \times \{i2^k\}$ so $(x_0, 0) \in S \times \{0\}$ and $x_0 \in S$.
- (b) If for all $(g, i) \in T$ we have 2|i| then
 - (i) if k = n then k > 0 since $n \ge 1$.
 - (ii) if k < n then $(a_0, 2^k) \in (S + 1 \cdot a_0) \times \{1 \cdot 2^k\} \subseteq [S, n, k, a_0] = T$ so $2|2^k$ and k > 0.

By Theorem 10 $T = [S, n, k, a_0]$ is a subalgebra of $W_{n,x_0}(\mathcal{G})$.

Lemma 15. Let C be an Abelian group, $A, B \leq C$ and $a, b \in C$ then $(A + a) \cap (B + b) = \emptyset$ if and only if $a - b \notin A + B$

Proof. If $x \in (A+a) \cap (B+b) \neq \emptyset$ then there exist $a' \in A$ and $b' \in B$ such that x = a' + a = b' + b so $a - b = (-a') + b' \in A + B$.

If $a - b \in A + B$ then there exist $a' \in A$ and $b' \in B$ such that a - b = a' + b'. Then $x := (-a') + a = b' + b \in (A + a) \cap (B + b)$ so $(A + a) \cap (B + b) \neq \emptyset$.

Lemma 16. Let \mathcal{G} be an Abelian group, $S \leq \mathcal{G}$, $a \in G$, $b \in G$ and $j \in \mathbb{Z}$. If there exists $w \in \mathbb{Z}$ such that w > 0, $wa \in S$, $wb \in S$, S + a = S + jb and $\gcd(j, w) = 1$ then

$${S + ia: i \in \mathbb{Z}_w} = {S + ib: i \in \mathbb{Z}_w}.$$

Proof. Let $L = \{S + ia : i \in \mathbb{Z}_w\}$ and $R = \{S + ib : i \in \mathbb{Z}_w\}$. First we show that $L \subseteq R$.

We know that S + a = S + jb hence $a - jb \in S$ so if $i \in \mathbb{Z}_w$ then $i(a - jb) \in S$ and $S + ia = S + ijb \stackrel{wb \in S}{=} S + (ij)_w b \in R$. Therefore $L \subseteq R$.

Now we show that $R \subseteq L$.

We know that S+a=S+jb and $\gcd(j,w)=1$ hence $a-jb\in S$ and there exist $p,q\in\mathbb{Z}$ such that pj+qw=1. Thus $S\ni pa-pjb=pa-(1-qw)b=pa-b+qwb$ and $pa-b\in S$ since $wb\in S$. If $i\in\mathbb{Z}_w$ then $i(pa-b)\in S$ and $S+ib=S+ipa\stackrel{wa\in S}{=}S+(ip)_wa\in L$. Therefore $R\subseteq L$.

We show that if some conditions are fulfilled and \mathcal{G} is directly indecomposable then $W_{n,x_0}(\mathcal{G})$ is directly indecomposable.

Theorem 17. Let $\mathcal{G} = (G, +, -, ^*) \in AGI$ such that $x_0 = x_0^* \neq 0$ and $2x_0 = 0$ for some $x_0 \in G$, and assume hypotheses (H) hold.

Let $n \in \mathbb{N}$ and $r \geq n \geq 1$. Let $G_{n-1} := \{g \in G: \exists_{x \in G} 2^{n-1} x = g\}$. Moreover in case n > 1 assume that $\frac{|G|}{2^n} = |G_{n-1}|$ and for all subalgebras $S \leq \mathcal{G}$ such that $|G_{n-1}| < |S|$ we obtain that $G_{n-1} \subseteq S$.

If \mathcal{G} is directly indecomposable then $W_{n,x_0}(\mathcal{G})$ is directly indecomposable.

Proof. Assume that $W_{n,x_0}(\mathcal{G})$ is directly decomposable. Then there exist subalgebras T_1, T_2 of the algebra $W_{n,x_0}(\mathcal{G})$ such that $T_1 \cap T_2 = \{(0,0)\}, |T_1| > 1, |T_2| > 1$ and $T_1 + T_2 = G \times \mathbb{Z}_{2^n}$.

We know that $(x_0, 0) \notin T_1 \cap T_2$ so $(x_0, 0) \notin T_1$ or $(x_0, 0) \notin T_2$. We can assume that $(x_0, 0) \notin T_2$. By Lemma 12 we have $T_2 \subseteq G \times \{i \in \mathbb{Z}_{2^n} : 2|i\}$.

By Theorem 14 we have

$$T_1 = [S_1, n, k_1, b_0] = \bigcup_{i=0}^{2^{n-k_1}-1} (S_1 + ib_0) \times \{i2^{k_1}\}$$

for some S_1 beeing a subalgebra of \mathcal{G} , $0 \le k_1 \le n$, $b_0 \in G$ such that $b_0^* - b_0 \in S_1$ and $2^{n-k_1}b_0 \in S_1$.

