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Abstract

Here we introduce the notion of strong quasi k-ideals of a semiring in SL+

and characterize the semirings that are distributive lattices of t-k-simple(t-
k-Archimedean) subsemirings by their strong quasi k-ideals. A quasi k-ideal
Q is strong if it is an intersection of a left k-ideal and a right k-ideal. A
semiring S in SL+ is a distributive lattice of t-k-simple semirings if and only
if every strong quasi k-ideal is a completely semiprime k-ideal of S. Again
S is a distributive lattice of t-k-Archimedean semirings if and only if

√
Q is

a k-ideal, for every strong quasi k-ideal Q of S.
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1. Introduction

The notion of semirings was introduced by Vandiver [21] in connection with the
axiomatization of the arithmetic of natural numbers. Historically, the semirings
appeared in mathematics implicitly as the semiring of all ideals of a ring, the
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semiring of all endomorphisms of a commutative semigroup etc. long before than
its axiomatic formulation. Though they appeared long before, but the semirings
found their full place in mathematics recently e.g. in idempotent analysis [8,
15, 13] which are being used in theoretical physics, optimization [6, 7, 16] etc.,
various applications in theoretical computer science and algorithm theory [9, 14].
The underlying semirings both in idempotent analysis and theoretical computer
science are such that the additive reduct is a semilattice, i.e. both idempotent
and commutative.

This is a continuation of our study on the semirings whose additive reduct is
a semilattice by their bi-ideals and quasi ideals [1, 11, 12]. Here we characterize
such semirings by their strong quasi-k-ideals. The notion of quasi-ideals in rings
and semigroups was introduced and developed by Otto Steinfeld [20]. Later,
the idea has been generalized in semirings, ordered semigroups, Γ-semigroups
[2, 11, 12] etc. In semigroups, quasi-ideals are precisely intersection of a left
ideal and a right ideal. In rings though an intersection of a left ideal and a right
ideal is a quasi-ideal but the converse is not true [22]. Thus a class of quasi-
ideals which can be expressed as an intersection of a left ideal and a right ideal
was distinguished and they are known as quasi-ideals with intersection property.
Here we have shown that the case for the quasi k-ideals in semirings is the same
as in the rings and we call the quasi k-ideals which are intersection of a left k-ideal
and a right k-ideal as strong quasi k-ideal. Interestingly, though there are strong
quasi k-ideals which are neither left k-ideal nor right k-ideal, still a semiring is
strong quasi k-simple if and only if it is t-k-simple; which shows that the strong
quasi k-ideals are potential to characterize the semirings which are distributive
lattice of t-k-simple semirings and t-k-Archimedean semirings.

We show that S is a distributive lattice( chain) of t-k-simple subsemirings if
and only if every strong quasi k-ideal is a completely semiprime (prime) k-ideal of
S, where as S is a distributive lattice (chain) of t-k-Archimedean subsemirings if
and only if radicals of every strong quasi k-ideal is a k-ideal (completely prime).

The preliminaries and prerequisites we need have been discussed in Section 2.
In Section 4 we give different equivalent characterizations of the semirings which
are distributive lattices (chains) of strong t-k-simple semirings. Section 5 is de-
voted to characterize semirings which are distributive lattices of t-k-Archimedean
semirings.

2. Preliminaries

The terminology and basic notions in this section are according to [1, 19].

A semiring (S,+, ·) is an algebra with two binary operations + and · such that
both the additive reduct (S,+) and the multiplicative reduct (S, ·) are semigroups
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and the following distributive laws hold:

x(y + z) = xy + xz and (x+ y)z = xz + yz.

A semiring S is called an additively idempotent semiring if the additive reduct
(S,+) is an idempotent semigroup (band), i.e., if it satisfies the identity x+x = x.
In addition, if the additive reduct (S,+) is commutative, i.e., if it satisfies the
identity x+ y = y+ x, then we say that S is a semiring with semilattice additive
reduct. Throughout this paper, unless otherwise stated, S is always a semiring
whose additive reduct is a semilattice and the variety of all such semirings is
denoted by SL+.

