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Abstract

Here we introduce the notion of strong quasi k-ideals of a semiring in SL
and characterize the semirings that are distributive lattices of ¢-k-simple(¢-
k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal
Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A
semiring S in SL™ is a distributive lattice of ¢-k-simple semirings if and only
if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again
S is a distributive lattice of t-k-Archimedean semirings if and only if /@ is
a k-ideal, for every strong quasi k-ideal @ of S.
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1. INTRODUCTION

The notion of semirings was introduced by Vandiver [21] in connection with the
axiomatization of the arithmetic of natural numbers. Historically, the semirings
appeared in mathematics implicitly as the semiring of all ideals of a ring, the
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semiring of all endomorphisms of a commutative semigroup etc. long before than
its axiomatic formulation. Though they appeared long before, but the semirings
found their full place in mathematics recently e.g. in idempotent analysis [8,
15, 13] which are being used in theoretical physics, optimization [6, 7, 16] etc.,
various applications in theoretical computer science and algorithm theory [9, 14].
The underlying semirings both in idempotent analysis and theoretical computer
science are such that the additive reduct is a semilattice, i.e. both idempotent
and commutative.

This is a continuation of our study on the semirings whose additive reduct is
a semilattice by their bi-ideals and quasi ideals [1, 11, 12]. Here we characterize
such semirings by their strong quasi-k-ideals. The notion of quasi-ideals in rings
and semigroups was introduced and developed by Otto Steinfeld [20]. Later,
the idea has been generalized in semirings, ordered semigroups, I'-semigroups
[2, 11, 12] etc. In semigroups, quasi-ideals are precisely intersection of a left
ideal and a right ideal. In rings though an intersection of a left ideal and a right
ideal is a quasi-ideal but the converse is not true [22]. Thus a class of quasi-
ideals which can be expressed as an intersection of a left ideal and a right ideal
was distinguished and they are known as quasi-ideals with intersection property.
Here we have shown that the case for the quasi k-ideals in semirings is the same
as in the rings and we call the quasi k-ideals which are intersection of a left k-ideal
and a right k-ideal as strong quasi k-ideal. Interestingly, though there are strong
quasi k-ideals which are neither left k-ideal nor right k-ideal, still a semiring is
strong quasi k-simple if and only if it is t-k-simple; which shows that the strong
quasi k-ideals are potential to characterize the semirings which are distributive
lattice of t-k-simple semirings and t-k-Archimedean semirings.

We show that S is a distributive lattice( chain) of ¢-k-simple subsemirings if
and only if every strong quasi k-ideal is a completely semiprime (prime) k-ideal of
S, where as S is a distributive lattice (chain) of ¢-k-Archimedean subsemirings if
and only if radicals of every strong quasi k-ideal is a k-ideal (completely prime).

The preliminaries and prerequisites we need have been discussed in Section 2.
In Section 4 we give different equivalent characterizations of the semirings which
are distributive lattices (chains) of strong t-k-simple semirings. Section 5 is de-
voted to characterize semirings which are distributive lattices of t-k-Archimedean
semirings.

2.  PRELIMINARIES
The terminology and basic notions in this section are according to [1, 19].

A semiring (S, +, -) is an algebra with two binary operations + and - such that
both the additive reduct (S, +) and the multiplicative reduct (S, -) are semigroups
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and the following distributive laws hold:
z(y+z) =xy+zxzand (x +y)z = 2z + yz.

A semiring S is called an additively idempotent semiring if the additive reduct
(S, +) is an idempotent semigroup (band), i.e., if it satisfies the identity x+x = x.
In addition, if the additive reduct (S,+) is commutative, i.e., if it satisfies the
identity x +y = y + x, then we say that S is a semiring with semilattice additive
reduct. Throughout this paper, unless otherwise stated, S is always a semiring
whose additive reduct is a semilattice and the variety of all such semirings is
denoted by SL™.

A non-empty subset A of S is called a k-subset of S'if forz € S;a € A, z+a € A
implies that € A. The k-closure A of a nonempty subset A of a semiring S is
given by

A={ze€S|3a,bec Asuchthat z+a =b}.

This is the smallest k-subset containing A. Thus A is a k-subset if A C A. Since
for every a € S, a + a = a we have A C A.

A nonempty subset L of a semiring S is called a left k-ideal of S'if L+ L C L,
SL C L and L = L. The right k-ideals are defined dually. A subset I of S is
called a k-ideal of S if it is both a left and a right k-ideal of S. A semiring S is
called (resp. left, right) k-simple if it has no non-trivial (resp. left, right) k-ideal.
If S is both left k-simple and right k-simple then it is called t-k-simple.

The left (resp. right) k-ideal generated by a is denoted by Lg(a) (resp. Ry(a))
and we have

Li(a) ={u € S|u+a+ sa=a+ sa, for some s € S},

Ri(a) ={u€ S|u+a+as=a+ as, for some s € S}.