If $k_1 > 0$ then $T_1 \subseteq G \times \{i \in \mathbb{Z}_{2^n}: 2|i\}$ and $T_1 + T_2 \subseteq G \times \{i \in \mathbb{Z}_{2^n}: 2|i\}$ and we obtain a contradiction since $T_1 + T_2 = G \times \mathbb{Z}_{2^n}$. Hence $k_1 = 0$ and $T_1 \not\subseteq G \times \{i \in \mathbb{Z}_{2^n}: 2|i\}$ and by Lemma 12 we have $(x_0, 0) \in T_1$. Thus

(1)
$$T_1 = (S_1 \times \{0\})$$
$$\cup ((S_1 + b_0) \times \{1\}) \cup \ldots \cup ((S_1 + (2^n - 1)b_0) \times \{2^n - 1\}),$$

where

$$(2) b_0^* - b_0 \in S_1, 2^n b_0 \in S_1.$$

By Theorem 14 we have

$$T_2 = [S_2, n, k, a_0] = \bigcup_{i=0}^{2^{n-k}-1} (S_2 + ia_0) \times \{i2^k\}$$

for some S_2 beeing a subalgebra of \mathcal{G} , $0 \le k \le n$, $a_0 \in G$ such that $a_0^* - a_0 \in S_2$ and $2^{n-k}a_0 \in S_2$.

Consider the following cases:

1. If k = n then $T_2 = S_2 \times \{0\}$ and $T_1 \cap T_2 = (S_1 \cap S_2) \times \{0\}$ so $S_1 \cap S_2 = \{0\}$ and by 1 we have

$$G \times \mathbb{Z}_{2^n} = T_1 + T_2 = ((S_1 + S_2) \times \{0\})$$

 $\cup ((S_1 + S_2 + b_0) \times \{1\} \cup \ldots \cup (S_1 + S_2 + (2^n - 1)b_0) \times \{2^n - 1\}$

so $S_1 + S_2 = G$. Moreover $(x_0, 0) \in T_1$ and $x_0 \neq 0$ hence $x_0 \in S_1$ and $|S_1| > 1$. We know that $T_2 = S_2 \times \{0\}$ so $|S_2| = |T_2| > 1$. Therefore \mathcal{G} is directly decomposable.

2. If k < n then

(3)
$$T_2 = (S_2 \times \{0\}) \cup ((S_2 + a_0) \times \{2^k\})$$
$$\cup \dots \cup ((S_2 + (2^{n-k} - 1)a_0) \times \{(2^{n-k} - 1)2^k\})$$

where

$$(4) a_0^* - a_0 \in S_2, \quad 2^{n-k} a_0 \in S_2$$

and 0 < k < n because if k = 0 then $2^k = 1$ and $T_2 \not\subseteq G \times \{i \in \mathbb{Z}_{2^n}: 2|i\}$, so k > 0. Let $0 < i < 2^{n-k}$ by (3) we have

$$T_2 \cap (G \times \{i2^k\}) = (S_2 + ia_0) \times \{i2^k\}.$$

Moreover $T_1 \cap (G \times \{i2^k\}) = (S_1 + i2^k b_0) \times \{i2^k\}$ by (1). We know that $T_1 \cap T_2 = \{(0,0)\}$ thus $T_1 \cap T_2 \cap (G \times \{i2^k\}) = \emptyset$ since $i2^k \neq 0$. Hence $(S_1 + i2^k b_0) \cap (S_2 + ia_0) = \emptyset$ so by Lemma 15 we have

$$(5) i(a_0 - 2^k b_0) \notin S_1 + S_2$$

for every $0 < i < 2^{n-k}$.

Let $0 < i < 2^{n-k}$. By (1) we have $T_1 \cap (G \times \{2^n - i2^k\}) = (S_1 + (2^n - i2^k)b_0) \times \{2^n - i2^k\}$. By (3) we have $T_2 \cap (G \times \{i2^k\}) = (S_2 + ia_0) \times \{i2^k\}$ hence

$$(T_1 \cap (G \times \{2^n - i2^k\})) + (T_2 \cap (G \times \{i2^k\}))$$

$$= (S_1 + (2^n - i2^k)b_0 + S_2 + ia_0) \times \{(2^n)_{2^n}\}$$

$$= (S_1 + S_2 + i(a_0 - 2^k b_0)) \times \{0\}$$

since $2^n b_0 \in S_1$ by (2).

Hence $(T_1 + T_2) \cap (G \times \{0\}) = ((S_1 + S_2) \cup \bigcup_{i=1}^{2^{n-k}-1} (S_1 + S_2 + i(a_0 - 2^k b_0))) \times \{0\}$ and

(6)
$$G = \bigcup_{i=0}^{2^{n-k}-1} (S_1 + S_2 + i(a_0 - 2^k b_0))$$

since $T_1 + T_2 = G \times \mathbb{Z}_{2^n}$. Therefore there exists $0 \le i_0 < 2^{n-k}$ such that

(7)
$$a_0 \in S_1 + S_2 + i_0(a_0 - 2^k b_0).$$

Consider the following cases:

(a) If
$$2 \nmid i_0$$
 then $gcd(i_0, 2^{n-k}) = 1$.