A non-empty subsetA of S is called a k-subset of S if for x ∈ S, a ∈ A, x+a ∈ A
implies that x ∈ A. The k-closure A of a nonempty subset A of a semiring S is
given by

A = {x ∈ S | ∃ a, b ∈ A such that x+ a = b}.

This is the smallest k-subset containing A. Thus A is a k-subset if A ⊆ A. Since
for every a ∈ S, a+ a = a we have A ⊆ A.

A nonempty subset L of a semiring S is called a left k-ideal of S if L+L ⊆ L,
SL ⊆ L and L = L. The right k-ideals are defined dually. A subset I of S is
called a k-ideal of S if it is both a left and a right k-ideal of S. A semiring S is
called (resp. left, right) k-simple if it has no non-trivial (resp. left, right) k-ideal.
If S is both left k-simple and right k-simple then it is called t-k-simple.

The left (resp. right) k-ideal generated by a is denoted by Lk(a) (resp. Rk(a))
and we have

Lk(a) = {u ∈ S | u+ a+ sa = a+ sa, for some s ∈ S},
Rk(a) = {u ∈ S | u+ a+ as = a+ as, for some s ∈ S}.

Sen and Bhuniya introduced analogues of Green’s relations L,R and H on a
semiring S in the following way: for a, b ∈ S

aLb if Lk(a) = Lk(b), aRb if Rk(a) = Rk(b) and H = L ∩R.

These equivalences are additive congruences on S, whereas L is multiplicative
right and R is multiplicative left congruence on S only. A semiring S is (left,
right) t-k-simple if and only if (L,R) H = S × S.

A nonempty subset A of S is called completely prime (resp. semiprime) if for
all x, y ∈ S such that xy ∈ A one has x ∈ A or y ∈ A (resp. x2 ∈ A implies that
x ∈ A).

A subsemiring F of S is called a filter of S if for any a, b ∈ S, ab ∈ F implies
that a, b ∈ F and a + b = b, a ∈ F implies that b ∈ F . For a ∈ S, N(a) de-
notes the filter generated by a. LetN be the equivalence relation on S, defined by:
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for x, y ∈ S,

xN y if N(x) = N(y).

As we can expect, we have the following result which plays a crucial role in this
article.

Lemma 1 [4]. Let S be a semiring in SL+. Then N is the least distributive

lattice congruence on S.

A subsemiring B of S is called a k-bi-ideal of S if BSB ⊆ B and B ⊆ B. Every
left k-ideal and right k-ideal is a k-bi-ideal of S. A semiring S is called k-b-simple
if it has no non-trivial k-bi-ideal.

The k-bi-ideal generated by a is denoted by Bk(a) and we have

Bk(a) = {u ∈ S | u+ a+ a2 + asa = a+ a2 + asa, for some s ∈ S}.

Let C be a class of semirings and we call the members of C as C-semirings. A
semiring S is called a distributive lattice of C-semirings if there exists a congruence
ρ on S such that S/ρ is a distributive lattice and each ρ-class is a C-semiring.

The following lemma summarizes some useful techniques for handling semir-
ings with semilattice additive reduct which we will use frequently in this paper.
We omit the proof as it can be done similarly to the Lemma 2.1 [3].

Lemma 2. Let S be a semiring in SL+. For a, b, u, v, s, s1, s2, t, t1, t2 ∈ S

1. b + s1as2 = t1at2 implies that there is x = s1 + s2 + t1 + t2 ∈ S such that

b+ xax = xax.

2. If a+ b = b then

(i) u+ sa = sa implies that u+ sb = sb.

(ii) u+ sa+ a = sa+ a implies that u+ sb+ b = sb+ b.

3. u+sa+a = sa+a and v+bt+b = bt+b implies that there are x = s+ t ∈ S
and c = a+ b ∈ S such that u+ xc+ c = xc+ c and v + cx+ c = cx+ c.