Sen and Bhuniya introduced analogues of Green’s relations £,R and # on a
semiring S in the following way: for a,b € S

alb if Ly(a) = Li(b), aRbif Ry(a) = Rp(b) and H=LNTR.

These equivalences are additive congruences on S, whereas £ is multiplicative
right and R is multiplicative left congruence on S only. A semiring S is (left,
right) ¢-k-simple if and only if (£,R) H = S x S.

A nonempty subset A of S is called completely prime (resp. semiprime) if for
all z,y € S such that 2y € A one has 2 € A or y € A (resp. 2®> € A implies that
x e A).

A subsemiring F' of S is called a filter of S if for any a,b € S, ab € F' implies
that a,b € F and a + b = b, a € F implies that b € F. For a € S, N(a) de-
notes the filter generated by a. Let A be the equivalence relation on S, defined by:
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for x,y € 5,
xNy if N(x) = N(y).

As we can expect, we have the following result which plays a crucial role in this
article.

Lemma 1 [4]. Let S be a semiring in SL*. Then N is the least distributive
lattice congruence on S.

A subsemiring B of S is called a k-bi-ideal of S if BSB C B and B C B. Every
left k-ideal and right k-ideal is a k-bi-ideal of S. A semiring S is called k-b-simple
if it has no non-trivial k-bi-ideal.

The k-bi-ideal generated by a is denoted by By (a) and we have

Bi(a) ={u € S |u+a+a®+asa = a+ a® + asa, for some s € S}.

Let C be a class of semirings and we call the members of C as C-semirings. A
semiring .S is called a distributive lattice of C-semirings if there exists a congruence
p on S such that S/p is a distributive lattice and each p-class is a C-semiring.

The following lemma summarizes some useful techniques for handling semir-
ings with semilattice additive reduct which we will use frequently in this paper.
We omit the proof as it can be done similarly to the Lemma 2.1 [3].

Lemma 2. Let S be a semiring in SLT. For a,b,u,v,s,s1,82,t,t1,to € S

1. b+ s1aso = tiate implies that there is x = s1 + So + t1 + t9 € S such that
b+ xaxr = xazx.

2. If a+b=2> then
(i) u+ sa = sa implies that u + sb = sb.
(ii) u+ sa+ a = sa+ a implies that u+ sb+ b= sb+b.

3. u+sa+a=sa+a andv+bt+b=>0bt+b implies that there are x = s+t € S
andc=a+be S such that u+xc+c=xc+candv+cr+c=cr+ec.

We refer [5, 10] for the information we need concerning semigroup theory and [9]
for notions concerning semiring theory.

3. STRONG QUASI k-IDEALS OF A SEMIRING

A subsemiring Q is called a quasi k-ideal of S if QSN SQ C @ and Q = Q.
Intersection of a left k-ideal and a right k-ideal is a quasi k-ideal of S [11], but
the converse is not true in general which we see in the following example. This
example is motivated by that of given by Weinert in [22].
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Example 3. Consider the two element lattice I' = {0, 1} with binary operations

+10 1 -0 1
010 1 010 O
171 1 110 1

Consider the semialgebra S on I' defined by the basis {e,a, b} with the multipli-
cation table

-‘e a b
e|le atb 0
alb 0 0
b|b 0 0

Note that the semialgebra S = {rie +rea +r3b | r; € T'} = {0,e,a,b,e + a,a +
be +b,e+ a+ b} is a semiring with semilattice additive reduct. Consider the
quasi k-ideal @ = {0,a} of S. We show that this can not be expressed as an
intersection of a left k-ideal and a right k-ideal. If possible, let L be a left k-ideal
and R be a right k-ideal such that @ = LN R. Then SQ = {0,a + b} C L shows
that a+b € L. Again a € Q C L shows that b € L, since it is a left k-ideal. Also
QS = {0,b} C R shows that b € R. Thus b € LN R but b € Q. This contradicts
that @ = LN R.

We distinguish the quasi k-ideals which are intersection of a left k-ideal and a
right k-ideal as follows:

Definition. A quasi k-ideal ) of S is said to be a strong quasi k-ideal if Q = LNR
for some left k-ideal L and right k-ideal R of S.

A semiring S is called strong quasi k-simple if it has no nontrivial strong quasi
k-ideal.

In semigroups this is known as intersection property [2], but according to the
perspective of the results of this article and for the sake of simplicity in expression
we would like to call as strong quasi k-ideals.

The following equivalent conditions are direct consequences of the strongness.

Lemma 4. Let Q be a quasi k-ideal of a semiring S. Then the following condi-
tions are equivalent:

1. @ is a strong quasi k-ideal;
2. Lp(a) N Ri(a) CQ foralla € Q;
3. Li(a) N Ri(b) CQ for all a,b € Q.
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Proof. (1) = (3): Let Q@ = LN R for some left k-ideal L and right k-ideal R
of S and a,b € Q. Then a € L implies that Li(a) C L and b € R implies that
Ry (b) C R. Thus Li(a) N Rk(b) CLNR = Q.