We show that \mathcal{G} is isomorphic to direct product of S_1 and B, where B is generated by $S_2 \cup \{a_0\}$. By (4) we have $B = \bigcup_{i=0}^{2^{n-k}-1} (S_2 + ia_0)$.

Let $L = \{S_1 + S_2 + i(a_0 - 2^k b_0) : i \in \mathbb{Z}_{2^{n-k}}\}$ and $R = \{S_1 + S_2 + ia_0 : i \in \mathbb{Z}_{2^{n-k}}\}$. By lemma 16 (taking $a := a_0, b := a_0 - 2^k b_0, j := i_0, S := S_1 + S_2, w := 2^{n-k}$) we obtain that L = R since $S_1 + S_2 + a_0 = S_1 + S_2 + i_0(a_0 - 2^k b_0)$ by (7). Then

$$(8) ia_0 \notin S_1 + S_2$$

for every $0 < i < 2^{n-k}$ by (5) and since R = L.

Hence $S_1 \cap (S_2 + ia_0) = \emptyset$ for every $0 < i < 2^{n-k}$ by Lemma 15 and $S_1 \cap S_2 = \{0\}$ since $T_1 \cap T_2 = \{(0,0)\}$. Therefore $S_1 \cap B = \{0\}$.

Moreover

$$S_1 + B = S_1 + \bigcup_{i=0}^{2^{n-k}-1} (S_2 + ia_0) = \bigcup_{i=0}^{2^{n-k}-1} (S_1 + S_2 + ia_0)$$

$$\stackrel{L=R}{=} \bigcup_{i=0}^{2^{n-k}-1} (S_1 + S_2 + i(a_0 - 2^k b_0)) \stackrel{(6)}{=} G$$

and we have that \mathcal{G} is isomorphic to direct product of S_1 and B.

Additionally $|S_1| > 1$ since $0 \neq x_0 \in S_1$ and |B| > 1 since $a_0 \in B$ and $a_0 \neq 0$ by (8).

Hence \mathcal{G} is directly decomposable.

(b) If
$$2|i_0$$
 then $gcd(1-i_0, 2^{n-k}) = 1$.

We show that \mathcal{G} is isomorphic to direct product of S_2 and C, where C is generated by $S_1 \cup \{2^k b_0\}$. By (2) we have

(9)
$$C = \bigcup_{i=0}^{2^{n-k}-1} S_1 + i2^k b_0.$$

Let $L_1 = \{S_1 + S_2 + i(a_0 - 2^k b_0): i \in \mathbb{Z}_{2^{n-k}}\}$ and $R_1 = \{S_1 + S_2 + i2^k b_0: i \in \mathbb{Z}_{2^{n-k}}\}$. We know that $\gcd(1 - i_0, 2^{n-k}) = 1$ so there exist $t, s \in \mathbb{Z}$ such that $(1 - i_0)t + s2^{n-k} = 1$.

We show that $S_1 + S_2 + a_0 - 2^k b_0 = S_1 + S_2 + (-1 - ti_0) 2^k b_0$. By (7) we have $(1 - i_0)a_0 + i_0 2^k b_0 \in S_1 + S_2$ so $S_1 + S_2 \ni t(1 - i_0)a_0 + ti_0 2^k b_0 = (1 - s 2^{n-k})a_0 + ti_0 2^k b_0 = a_0 - s 2^{n-k} a_0 + ti_0 2^k b_0$ and $a_0 + ti_0 2^k b_0 \in S_1 + S_2$ by (4). Hence $a_0 - 2^k b_0 + (1 + ti_0) 2^k b_0 \in S_1 + S_2$ and $S_1 + S_2 + a_0 - 2^k b_0 = S_1 + S_2 + (-1 - ti_0) 2^k b_0$.

We know that $2|i_0$ so $\gcd(2^{n-k}, -1 - ti_0) = 1$ and by Lemma 16 (taking $j := -1 - ti_0$, $a := a_0 - 2^k b_0$, $b := 2^k b_0$, $S := S_1 + S_2$, $w := 2^{n-k}$) we have that $L_1 = R_1$.

Then

$$(10) i2^k b_0 \notin S_1 + S_2$$

for every $0 < i < 2^{n-k}$ by (5) and since $R_1 = L_1$.

Hence $S_2 \cap (S_1 + i2^k b_0) = \emptyset$ for every $0 < i < 2^{n-k}$ by Lemma 15 and $S_1 \cap S_2 = \{0\}$ since $T_1 \cap T_2 = \{(0,0)\}$. Therefore $S_2 \cap C = \{0\}$.