We refer [5, 10] for the information we need concerning semigroup theory and [9]
for notions concerning semiring theory.

3. Strong quasi k-ideals of a semiring

A subsemiring Q is called a quasi k-ideal of S if QS ∩ SQ ⊆ Q and Q = Q.
Intersection of a left k-ideal and a right k-ideal is a quasi k-ideal of S [11], but
the converse is not true in general which we see in the following example. This
example is motivated by that of given by Weinert in [22].
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Example 3. Consider the two element lattice Γ = {0, 1} with binary operations

+ 0 1

0 0 1
1 1 1

· 0 1

0 0 0
1 0 1

Consider the semialgebra S on Γ defined by the basis {e, a, b} with the multipli-
cation table

· e a b

e e a+b 0
a b 0 0
b b 0 0

Note that the semialgebra S = {r1e + r2a + r3b | ri ∈ Γ} = {0, e, a, b, e + a, a +
b, e + b, e + a + b} is a semiring with semilattice additive reduct. Consider the
quasi k-ideal Q = {0, a} of S. We show that this can not be expressed as an
intersection of a left k-ideal and a right k-ideal. If possible, let L be a left k-ideal
and R be a right k-ideal such that Q = L ∩R. Then SQ = {0, a+ b} ⊆ L shows
that a+ b ∈ L. Again a ∈ Q ⊆ L shows that b ∈ L, since it is a left k-ideal. Also
QS = {0, b} ⊆ R shows that b ∈ R. Thus b ∈ L ∩R but b 6∈ Q. This contradicts
that Q = L ∩R.

We distinguish the quasi k-ideals which are intersection of a left k-ideal and a
right k-ideal as follows:

Definition. A quasi k-ideal Q of S is said to be a strong quasi k-ideal if Q = L∩R
for some left k-ideal L and right k-ideal R of S.

A semiring S is called strong quasi k-simple if it has no nontrivial strong quasi
k-ideal.

In semigroups this is known as intersection property [2], but according to the
perspective of the results of this article and for the sake of simplicity in expression
we would like to call as strong quasi k-ideals.

The following equivalent conditions are direct consequences of the strongness.

Lemma 4. Let Q be a quasi k-ideal of a semiring S. Then the following condi-

tions are equivalent:

1. Q is a strong quasi k-ideal;

2. Lk(a) ∩Rk(a) ⊆ Q for all a ∈ Q;

3. Lk(a) ∩Rk(b) ⊆ Q for all a, b ∈ Q.
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Proof. (1) ⇒ (3): Let Q = L ∩ R for some left k-ideal L and right k-ideal R
of S and a, b ∈ Q. Then a ∈ L implies that Lk(a) ⊆ L and b ∈ R implies that
Rk(b) ⊆ R. Thus Lk(a) ∩Rk(b) ⊆ L ∩R = Q.

(3) ⇒ (2): Trivial.

(2) ⇒ (1): Let L = {x ∈ S|x+ sq + q = sq + q; s ∈ S, q ∈ Q} and R = {x ∈
S|x + qs + q = qs + q; s ∈ S, q ∈ Q}. Then L is a left k-ideal and R is a right
k-ideal of S. Also Q ⊆ L ∩R.

Now if u ∈ L ∩ R, then there exist s1, s2 ∈ S and q1, q2 ∈ Q such that
u + s1q1 + q1 = s1q1 + q1 and u + q2s2 + q2 = q2s2 + q2. This implies that
u + sq + q = sq + q and u + qs + q = qs + q where s = s1 + s2 ∈ S and
q = q1 + q2 ∈ Q by Lemma 2. Thus u ∈ Lk(q) ∩ Rk(q) ⊆ Q which shows that
L ∩R ⊆ Q. Hence L ∩R = Q.

Intersection of any family of strong quasi k-ideals of a semiring S is a strong
quasi k-ideal. Thus for any a ∈ S, there is the smallest strong quasi k-ideal of S
containing a. We call this the strong quasi k-ideal generated by a and denote it
by Qk(a).