(3) = (2): Trivial.

2)=(1): Let L={zeSlr+s¢+q=s¢+q¢s€S,qgeQ}and R={x ¢
Slz+qgs+q=qs+qs € S,q€ Q}. Then L is a left k-ideal and R is a right
k-ideal of S. Also Q@ C LN R.

Now if u € L N R, then there exist s1,s9 € S and ¢q1,q2 € @ such that
u~+ 81q1 + g1 = s1q1 + g1 and u + g282 + g2 = @282 + ¢2. This implies that
u+sqg+q=5sqg+qand u+qgs+q = gs+ q where s = 51 + so0 € S and
g =q1+ q € Q by Lemma 2. Thus u € Li(q) N Rx(q) € @ which shows that
LNRCQ. Hence LN R = Q. [ |

Intersection of any family of strong quasi k-ideals of a semiring S is a strong
quasi k-ideal. Thus for any a € S, there is the smallest strong quasi k-ideal of S
containing a. We call this the strong quasi k-ideal generated by a and denote it

by Qk(a).

Theorem 5. Let S be a semiring and a € S. Then the strong quasi k-ideal of S
generated by a is given by Qr(a) = Li(a) N Ri(a).

Proof. Let a € S. Then Li(a) N Ri(a) is a strong quasi k-ideal of S. Now let
@ be a strong quasi k-ideal of S such that a € Q. Then Li(a) N Ri(a) C Q,
by Lemma 4, which shows that Ly (a) N Rg(a) is the smallest quasi k-ideal of S
containing a. Thus Qx(a) = Li(a) N Ri(a). ]

Corollary 6. Let S be a semiring. Then the following results are equivalent:
. S is strong quasi k-simple;

. Qrla) = Qk(b) for all a,b € S;

. Li(a) N R(a) =S for alla € S;

Li(a) N Ri(b) =S for alla,be S.

A~ W N

Proof. 1t is clear that (4) = (3) and (3) = (2). So we have to prove (1) = (4)
and (2) = (1).

(1) = (4): Let S be a strong quasi k-simple semiring and a,b € S. Then
Li(a) N Ry (b) is a strong quasi k-ideal of S and hence L (a) N Ri(b) = S for all
a,bes.

(2) = (1): Let @ be a strong quasi k-ideal of S and a € Q). Then for every
be S, be Qi) =Qrla) C Q implies that @ = S and hence S is a strong quasi
k-simple semiring. [ |
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Now for a,b € S, it follows from the Theorem 5 that aHb if and only if Qx(a) =
Qr(b) which in light of the Corollary 6 can be interpreted as: a semiring S is
t-k-simple if and only if it is strong quasi-k-simple. Again recall that in the
semigroups t-simplicity is equivalent to the bi-ideal simplicity. Let us see what
actually happens here.

Every strong quasi k-ideal is a k-bi-ideal. That the converse is not true follows
from the observation that there are k-bi-ideals which are not even quasi. But
surprisingly we have the following results.

Lemma 7. If S is a left k-simple (vesp. right k-simple) semiring then each
k-bi-ideal of S is a right k-ideal (resp. left k-ideal).

Proof. Let S be a left k-simple semiring and B be a k-bi-ideal of S. Then SB

is a left k-ideal, and so SB = S. Now BS = B SB C BSB C B = B shows that

B is a right k-ideal of S. The result for right k-simple semirings follows dually.
|

Proposition 8. In a semiring S the following conditions are equivalent:
1. S is strong quasi k-simple;
2. S is t-k-simple;
3. S is k-b-simple.

Proof. (1) = (2): Let S be a strong quasi k-simple semiring and consider a,b €
S. Then by Corollary 6, Li(a) N Rg(b) = S = Li(b) N Rx(a). Thus a € Li(b),
b € Lig(a), a € Ri(b) and b € Ri(a) imply Li(a) = Li(b) and Ry(a) = Ri(b).
Therefore S is left k-simple as well as right k-simple and hence S is a t-k-simple
semiring.

(2) = (3): Let B be a k-bi-ideal of S. Since S is left k-simple, by Lemma 7, it
follows that B is a right k-ideal of S. Also S is right k-simple and hence B = S.
Thus S is a k-b-simple semiring.