Moreover

$$S_{2} + C = S_{2} + \bigcup_{i=0}^{2^{n-k}-1} (S_{1} + i2^{k}b_{0}) = \bigcup_{i=0}^{2^{n-k}-1} (S_{1} + S_{2} + i2^{k}b_{0})$$

$$\stackrel{L_{1}=R_{1}}{=} \bigcup_{i=0}^{2^{n-k}-1} (S_{1} + S_{2} + i(a_{0} - 2^{k}b_{0})) \stackrel{(6)}{=} G$$

and we have that \mathcal{G} is isomorphic to direct product of S_2 and C.

Additionally $|S_1| > 1$ since $0 \neq x_0 \in S_1$ so |C| > 1.

We prove that $|S_2| > 1$. Suppose that $|S_2| = 1$ then $S_1 + S_2 = S_1$ and by (7) there exists $s_1 \in S_1$ such that $a_0 = s_1 + i_0(a_0 - 2^k b_0)$ so

(11)
$$2^{n-k-1}a_0 = 2^{n-k-1}s_1 + 2^{n-k-1}i_0(a_0 - 2^kb_0)$$
$$= 2^{n-k-1}s_1 + 2^{n-k}a_0\frac{i_0}{2} - 2^nb_0\frac{i_0}{2} = 2^{n-k-1}s_1 - 2^nb_0\frac{i_0}{2} \in S_1$$

since $2^{n-k}a_0 \in S_2 = \{0\}$ and $2^nb_0 \in S_1$ by (2).

Moreover $|G| = |C| \cdot |S_2| = |C| = |S_1|2^{n-k}$ by (9) and (10). Hence $|G_{n-1}| = \frac{|G|}{2^n} < \frac{|G|}{2^{n-k}} = |S_1|$ thus $2^{n-1}b_0 \in G_{n-1} \subseteq S_1$ and $2^{n-1}b_0 \in S_1$ so by (11) we obtain $2^{n-k-1}(a_0 - 2^k b_0) = 2^{n-k-1}a_0 - 2^{n-1}b_0 \in S_1 = S_1 + S_2$ which contradicts (5). Hence $|S_2| > 1$ and \mathcal{G} is directly decomposable.

Now we shall study the case where $\mathcal{G} := Q_{2^{n},2}^{0}$ (see Definition 1). In particular, in the following two lemmas we characterize the involution * in $Q_{2^{n},2}^{0}$.

Lemma 18. Let $n \in \mathbb{Z}$ and $n \geq 1$. If $(a,b) \in \mathbb{Z}_{2^n} \times \mathbb{Z}_2$ and 2|a+b then $(a,b)^* = (a,b)$ in $Q_{2^n,2}^0$.

Proof. Consider the following cases:

- 1. If b = 0 then 2|a and $b + E(\frac{a}{2})2 = 0 + \frac{a}{2}2 = a$ so $(a,b)^* = \gamma_{2^n,2}^0(b,a) = ((b + E(\frac{a}{2})2)_{2^n},(a)_2) = (a,0) = (a,b)$.
- 2. If b = 1 then $2 \nmid a$ and $b + E(\frac{a}{2})2 = 1 + E(\frac{a}{2})2 = a$ so $(a, b)^* = \gamma_{2^n, 2}^0(b, a) = ((b + E(\frac{a}{2})2)_{2^n}, (a)_2) = (a, 1) = (a, b)$.

Lemma 19. Let $n \in \mathbb{Z}$, $n \ge 1$. If $(a,b) \in \mathbb{Z}_{2^n} \times \mathbb{Z}_2$ and $2 \nmid a+b$ then

$$(a,b)^* = \begin{cases} (a-1,1) & for \ b=0\\ (a+1,0) & for \ b=1 \end{cases}$$

in $Q_{2^{n},2}^{0}$

Proof. Consider the following cases:

- 1. If b = 0 then $2 \nmid a$ and $b + E(\frac{a}{2})2 = 0 + \frac{a-1}{2}2 = a-1$ so $(a,b)^* = \gamma_{2^n,2}^0(b,a) = ((b+E(\frac{a}{2})2)_{2^n},(a)_2) = (a-1,1)$.
- 2. If b = 1 then 2|a and $b + E(\frac{a}{2})2 = 1 + \frac{a}{2}2 = a + 1$ so $(a, b)^* = \gamma_{2^n, 2}^0(b, a) = ((b + E(\frac{a}{2})2)_{2^n}, (a)_2) = (a + 1, 0)$.

In the definition below we introduce three possible forms of nontrivial subalgebras of $Q_{2^{m},2}^{0}$.