Theorem 5. Let S be a semiring and a ∈ S. Then the strong quasi k-ideal of S
generated by a is given by Qk(a) = Lk(a) ∩Rk(a).

Proof. Let a ∈ S. Then Lk(a) ∩ Rk(a) is a strong quasi k-ideal of S. Now let
Q be a strong quasi k-ideal of S such that a ∈ Q. Then Lk(a) ∩ Rk(a) ⊆ Q,
by Lemma 4, which shows that Lk(a) ∩ Rk(a) is the smallest quasi k-ideal of S
containing a. Thus Qk(a) = Lk(a) ∩Rk(a).

Corollary 6. Let S be a semiring. Then the following results are equivalent:

1. S is strong quasi k-simple;

2. Qk(a) = Qk(b) for all a, b ∈ S;

3. Lk(a) ∩Rk(a) = S for all a ∈ S;

4. Lk(a) ∩Rk(b) = S for all a, b ∈ S.

Proof. It is clear that (4) ⇒ (3) and (3) ⇒ (2). So we have to prove (1) ⇒ (4)
and (2) ⇒ (1).

(1) ⇒ (4): Let S be a strong quasi k-simple semiring and a, b ∈ S. Then
Lk(a) ∩Rk(b) is a strong quasi k-ideal of S and hence Lk(a) ∩Rk(b) = S for all
a, b ∈ S.

(2) ⇒ (1): Let Q be a strong quasi k-ideal of S and a ∈ Q. Then for every
b ∈ S, b ∈ Qk(b) = Qk(a) ⊆ Q implies that Q = S and hence S is a strong quasi
k-simple semiring.
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Now for a, b ∈ S, it follows from the Theorem 5 that aHb if and only if Qk(a) =
Qk(b) which in light of the Corollary 6 can be interpreted as: a semiring S is
t-k-simple if and only if it is strong quasi-k-simple. Again recall that in the
semigroups t-simplicity is equivalent to the bi-ideal simplicity. Let us see what
actually happens here.

Every strong quasi k-ideal is a k-bi-ideal. That the converse is not true follows
from the observation that there are k-bi-ideals which are not even quasi. But
surprisingly we have the following results.

Lemma 7. If S is a left k-simple (resp. right k-simple) semiring then each

k-bi-ideal of S is a right k-ideal (resp. left k-ideal).

Proof. Let S be a left k-simple semiring and B be a k-bi-ideal of S. Then SB
is a left k-ideal, and so SB = S. Now BS = B SB ⊆ BSB ⊆ B = B shows that
B is a right k-ideal of S. The result for right k-simple semirings follows dually.

Proposition 8. In a semiring S the following conditions are equivalent:

1. S is strong quasi k-simple;

2. S is t-k-simple;

3. S is k-b-simple.

Proof. (1) ⇒ (2): Let S be a strong quasi k-simple semiring and consider a, b ∈
S. Then by Corollary 6, Lk(a) ∩ Rk(b) = S = Lk(b) ∩ Rk(a). Thus a ∈ Lk(b),
b ∈ Lk(a), a ∈ Rk(b) and b ∈ Rk(a) imply Lk(a) = Lk(b) and Rk(a) = Rk(b).
Therefore S is left k-simple as well as right k-simple and hence S is a t-k-simple
semiring.

(2) ⇒ (3): Let B be a k-bi-ideal of S. Since S is left k-simple, by Lemma 7, it
follows that B is a right k-ideal of S. Also S is right k-simple and hence B = S.
Thus S is a k-b-simple semiring.

(3) ⇒ (1): Since each quasi k-ideal is a k-bi-ideal, it follows directly.