(3) = (1): Since each quasi k-ideal is a k-bi-ideal, it follows directly. ]

4. DISTRIBUTIVE LATTICES OF t-k-SIMPLE SEMIRINGS

Thus, in the semirings with semilattice additive reduct, the notions of t-k-simplicity,
k-b-simplicity and strong quasi k-simplicity are equivalent. So the semirings which
are distributive lattices of ¢t-k-simple semirings, are also distributive lattices of
k-b-simple as well as of strong quasi k-simple semirings. In [18], Mondal and
Bhuniya characterized such semirings by their k-bi-ideals. Above proposition
motivates us to characterize the same by their strong quasi k-ideals.
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Theorem 9. The following conditions are equivalent on a semiring S in SLT :

. S is a distributive lattice of t-k-simple subsemirings;
. for all a,b € S, ab,ba € Qi(a) and a € Qi(a?);
. for alla € S, Qk(a) is a completely semiprime k-ideal of S;

. for all a,b € S, Qx(ab) = Qx(a) N Qx(b);

1
2
3
4. every strong quasi k-ideal of S is a completely semiprime k-ideal of S;
5
6. for alla € S, N(a) ={x € Sla € Qx(x)};

7

. H =N is the least distributive lattice congruence of S such that each of its
congruence classes is t-k-simple subsemiring.

Proof. (1) = (2): Let S be a distributive lattice D of t-k-simple subsemirings S,
a € D. Consider a,b € S. Then there are o, 3 € D such that a € S,, b € Sg, and
so aba,ab,ba € 5,53 C Sop. Again S,g being a t-k-simple semiring, by Corollary
6 and Proposition 8, it follows that ab € Q(ab) = Qx(aba) = Ly (aba)NRy(aba) C
Li(a) N Rg(a) = Qp(a). Similarly, ba € Qi(a). Also a,a® € S, implies that
a € Qx(a®).

(2) = (3): Let a € S. Consider an element ¢ € Qx(a) and s € S. Then
5q, qs € Qr(q) C Qi(a) implies that Qg (a) is a k-ideal of S. Now let u? € Qy(a).
Then u € Qi(u?) C Qr(a) shows that Qx(a) is a completely semiprime k-ideal
of S.

(3) = (4): Follows similarly.

(4) = (5): Let a,b € S. Since a € Qg(a) is a k-ideal so ab € Qi(a) and
similarly ab € Qg(b) and so ab € Qi(a) N Qr(b) and so Qx(ab) C Qr(a) N Qk(b).
Now let z € Qr(a)NQk(b). Then = € Ry(a) implies that z+a+as; = a+as; for
some 51 € S. Then 22 +ax+asiz = ax+as z implies that 22 +a(x+s12) = a(z+
s1x). Again Qi (a) NQk(b) is a k-ideal of S implies that s1z € Qr(a) N Qx(d) and
so s1x € Ry(b). Thus z+xs; € Ry(b) which shows that x4 s;x+bsa+b = bsa+b
for some sy € S. Then it follows by Lemma 2 that 22 4 absy + ab = absy + ab
and hence 2% € Ry(ab).

Similarly, 22 € Ly,(ab) and so 2% € Qy,(ab) which yields that x € Q(ab). Thus
Qr(a) N Qr(b) C Qk(ab) and hence Qx(a) N Q(b) = Qk(ab).

(5) = (6): Let FF = {z € Sla € Qk(z)}. Consider z,y € F. Then a €
Qr(x) N Qk(y), implies by Theorem 5 and Lemma 2, that there is s € S such that
at+sr+r=sr+zx,at+tzs+r=zs+rzanda+sy+y=sy+y,at+ys+y=
ys +y, from which we have a + (z + y)s + (z +y) = (x + y)s + (x + y) and
a+s(x+y)+(z+y) = s(@+y)+ (x+y), and hence z +y € F. Again
a € Qr(x) NQr(y) = Qk(zy) implies that xy € F. Thus F is a subsemiring of S.
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Let z,y € S be such that zy € F. Then a € Qr(xy) = Qr(z) NQk(y) implies that
xz,y € F. Now let x € S and y € F be such that y + x = . Then a € Q(y) and
so by Theorem 5, there is s € S such that a+sy+y = sy+y and a+ys+y = ys+y
which imply that a4+ sx+x = sx +x and a+zs+x = xs+x by Lemma 2. Thus
a € Qi(x) ie., z € F. Hence F is a filter of S.

Let T be a filter of S containing a and u € F. Then there exists s € S such
that a4+ su+u = su+w and a+us+u = us+u. Then su+u,us+wu € T, which
implies that a(su +w) € T i.e., (as + a)u € T. This again shows that v € T.
Thus F C T and so F' = N(a).

(6) = (7): For z,y € S, Qr(r) = Qr(y) & = € N(y) and y € N(z) &
N(x) = N(y) and hence H = N is the least distributive lattice congruence on S,
by Lemma 1.

Now consider an H-class H. Since H is a distributive lattice congruence,
H is a subsemiring of S. Let a,b € S be such that a,b € H. Then a®> € H
implies that b#a?. Thus there is s € S such that b + sa®? 4+ a® = sa® + a? and
b+ a®s + a2 = a’®s + a®. Since H is a distributive lattice congruence on S,
u1 = (as+a)Ha and uz = (sa + a)Ha which again implies that u = (u; + uz)Ha
ie., u € H. Now b+usa = uga and b+ au; = au; implies that b+ua+a = ua+a
and b+ au 4+ @ = au + a. Similarly, there is v € H such that a + vb+b=0vb+ b
and a4+ bv + b = bv + b. Thus Qx(a) = Q(b) in H and hence H is a t- k-simple
semiring.