Definition. Let $m.k \in \mathbb{Z}$, $m \ge 1$, $1 \le k \le m$. Let

$$S_{k,m,0} = \{(t2^k, 0) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2 : 0 \le t < 2^{m-k} \},$$

$$S_{k,m,1} = S_{k,m,0} \cup \{(2^{k-1} - 1 + t2^k, 1) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2 : 0 \le t < 2^{m-k} \},$$

$$S_{k,m,2} = S_{k,m,0} \cup \{(2^k - 1 + t2^k, 1) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2 : 0 \le t < 2^{m-k} \}.$$

Theorem 20. [3, Theorem 3.9] Let $Q \in EQ1$ be a finite and monogenic quasiqroup, $r_+(Q) = 2^n$, $r_*(Q) = 2^m$ and n > 0 then Q is directly indecomposable.

The following theorem describes all subalgebras of $Q_{2^{m},2}^{0}$.

Theorem 21. Let $m \in \mathbb{Z}$ and $m \geq 1$. Then S is a subalgebra of $Q^0_{2^m,2}$ if and only if $S = \{(0,0)\}$ or $S = \mathbb{Z}_{2^m} \times \mathbb{Z}_2$, or $S = S_{k,m,0}$ for $k = 1, \ldots, m-1$, or $S = S_{k,m,1}$ for $k = 2, \ldots, m$, or $S = S_{k,m,2}$ for $k = 1, \ldots, m$.

Proof. It is easy to check that $S_{k,m,0} \leq Q^0_{2^m,2}$ for $k = 1, \ldots, m-1, S_{k,m,1} \leq Q^0_{2^n,2}$ for $k = 2, \ldots, m, S = S_{k,m,2} \leq Q^0_{2^m,2}$ for $k = 1, \ldots, m$.

Suppose that $S \leq Q^0_{2^m,2}$ and $S \neq \{(0,0)\}$, and $S \neq \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Let $U = \{x \in \mathbb{Z}_{2^m} : (x,0) \in S\}$ then U is a subgroup of \mathbb{Z}_{2^m} hence there exists $0 \leq k \leq m$ such that $U = \{t2^k \in \mathbb{Z}_{2^m} : 0 \leq t < 2^{m-k}\}$. Moreover

(12)
$$S \cap (\mathbb{Z}_{2^m} \times \{0\}) = \{(t2^k, 0) \in \mathbb{Z}_{2^m} \times \mathbb{Z}_2 : 0 \le t < 2^{m-k}\}.$$

If k = 0 then $1 \cdot 2^k = 1$ and $(1,0) \in S$ so $S = \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Hence k > 0.

Consider the following cases:

- 1. If $S \cap (\mathbb{Z}_{2^m} \times \{1\}) = \emptyset$ then $S \subseteq \mathbb{Z}_{2^m} \times \{0\}$. If k = m then $U = \{0\}$ and $S = \{(0,0)\}$. Hence $1 \le k \le m-1$ and $S = U \times \{0\} = S_{k,m,0}$.
- 2. If $S \cap \mathbb{Z}_{2^m} \times \{1\} \neq \emptyset$ then there exists $x \in \mathbb{Z}_{2^m}$ such that $(x,1) \in S$. Let $r = (x)_{2^k}$ and $t = E(\frac{x}{2^k})$ then $x = t2^k + r$, where $0 \leq r < 2^k$. Thus $(x,1) t(2^k,0) = (r,1) \in S$. If 2|r then $2 \nmid r+1$ and as it was shown in the proof of Theorem 20 (r,1) generates $Q_{2^m,2}^0$ so $S = \mathbb{Z}_{2^m} \times \mathbb{Z}_2$. Hence $2 \nmid r$ so r = 2q+1 for some $q \in \mathbb{Z}$. Thus

$$2(r,1) = 2(2q+1,1) = \gamma_{2^m,2}^0(4q+2,2)$$
$$= ((4q+2+E(\frac{2}{5})2)_{2^m},0) = ((4q+4)_{2^m},0) \in S$$

so by (12)

(13)
$$2^k |4q + 4.$$

Consider the following cases:

- (a) If k=1 then $(2,0)\in S$ by (12). Hence $(r,1)-q(2,0)=(r-2q,1)=(1,1)\in S$. It is easy to check that $S_{1,m,2}$ is generated by (1,1) and (2,0). Thus $S_{1,m,2}\subseteq S$. Moreover $S_{1,m,2}=\{(x,y)\in \mathbb{Z}_{2^m}\times \mathbb{Z}_2\colon 2|x+y\}$ so as it was shown in the proof of Theorem 20 $S_{1,m,2}$ is the bigest nontrivial subalgebra of $Q_{2^m,2}^0$. Hence $S=S_{1,m,2}$.
- (b) If $k \ge 2$ then by (13) $2^{k-2}|q+1$ so there exists $w \in \mathbb{Z}$ such that $q+1 = w2^{k-2}$. Hence $w2^{k-1} 1 = 2(q+1) 1 = 2q + 1 = r$ and $0 < r < 2^k$ so

$$(14) 0 < w2^{k-1} - 1 < 2^k.$$

If $w \ge 3$ then $w2^{k-1} - 1 \ge 3 \cdot 2^{k-1} - 1 = 2^{k-1} + 2^k - 1 \ge 2 - 1 + 2^k = 1 + 2^k$ so by (14) w = 1 or w = 2.