4. Distributive lattices of t-k-simple semirings

Thus, in the semirings with semilattice additive reduct, the notions of t-k-simplicity,
k-b-simplicity and strong quasi k-simplicity are equivalent. So the semirings which
are distributive lattices of t-k-simple semirings, are also distributive lattices of
k-b-simple as well as of strong quasi k-simple semirings. In [18], Mondal and
Bhuniya characterized such semirings by their k-bi-ideals. Above proposition
motivates us to characterize the same by their strong quasi k-ideals.
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Theorem 9. The following conditions are equivalent on a semiring S in SL+ :

1. S is a distributive lattice of t-k-simple subsemirings;

2. for all a, b ∈ S, ab, ba ∈ Qk(a) and a ∈ Qk(a
2);

3. for all a ∈ S, Qk(a) is a completely semiprime k-ideal of S;

4. every strong quasi k-ideal of S is a completely semiprime k-ideal of S;

5. for all a, b ∈ S, Qk(ab) = Qk(a) ∩Qk(b);

6. for all a ∈ S, N(a) = {x ∈ S|a ∈ Qk(x)};
7. H = N is the least distributive lattice congruence of S such that each of its

congruence classes is t-k-simple subsemiring.

Proof. (1)⇒ (2): Let S be a distributive lattice D of t-k-simple subsemirings Sα,
α ∈ D. Consider a, b ∈ S. Then there are α, β ∈ D such that a ∈ Sα, b ∈ Sβ, and
so aba, ab, ba ∈ SαSβ ⊆ Sαβ. Again Sαβ being a t-k-simple semiring, by Corollary
6 and Proposition 8, it follows that ab ∈ Qk(ab) = Qk(aba) = Lk(aba)∩Rk(aba) ⊆
Lk(a) ∩ Rk(a) = Qk(a). Similarly, ba ∈ Qk(a). Also a, a2 ∈ Sα implies that
a ∈ Qk(a

2).

(2) ⇒ (3): Let a ∈ S. Consider an element q ∈ Qk(a) and s ∈ S. Then
sq, qs ∈ Qk(q) ⊆ Qk(a) implies that Qk(a) is a k-ideal of S. Now let u2 ∈ Qk(a).
Then u ∈ Qk(u

2) ⊆ Qk(a) shows that Qk(a) is a completely semiprime k-ideal
of S.

(3) ⇒ (4): Follows similarly.

(4) ⇒ (5): Let a, b ∈ S. Since a ∈ Qk(a) is a k-ideal so ab ∈ Qk(a) and
similarly ab ∈ Qk(b) and so ab ∈ Qk(a) ∩Qk(b) and so Qk(ab) ⊆ Qk(a) ∩Qk(b).
Now let x ∈ Qk(a)∩Qk(b). Then x ∈ Rk(a) implies that x+a+as1 = a+as1 for
some s1 ∈ S. Then x2+ax+as1x = ax+as1x implies that x2+a(x+s1x) = a(x+
s1x). Again Qk(a)∩Qk(b) is a k-ideal of S implies that s1x ∈ Qk(a)∩Qk(b) and
so s1x ∈ Rk(b). Thus x+xs1 ∈ Rk(b) which shows that x+s1x+bs2+b = bs2+b
for some s2 ∈ S. Then it follows by Lemma 2 that x2 + abs2 + ab = abs2 + ab
and hence x2 ∈ Rk(ab).

Similarly, x2 ∈ Lk(ab) and so x2 ∈ Qk(ab) which yields that x ∈ Qk(ab). Thus
Qk(a) ∩Qk(b) ⊆ Qk(ab) and hence Qk(a) ∩Qk(b) = Qk(ab).