(7) = (1): Obvious. |
In view of this theorem and Proposition 8 the following characterizations of the
semirings S which are chain of ¢-k-simple semirings can be done by the radical

of strong quasi k-ideals of S. We omit the proof as it is similar to the above
theorem and Theorem 3.3 of [18].

Theorem 10. The following conditions are equivalent on a semiring S in SL™:
1. S is a chain of t-k-simple subsemirings;
2. for all a,b € S, ab,ba € Qr(a) and a € Qk(ab) or b € Qr(ab);
3. foralla €S, Q(a) is a completely prime k-ideal of S;
4. every strong quasi k-ideal of S is a completely prime k-ideal of S;
5

. for alla,b € S, Qplab) = Qxla) N Qk(b) and Qr(a) € Qk(b) or Qk(b) C
Qk(a);

for alla,be S, N(a)={z € Sla € Qx(z) } and N(ab) = N(a) UN(b);

o

7. H = N is the least chain congruence of S such that each of its congruence
classes is t-k-simple subsemiring.
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5. DISTRIBUTIVE LATTICE OF t-k-ARCHIMEDEAN SEMIRINGS

In this section, we characterize the semirings which are distributive lattices of
t-k-Archimedean semirings by their strong quasi k-ideals, in fact by the k-radical
of their strong quasi k-ideals.

For a non-empty subset A of S, the k-radical VA of A in S is defined by
VA = {z € S|(3n € N)z" € A}. Equivalently, VA = {z € S|(3n € N)a" +a =
a for some a € A}.

In [3], Bhuniya and Mondal defined a semiring S to be k-Archimedean (left,
right) if S = \/S@S(\/@, \/E) for all @ € S. If S is both left and right k-
Archimedean then it is called t-k-Archimedean. Equivalently, S is t-k-Archime-
dean if S = v/SaN+vaS = v/SanaS. Thus S is t-k-Archimedean if and only if
for all a,b € S there are n € N and = € S such that

b" + xa = xa and b"™ + ax = ax.

Equivalently, a semiring S is left (right) k-Archimedean if S = /Ly (a)(y/Rx(a))
for all @ € S. Thus S may be called strong quasi k-Archimedean (k-b-Archime-
dean) if S = \/Qx(a) (v/Bk(a)) for all a € S. Now we show that the strong quasi
k-Archimedean semirings as well as the k-b-Archimedean semirings are nothing
but the t-k-Archimedean semirings.

Recall that for every a € S, Qx(a) = Lg(a) N Ry (a). Though in general neither
Li(a) = Sa nor Ry (a) = a8, still we have:

Lemma 11. Let S be a semiring. Then \/Qx(a) =V SanaS foralla € S.

Proof. Let b € \/Qp(a). Since Qi(a) = Li(a) N Ri(a), there are n € N,s € S
such that
b*"+a+sa=a+sa and " +a+as=a+as

which implies that

b 4 (b4 bs)a = (b+ bs)a and b" T + a(b+ sb) = a(b + sb).

Thus b € VSanaS and so /Qr(a) € VSanaS. Again Sa C Li(a) and its

left-right dual implies that v/SaNaS C /Li(a) N Rx(a) = /Qr(a). Thus
\/Qk(a):\/SaﬂaS forall a € S. -

Proposition 12. Let S € SL*. Then the following conditions are equivalent:
1. S is t-k-Archimedean;
2. be Mfor all a,b€ S i.e., S= \/Mfor alla € S;
3. be \/Qk—@foralla,bESz’.e., S:\/Qk—m)forallaeS.
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Proof. (1) = (2): Let S be a t-k-Archimedean semiring. Then for all a,b € S,
vSanaS =5 =+/5bNbS. Then b € vV SaNaS implies that there are n € N
and x € S such that " +xa = xa and b" 4+ ax = ax. Using these two relations we
get b2 + b"za = b"ra = b*" + ax’a = ax’a. Which gives b*" + a + a® + ax’a =
a+ a?+ ar®a and so b € \/By(a).

(2) = (3): Follows trivially since By(a) C Qk(a) for every a € S.

(3) = (1): Let a,b € S. Then b € /Q(a) shows that there are m € N
and y € S such that b™ + a + ya = a + ya and b 4+ a + ay = a + ay. Now
b2+ ab™ + ayb™ = ab™ + ayb™ implies that b*™ + a(a + ya) + ay(a + ya) =
a(a+ ya) + ay(a + ya). Using additive idempotent property and rearranging the
terms we get b>™ 4 a(a +ya +y%a) = a(a+ ya+y?a) and b + (a +ay + ay?)a =
(a + ay + ay*)a. Thus b € v/SanNasS. ]

Thus the notions of ¢t-k-Archimedean semirings, k-b-Archimedean semirings and
strong quasi k-Archimedean semirings all are equivelent. In [17] Mondal charac-
terized the semirings which are distributive lattices of ¢-k-Archimedean semirings
by the radicals of their k-bi-ideals. The Proposition 12 shows that such semiring
can also be characterized by their strong quasi k-ideals.