(i) If w = 1 then $r = w2^{k-1} - 1 = 2^{k-1} - 1$ so $(2^{k-1} - 1, 1) \in S$ and $S_{k,m,1} \subseteq S$ since $(2^{k-1} - 1, 1)$ generates $S_{k,m,1}$. If $(y, 0) \in S$ then $2^k | y$ by (12) therefore $(y, 0) \in S_{k,m,1}$. If $(y, 1) \in S$ then

$$(y,1) - (2^{k-1} - 1,1) = ((y - 2^{k-1} + 1)_{2^m}, 0) \in S$$

so $2^k|y-2^{k-1}+1$ by (12) and there exists $t\in\mathbb{Z}$ such that $y-2^{k-1}+1=t2^k$ hence $y=2^{k-1}-1+t2^k$ and $0\leq t<2^{m-k}$ since $y\in\mathbb{Z}_{2^m}$. Thus $(y,1)\in S_{k,m,1}$ and $S\subseteq S_{k,m,1}$. Therefore $S=S_{k,m,1}$.

(ii) If w = 2 then $r = w2^{k-1} - 1 = 2^k - 1$ so $(2^k - 1, 1) \in S$ and $(2^k, 0) \in S$ by (12). Thus $S_{k,m,2} \subseteq S$ since $S_{k,m,2}$ is generated by $(2^k - 1, 1)$ and $(2^k, 0)$. If $(y, 0) \in S$ then $2^k | y$ by (12) therefore $(y, 0) \in S_{k,m,2}$. If $(y, 1) \in S$ then

$$(y,1) - (2^k - 1,1) = ((y - 2^k + 1)_{2^m}, 0) \in S$$

so $2^k|y-2^k+1$ by (12) and there exists $t\in\mathbb{Z}$ such that $y-2^k+1=t2^k$ hence $y=2^k-1+t2^k$ and $0\leq t<2^{m-k}$ since $y\in\mathbb{Z}_{2^m}$. Thus $(y,1)\in S_{k,m,2}$ and $S\subseteq S_{k,m,2}$. Hence $S=S_{k,m,2}$.

It turns out that:

Lemma 22. Let $m, n \in \mathbb{Z}$, $m-1 \ge n \ge 1$, r = m-1 and $x_0 = (2^{m-1}, 0)$, $\mathcal{G} = Q^0_{2^m, 2}$.

Then $x_0 = x_0^* \neq (0,0)$, $2x_0 = (0,0)$ and hypotheses (H) are satisfied for r = m - 1.

Let $G_{n-1} := \{g \in G: \exists_{x \in G} 2^{n-1} x = g\}$. If n > 1 then $\frac{|G|}{2^n} = |G_{n-1}|$ and for all subalgebras $S \leq \mathcal{G}$ such that $|G_{n-1}| < |S|$ we obtain that $G_{n-1} \subseteq S$.

So all assumptions of Theorem 17 are satisfied.

Proof. By Lemma 18 $x_0^* = x_0$ since $2|2^{m-1}$. Moreover

$$2x_0 = \gamma_{2^m,2}^0(2^m,0) = (0,0)$$

and $x_0 = (2^{m-1}, 0) \neq (0, 0)$.

The hypotheses (H) are satisfied for r = m - 1 by Example 11.

Let n > 1. We show that $G_{n-1} = S_{n-1,m,0}$, where $G_{n-1} := \{g \in G: \exists_{x \in G} 2^{n-1} x = g\}$.

If $(a,b) \in S_{n-1,m,0}$ then b=0 and $a=t2^{n-1}$ where $0 \le t < 2^{m-(n-1)}$ so $(a,b)=(t2^{n-1},0)=2^{n-1}(t,0) \in G_{n-1}$.

If $(a,b) \in G_{n-1}$ then there exists $(c,d) \in G$ such that $(a,b) = 2^{n-1}(c,d)$. Moreover

$$2^{n-1}(c,d) = \gamma_{2^{m},2}^{0}(2^{n-1}c,2^{n-1}d) = ((2^{n-1}c + E(\frac{2^{n-1}d}{2})2)_{2^{m}}, (2^{n-1}d)_{2})$$

$$\stackrel{n \ge 1}{=} ((2^{n-1}(c+d))_{2^{m}}, 0) \in S_{n-1,m,0}.$$

Hence

(15)
$$|G_{n-1}| = |S_{n-1,m,0}| = 2^{m-(n-1)} = \frac{|G|}{2^n}.$$

Let $S \leq \mathcal{G}$ and $|G_{n-1}| < |S|$. We show that $G_{n-1} \subseteq S$. Obviously $S \neq \{(0,0)\}$ and if S = G then $G_{n-1} \subseteq S$. By Theorem 21 it remains to consider the following cases