(5) ⇒ (6): Let F = {x ∈ S|a ∈ Qk(x)}. Consider x, y ∈ F . Then a ∈
Qk(x)∩Qk(y), implies by Theorem 5 and Lemma 2, that there is s ∈ S such that
a+ sx+ x = sx+ x, a+ xs+ x = xs+ x and a+ sy + y = sy + y, a+ ys + y =
ys + y, from which we have a + (x + y)s + (x + y) = (x + y)s + (x + y) and
a + s(x + y) + (x + y) = s(x + y) + (x + y), and hence x + y ∈ F . Again
a ∈ Qk(x)∩Qk(y) = Qk(xy) implies that xy ∈ F . Thus F is a subsemiring of S.
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Let x, y ∈ S be such that xy ∈ F . Then a ∈ Qk(xy) = Qk(x)∩Qk(y) implies that
x, y ∈ F . Now let x ∈ S and y ∈ F be such that y + x = x. Then a ∈ Qk(y) and
so by Theorem 5, there is s ∈ S such that a+sy+y = sy+y and a+ys+y = ys+y
which imply that a+ sx+x = sx+x and a+xs+x = xs+x by Lemma 2. Thus
a ∈ Qk(x) i.e., x ∈ F . Hence F is a filter of S.

Let T be a filter of S containing a and u ∈ F . Then there exists s ∈ S such
that a+ su+u = su+u and a+us+u = us+u. Then su+u, us+u ∈ T , which
implies that a(su + u) ∈ T i.e., (as + a)u ∈ T . This again shows that u ∈ T .
Thus F ⊆ T and so F = N(a).

(6) ⇒ (7): For x, y ∈ S, Qk(x) = Qk(y) ⇔ x ∈ N(y) and y ∈ N(x) ⇔
N(x) = N(y) and hence H = N is the least distributive lattice congruence on S,
by Lemma 1.

Now consider an H-class H. Since H is a distributive lattice congruence,
H is a subsemiring of S. Let a, b ∈ S be such that a, b ∈ H. Then a2 ∈ H
implies that bHa2. Thus there is s ∈ S such that b + sa2 + a2 = sa2 + a2 and
b + a2s + a2 = a2s + a2. Since H is a distributive lattice congruence on S,
u1 = (as+ a)Ha and u2 = (sa+ a)Ha which again implies that u = (u1 + u2)Ha
i.e., u ∈ H. Now b+u2a = u2a and b+au1 = au1 implies that b+ua+a = ua+a
and b+ au+ a = au+ a. Similarly, there is v ∈ H such that a+ vb+ b = vb+ b
and a+ bv + b = bv + b. Thus Qk(a) = Qk(b) in H and hence H is a t- k-simple
semiring.

(7) ⇒ (1): Obvious.

In view of this theorem and Proposition 8 the following characterizations of the
semirings S which are chain of t-k-simple semirings can be done by the radical
of strong quasi k-ideals of S. We omit the proof as it is similar to the above
theorem and Theorem 3.3 of [18].

Theorem 10. The following conditions are equivalent on a semiring S in SL+:

1. S is a chain of t-k-simple subsemirings;

2. for all a, b ∈ S, ab, ba ∈ Qk(a) and a ∈ Qk(ab) or b ∈ Qk(ab);

3. for all a ∈ S, Qk(a) is a completely prime k-ideal of S;

4. every strong quasi k-ideal of S is a completely prime k-ideal of S;

5. for all a, b ∈ S, Qk(ab) = Qk(a) ∩ Qk(b) and Qk(a) ⊆ Qk(b) or Qk(b) ⊆
Qk(a);

6. for all a, b ∈ S, N(a) = {x ∈ S|a ∈ Qk(x) } and N(ab) = N(a) ∪N(b);

7. H = N is the least chain congruence of S such that each of its congruence

classes is t-k-simple subsemiring.



36 A.K. Bhuniya and K. Jana

5. Distributive lattice of t-k-Archimedean semirings

In this section, we characterize the semirings which are distributive lattices of
t-k-Archimedean semirings by their strong quasi k-ideals, in fact by the k-radical
of their strong quasi k-ideals.