Lemma 13. Let S be a semiring such that for all a,b € S, ab € v/Sa N VbS.
Then

1. for all a,b € S,a € SbNbS implies that a € \/Qr(b*") for all r € N;
2. for all a,b € S,a € \/Qx(b) implies that \/Qk(a) C /Qr(b).

Proof. (1) Let a,b € S be such that a € SbNbS. Then a + sb = sb and
a 4+ bs = bs for some s € S. Now, by hypothesis, there are n € N and t € S
such that (bs)” + tb = tb and (sb)" + bt = bt. Again a + sb = sb and a + bs = bs
implies that a"*! + (sb)"*! = (sb)"*! and a"*! + (bs)"T! = (bs)"*!. Then we
have a1 + sth? = stb? and a™! + b%ts = b?ts and hence a € /Q(b?), by
Lemma 11. Thus the result is true for » = 1. Assume that £ € N is such that

a € \/Qr(b?). Then a™ + ub? = ub?" and a™ + b*'u = b2"u for some m € N,

u € S. Then proceeding as above we get a € 1/Qn(b2**"). Therefore, by the
principle of induction, we have a € \/Q(b*"), for all r € N.

(2) Let a € \/Qp(b). Then there are n € N and s € S such that a" + sb = sb
and a™ + bs = bs. Consider x € /Qr(a). Then there is m € N such that
2™ € SanaS. Let r € N be such that 2" > n. Then by (1) we find p € N
and t € S such that P + ta® = ta® and zP + a®'t = @'t which implies that
2P + ta® ~"sb = ta® ~"sb and P + bsa® "t = bsa® ~"t. Then z € \/Qx(b) by
Lemma 11. ]
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Recall that for a,b € S,
aHb if and only if Qx(a) = Qx(D).
Let us define \/ﬁ, the radical of H on S by: for a,b € S,
aVHD i \/Qi(a) = QD).

Now we have the main theorem of this section:

Theorem 14. The following conditions are equivalent on a semiring S:

1. S is a distributive lattice of t-k-Archimedean semirings;

2. for all a,b € S,b € SaS implies b € \/Qk—@;

3. for alla,be S,ab e V/SanvbS;

4. \/Q is a k-ideal of S for every strong quasi k-ideal Q of S;
5. /Qr(a) is a k-ideal of S, for all a € S;
6
7

. N(a) ={z € Sla € \/Qr(x)} for alla € S;

. N = VH is the least distributive lattice congruence and each of its congru-
ence classes is a t-Archimedean semiring.

Proof. We prove this theorem in the following scheme: (1) = (2) = (3) =
(6) = (7)= (1) and (3) = (4) = (5) = (3)

(1) = (2): Let ~ be a distributive lattice congruence on S such that the 7-
classes T, : a € S/v are t-k-Archimedean semirings. Let a,b € S be such that
b € SaS. Then b+ sas = sas, for some s € S by Lemma 2 and hence b+ bsasb =
bsasb which implies b3 4+ ubu = ubu, where u = bs + sb. Now uauyau’yauyua
implies that uau,au,ua € T, for some o € D. Since T, is a t-k-Archimedean
semiring, there exist m € N and v € T, such that (vau)™ + auv = auv and
(uau)™ +vua = vua. Therefore b + (uau)™ = (uau)™ implies b>™ + auv = auv
and 63" + vua = vua. Thus b € VSaNaS = /Q(a).

(2) = (3): Let a,b € S. Now (ab)? + abab = abab implies that (ab)? €
SaS N SbS. Then there exist m,n € N such that (ab)>™ € Sa and (ab)?" € bS.

Thus ab € v/ Sa N VbS.

(3) = (6): Let a € S and F = {z € Sla € \/Qr(x)}. Let y,z € F. Then
there are n € N and s € S such that a" + sy = sy,a” + sz = sz and a" + ys =
ys,a" + zs = zs. Then a" + s(y + z) = s(y + z) and a" + (y + 2)s = (y + 2)s
implies that y+2z € F. Again, by hypothesis, there are m € N and ¢t € S such that
(ys)™ +ty = ty and (52)™ + 2t = zt. Then we have a1 4 (sy)"sz = (sy)™sz
and @™t 4 ys(zs)™ = ys(zs)™. Then a™™t) 4 s(ys)™z = s(ys)™z and
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a4y (s2)™s = y(sz)™s implies that o™t 4+ styz = styz and o™+ 4
yzts = yzts. Thus yz € F and hence F is a subsemiring of S.