- 1. $S = S_{k,m,0}$ for $1 \le k \le m-1$. Then $|S| = 2^{m-k} > |G_{n-1}| = 2^{m-n+1}$ by (15). Thus m-k > m-n+1 and n-1 > k so $G_{n-1} = S_{n-1,m,0} \subseteq S_{k,m,0} = S$.
- 2. $S = S_{k,m,1}$ or $S = S_{k,m,2}$. Then $|S| = 22^{m-k} > |G_{n-1}| = 2^{m-n+1}$ by (15). Hence m k + 1 > m n + 1 and n 1 > k 1 so $n 1 \ge k$ and $2^k | 2^{n-1}$ thus $(2^{n-1}, 0) \in S_{k,m,0} \subseteq S$. Then $G_{n-1} = S_{n-1,m,0} \subseteq S$.

Theorem 23. Let $m, n \in \mathbb{Z}$ and $m-1 \geq n \geq 1$. Then quasigroup $\Psi(W_{n,(2^{m-1},0)}(Q^0_{2^m,2}))$ is directly indecomposable.

Proof. By Theorem 6 it is sufficient to show that $W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$ is directly indecomposable. Using 22 and 17 we conclude that $W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$ is directly indecomposable since $Q_{2^m,2}^0$ is directly indecomposable by Theorem 20.

Moreover we obtain that:

Theorem 24. Let $m, n \in \mathbb{Z}$ and $m-1 \geq n \geq 1$. Then quasigroup $\Psi(W_{n,(2^{m-1},0)}(Q^0_{2^m,2}))$ is two-generated.

Proof. It is sufficient to show that $W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$ is two-generated. Let x=((1,0),0) and y=((0,0),1). If $((a,b),c)\in (\mathbb{Z}_{2^m}\times\mathbb{Z}_2)\times\mathbb{Z}_{2^n}$ then $((a,b),c)=ax+bx^*+cy$ so x and y generates $W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$. Let

$$A = \{((a,b),c) \in (\mathbb{Z}_{2^m} \times \mathbb{Z}_2) \times \mathbb{Z}_{2^n} \colon 2|c\}$$

$$B = \{((a,b),c) \in (\mathbb{Z}_{2^m} \times \mathbb{Z}_2) \times \mathbb{Z}_{2^n} \colon 2|a+b\}$$

$$C = \{((a,b),c) \in (\mathbb{Z}_{2^m} \times \mathbb{Z}_2) \times \mathbb{Z}_{2^n} \colon 2|a+b+c\}.$$

We show that $A \leq W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$.

If $((a,b),c),((a',b'),c') \in A$ then 2|c and 2|c'. Hence $((a,b),c)+((a',b'),c')=((a,b)+_{Q^0_{2m,2}}(a',b'),(c+c')_{2^n}) \in A$ since 2|c+c'. Moreover $((a,b),c)^*=((a,b)^*,c) \in A$.

We show that $B \leq W_{n,(2^{m-1},0)}(Q_{2^m,2}^0)$. If $((a,b),c),((a',b'),c') \in B$ then 2|a+b and 2|a'+b'. Hence 2|a+b+a'+b' and $2|(a+a'+E(\frac{b+b'}{2})2)_{2^m}+(b+b')_2$ thus

$$((a,b),c) + ((a',b'),c') = (\gamma_{2^{m},2}^{0}(a+a',b+b'),(c+c')_{2^{n}})$$
$$= (((a+a'+E(\frac{b+b'}{2})2)_{2^{m}},(b+b')_{2}),(c+c')_{2^{n}}) \in B$$

and

- 1. if 2|c then $((a,b),c)^* = ((a,b)^*,c) \stackrel{18}{=} ((a,b),c) \in B$.
- 2. if $2 \nmid c$ then

$$\begin{split} ((a,b),c)^* &= ((a,b)^* +_{Q^0_{2^m,2}} (2^{m-1},0),c) \stackrel{18}{=} ((a,b) +_{Q^0_{2^m,2}} (2^{m-1},0),c) \\ &= (\gamma^0_{2^m,2} (a+2^{m-1},b),c) \\ &= (((a+2^{m-1}+E(\frac{b}{2})2)_{2^m},(b)_2),c). \end{split}$$

Moreover $m-1 \ge 1$ so $2|2^{m-1}$ thus $2|(a+2^{m-1}+E(\frac{b}{2})2)_{2^m}+(b)_2$ since 2|a + b. Hence $((a, b), c)^* \in B$.