Consider u € F and v € S such that u+v = v. Now a € \/Qp(u) implies
that there are n € N and s € S such that a” + su = su and a™ 4+ us = us. From
these we have a” + sv = sv and a” + vs = vs and hence v € F. Now let z,y € S
be such that zy € F. Then there are m € N and s; € S such that

(1) a™ 4 sixy = s1xY

(2) and a™ + zys; = xysi.

Again we have p € N and s9 € S such that (xy)P+sex = sex and (xy)P+yse = yso,
by (3). Since F'is a subsemiring, (zy)P € F; and so there are ¢ € N and s3 € S
such that a? + s3(zy)P = s3(zy)P and a? + (zy)Ps3 = (zy)Ps3. Then we have

(3) a? + s389u = $359U

(4) and a? + usasg = usass.

Now (1) and (4) together implies that y € F' and (2) and (3) together implies
that £ € F. Thus F is a filter and a € F.

Suppose T is a filter a € T. Consider z € F. Then there exist n € N and
s € S such that a” 4+ sz = sz and a™ 4 zs = zs. Since T is a filter, ™ € T and so
a” + sz = sz and a™ + zs = zs which implies that z € T. Thus F is the smallest
filter that contains a i.e., F' = N(a).

(6) = (7): Consider a,b € S. Since N (ab) is a filter and contains ab, we have
a,b € N(ab). Then ab € \/Qg(a) N /Qx(b) C vV SanVbS. Now for a,b € S, the
following holds.

aNb < N(a) = N(b)
< a€ N() and b€ N(a)

b€ /Qk(a) and a € \/Qk(b), by (6)
VQr(b) € v/Qr(a) and /Qr(a) C v/Qr(b), by (1) of Lemma 13
aV/Hb

which shows that N = VA is the least distributive lattice congruence.

Let T be an N-class in S. Since N is a distributive lattice congruence, T is a
subsemiring. Consider a,b € T. Then aN'b implies that N(a) = N(b), and by (6)
we have b € \/Q(a). Thus there aren € N and s € S such that b"+a+sa = a+sa
and b" + a + as = a + as which implies that b"T! + (b + bs)a = (b + bs)a and
b+ a(b + sb) = a(b + sb). Now since N is a distributive lattice congruence

T T
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(b + bs)NBN (b + sb) which implies that t; = b+bs € T and to = b+ sb € T.
Thus b € vTaN+aTl and hence T is a t-k-Archimedean semiring.

(7) = (1): Follows directly.

(3) = (4): Let Q be a strong quasi k-ideal of S. Consider v € /@ and
¢ € S. Then there are n € N,g € @ such that u” = ¢q. Now by (3) there
exist x,y € S,ny,m; € N such that (uc)™ = zu and (uz)™ = yu. Then
(uc)™(MH+D) — p(uz)Pu = z(yu)u = xyu® implies (uc)} = zju® where ny =
ni(my + 1) and z; = xy. Also, there exist s € S,ma € N such that (u?z)mo =
su®. Proceeding as above we find by iteration that every r € N, there exists
p € N such that (uc)? = x,u?". Let r € N be such that 2" > n. Then there exists
q € N such that (uc)? = z,u?". By (3), there exist m € N and z € S such that
(zpu?" ) ) = (2,02 ) ) = 2 2202 = qu " zz,u? ""q. Hence uc € /Q.
Similarly, cu € v/@Q. Hence /Q is a k-ideal of S.

(4) = (5): Trivial.

(5) = (3): Let a,b € S. Then \/Qp(a) and \/Q(b) are k-ideals of S. Then
ab € \/Qr(a) N /Qk(b) and hence ab € v/ Sa N vbS. ]

Theorem 15. The following conditions on a semiring S are equivalent:
1. S is a chain of t-k-Archimedean semirings;

2. S is a distributive lattice of t-k-Archimedean semirings and for all a,b € S,

beQr(a) or ae Qi)
3. Foralla,be S, N(a) ={z € Sla € \/Qi(z)} and N(ab) = N(a) UN(b);

4. N = VH is the least chain congruence of S such that each of its congruence
classes is a t-k-Archimedean semiring.

Proof. (1) = (2): Let S be a chain C of t-k-Archimedean semirings S, (a € C).
Then S is a distributive lattice of ¢-k-Archimedean semirings. Let a,b € S. Then
a € Sy and a € Sp for some «, B € C. Since C is a chain, either af = a or af = f5.
If af = « then a,ab € S,; and since S, is a t-k-Archimedean semiring, there
exist n € N and = € S, such that a” 4+ xab = zab and a™ + abxr = abx. Now, by
Theorem 14, as S is a distributive lattice of {-k-Archimedean semiring, there are
m € N and s € S such that (abx)™ + bxs = bxs. Then we have a"” + s1b = s1b
and a™™ + bxs = bxs for some s; € S and hence a € /Qp(b). Again if af = 3,
then b,ab € Sz and similarly as above we have b € \/Q(a).

(2) = (3): Since S is a distributive lattice of t-k-Archimedean semirings,

we have N(a) = {z € Sla € \/Qi(z)}, by Theorem 14. Let a,b € S. Then
ab € N(ab) implies that a € N(ab) and b € N(ab), and N(a) U N(b) C N(ab).
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Again, either a € \/Qp(b) or b € \/Qr(a). If a € \/Qk(D), then there are n € N

and s € S such that a” + bs = bs and so a"! + abs = abs. Since S is a
distributive lattice of ¢-k-Archimedean semirings, there exist m € N and t € S
such that (abs)™ + tab = tab, by Theorem 14. Then we have a™+1)™ 4 tab = tab
and a"TY™ 4 abt; = abty for some t; € S. Then a € \/Qk(ab) which implies that
ab € N(a). Thus N(ab) C N(a). If b € \/Qx(a), then similarly we have N(ab) C
N (b), which shows that N(ab) C N(a) U N(b). Hence N(ab) = N(a)U N(b).

(3) = (4): It follows by Theorem 14 that N' = V7 is the least distributive
lattice congruence on S and each N -class is a t-k-Archimedean semiring.

Now consider a,b € S. Then ab € N(a) U N(b) shows that ab € N(a) or
ab € N(b). Again N(a) C N(ab) and N(b) C N(ab). Thus either N(ab) C
N(a) € N(ab) or N(ab) C N(b) C N(ab), i.e., either aNab or bN ab. Hence N is
a chain congruence on S. Since every chain is a distributive lattice and A is the
least distributive lattice congruence, it is the least chain congruence on S.

(4) = (1): Trivial. ]
Theorem 16. Let S be a semiring. Then the following conditions on S are
equivalent:

1. S is a chain of t-k-Archimedean semirings;

2. \/Q is a completely prime k-ideal of S, for every strong quasi k-ideal Q of
S;

3. /Qr(a) is a completely prime k-ideal of S, for every a € S;

4. \/Qr(ab) = /Qr(a)N\/Qk(b) for all a,b € S and every strong quasi k-ideal
of S is semiprimary.

Proof. (1) = (2): Let S be a chain C of t-k-Archimedean semirings {S,|a € C}.
Consider a strong quasi k-ideal @ of S. Then /@ is a k-ideal of S, by Theorem
14. Let =,y € S be such that xy € /Q. Then there is n € N such that
(zy)" = u =€ Q = Q. Suppose x € S, and y € S5, «,B8 € C. Since C is
a chain, either af = o or a8 = 8. If a8 = «, then z,u € S, shows that
r € /Qr(u) C /Q. Similarly, if a8 = 8, then y € /Q. Hence v/Q is a
completely prime k-ideal of S.

(2) = (3): Obvious.

(3) = (4): Let a,b € S. Then, /Qx(a), \/Qr(b) and \/Qy(ab) are completely
prime k-ideals of S. Consider z € \/Q(ab). Then there exist n € N and s € S
such that " + abs = abs and z" + sab = sab. Again, by Theorem 14, there are
m € N and ¢t € S such that (abs)"™ + ta = ta. Then we have 2" 4 ta = ta. Also

" 4 as; = as; for some s; € S. Then z € /Qx(a). Thus \/Qr(ab) C \/Qr(a).

Similarly, considering " + sab = sab we have \/Qx(ab) C \/Qk(b). Therefore
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v Qrk(ab) € +/Qr(a)N/Qr(b). Now consider y € \/Qx(a)N+/Qx(b). Then there
exist p € N, u € S such that y?+ua = ua, y? +au = au and yP+ub = ub, y?+bu =
bu. Then we have 4P + uabu = uabu. Also there exist g1,q2 € N and vi,v2 € S
such that (uabu)? + abuv, = abuv; and (uabu)®? + vouab = vouab. Then we get
y?PU + abuvy = abuv; and y?P92 + vouab = vouab and so y € /Q(ab). Hence
VQi(ab) = \/Qr(a) N /Qx(b).

Now let @ be a strong quasi k-ideal of S. Let a,b € S be such that ab € Q.
Then ab € \/Q(ab) implies that a € \/Qx(ab) or b € \/Q(ab), since \/Q(ab) is
completely prime. Then a” € Qp(ab) = Qx(ab) C Q or b" € Q(ab) = Qx(ab) C
Q for some n € N. Hence @ is semiprimary.

(4) = (1): Consider a,b € S. Then ab € \/Qx(ab) = /Qr(a) N /Qk(b) C
VSa N v/bS shows that S is a distributive lattice t-k-Archimedean semirings.
Again since \/Qg(ab) is completely prime, a € \/Qg(ab) or b € \/Q(ab) which
implies that a € 1/Q(b) or b € \/Qx(a). Thus S is a chain of ¢-k-Archimedean
semirings by Theorem 15 (2). |
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