We show that $C \leq W_{n,(2^{m-1},0)}(Q^0_{2^m,2})$. If $((a,b),c),((a',b'),c') \in C$ then 2|a+b+c and 2|a'+b'+c'. Hence 2|a+b+c+a'+b'+c' and $2|(a+a'+E(\frac{b+b'}{2})2)_{2^m}+(b+b')_2+(c+c')_{2^n}$ thus

$$((a,b),c) + ((a',b'),c') = (\gamma_{2^m,2}^0(a+a',b+b'),(c+c')_{2^n})$$
$$= (((a+a'+E(\frac{b+b'}{2})2)_{2^m},(b+b')_2),(c+c')_{2^n}) \in C$$

and

- 1. if 2|c then $((a,b),c)^* = ((a,b)^*,c) \stackrel{18}{=} ((a,b),c) \in C$
- 2. if $2 \nmid c$ then $2 \nmid a + b$.
 - (a) If b = 0 then $2 \nmid a$ thus 2|a + c so $2|(a + 1 + 2^{m-1})_{2^m} + 1 + c$ and

$$\begin{split} ((a,b),c)^* &= ((a,b)^* +_{Q^0_{2^m,2}} (2^{m-1},0),c) \\ &\stackrel{19}{=} ((a-1,1) +_{Q^0_{2^m,2}} (2^{m-1},0),c) \\ &= (\gamma^0_{2^m,2} (a-1+2^{m-1},1),c) \\ &= (((a-1+2^{m-1}+E(\frac{1}{2})2)_{2^m},(1)_2),c) \\ &= (((a+1+2^{m-1})_{2^m},1),c) \in C. \end{split}$$

(b) If b = 1 then 2|a| thus 2|a+1+c| so $2|(a+1+2^{m-1})_{2^m}+c|$ and

$$\begin{split} ((a,b),c)^* &= ((a,b)^* +_{Q^0_{2^m,2}}(2^{m-1},0),c) \\ &\stackrel{19}{=} ((a+1,0) +_{Q^0_{2^m,2}}(2^{m-1},0),c) \\ &= (\gamma^0_{2^m,2}(a+1+2^{m-1},0),c) \\ &= (((a+1+2^{m-1}+E(\frac{0}{2})2)_{2^m},(0)_2),c) \\ &= (((a+1+2^{m-1})_{2^m},0),c) \in C. \end{split}$$

We show that $A \cup B \cup C = (\mathbb{Z}_{2^m} \times \mathbb{Z}_2) \times \mathbb{Z}_{2^n}$.

Let $((a,b),c) \in (\mathbb{Z}_{2^m} \times \mathbb{Z}_2) \times \mathbb{Z}_{2^n}$. If $2 \mid c$ then $((a,b),c) \in C$. If $2 \nmid c$ and $2 \mid a+b$ then $((a,b),c) \in B$. If $2 \nmid c$ and $2 \nmid a+b$ then $2 \mid a+b+c$ and $((a,b),c) \in C$.

Hence every one-generated subalgebra S of $W_{n,(2^{m-1},0)}(Q^0_{2^m,2})$ is contained in A or B, or C. Therefore $W_{n,(2^{m-1},0)}(Q^0_{2^m,2})$ is non-monogenic.

The following theorem summarizes all our considerations concerning quasigroups mentioned in the title of this paper.

Theorem 25. In the variety EQ1 there exists an infinite family of pairwise non-isomorphic quasigroups which are directly indecomposable and they are two-generated and non-monogenic.

Proof. Let $R = \{\Psi(W_{n,(2^n,0)}(Q^0_{2^{n+1},2})) : n \in \mathbb{Z}, n \geq 1\}$. By Theorem 24 every element of R is two-generated. From Theorem 23 it follows that every element of R is directly indecomposable. Moreover if $n_1 < n_2, A_1 = \Psi(W_{n_1,(2^{n_1},0)}(Q^0_{2^{n_1+1},2})), A_2 = \Psi(W_{n_2,(2^{n_2},0)}(Q^0_{2^{n_2+1},2}))$ then $|A_1| = 2^{2n_1+2} < 2^{2n_2+2} = |A_2|$ so A_1 is not isomorphic to A_2 .

REFERENCES

- G. Bińczak and J. Kaleta, Cyclic entropic quasigroups, Demonstratio Math. 42 (2009) 269–281.
- [2] G. Bińczak and J. Kaleta, Finite simple monogenic entropic quasigroups with quasiidentity, Demonstratio Math. 44 (2011) 17–27.
- [3] G. Bińczak and J. Kaleta, Finite directly indecomposable monogenic entropic quasi-groups with quasi-identity, Demonstratio Math. 45 (2012) 519–532.
- [4] O. Chein, H.O. Pflugfelder and J.D.H. Smith, Quasigroups and Loops: Theory and Applications (Heldermann Verlag, Berlin, 1990).
- [5] J.J. Rotman, An Introduction to the Theory of Groups (Springer-Verlag, New York, 1994).

[6] J.D.H. Smith, Representation Theory of Infinite Groups and Finite Quasigroups (Université de Montréal, 1986).

Received 14 March 2013 First Revision 8 April 2013 Second Revision 25 July 2013