For a non-empty subset A of S, the k-radical
√
A of A in S is defined by√

A = {x ∈ S|(∃n ∈ N)xn ∈ A}. Equivalently,
√
A = {x ∈ S|(∃n ∈ N)xn + a =

a for some a ∈ A}.
In [3], Bhuniya and Mondal defined a semiring S to be k-Archimedean (left,

right) if S =
√
SaS(

√
Sa,

√
aS) for all a ∈ S. If S is both left and right k-

Archimedean then it is called t-k-Archimedean. Equivalently, S is t-k-Archime-
dean if S =

√
Sa ∩

√
aS =

√
Sa ∩ aS. Thus S is t-k-Archimedean if and only if

for all a, b ∈ S there are n ∈ N and x ∈ S such that

bn + xa = xa and bn + ax = ax.

Equivalently, a semiring S is left (right) k-Archimedean if S =
√

Lk(a)(
√

Rk(a))
for all a ∈ S. Thus S may be called strong quasi k-Archimedean (k-b-Archime-
dean) if S =

√

Qk(a) (
√

Bk(a)) for all a ∈ S. Now we show that the strong quasi
k-Archimedean semirings as well as the k-b-Archimedean semirings are nothing
but the t-k-Archimedean semirings.

Recall that for every a ∈ S, Qk(a) = Lk(a)∩Rk(a). Though in general neither
Lk(a) = Sa nor Rk(a) = aS, still we have:

Lemma 11. Let S be a semiring. Then
√

Qk(a) =
√
Sa ∩ aS for all a ∈ S.

Proof. Let b ∈
√

Qk(a). Since Qk(a) = Lk(a) ∩ Rk(a), there are n ∈ N, s ∈ S
such that

bn + a+ sa = a+ sa and bn + a+ as = a+ as

which implies that

bn+1 + (b+ bs)a = (b+ bs)a and bn+1 + a(b+ sb) = a(b+ sb).

Thus b ∈
√
Sa ∩ aS and so

√

Qk(a) ⊆
√
Sa ∩ aS. Again Sa ⊆ Lk(a) and its

left-right dual implies that
√
Sa ∩ aS ⊆

√

Lk(a) ∩Rk(a) =
√

Qk(a). Thus
√

Qk(a) =
√
Sa ∩ aS for all a ∈ S.

Proposition 12. Let S ∈ SL+. Then the following conditions are equivalent:

1. S is t-k-Archimedean;

2. b ∈
√

Bk(a) for all a, b ∈ S i.e., S =
√

Bk(a) for all a ∈ S;

3. b ∈
√

Qk(a) for all a, b ∈ S i.e., S =
√

Qk(a) for all a ∈ S.
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Proof. (1) ⇒ (2): Let S be a t-k-Archimedean semiring. Then for all a, b ∈ S,√
Sa ∩ aS = S =

√
Sb ∩ bS. Then b ∈

√
Sa ∩ aS implies that there are n ∈ N

and x ∈ S such that bn+xa = xa and bn+ax = ax. Using these two relations we
get b2n + bnxa = bnxa ⇒ b2n + ax2a = ax2a. Which gives b2n + a+ a2 + ax2a =
a+ a2 + ax2a and so b ∈

√

Bk(a).

(2) ⇒ (3): Follows trivially since Bk(a) ⊆ Qk(a) for every a ∈ S.

(3) ⇒ (1): Let a, b ∈ S. Then b ∈
√

Qk(a) shows that there are m ∈ N

and y ∈ S such that bm + a + ya = a + ya and bm + a + ay = a + ay. Now
b2m + abm + aybm = abm + aybm implies that b2m + a(a + ya) + ay(a + ya) =
a(a+ ya) + ay(a+ ya). Using additive idempotent property and rearranging the
terms we get b2m+a(a+ ya+y2a) = a(a+ya+y2a) and b2m+(a+ay+ay2)a =
(a+ ay + ay2)a. Thus b ∈

√
Sa ∩ aS.

Thus the notions of t-k-Archimedean semirings, k-b-Archimedean semirings and
strong quasi k-Archimedean semirings all are equivelent. In [17] Mondal charac-
terized the semirings which are distributive lattices of t-k-Archimedean semirings
by the radicals of their k-bi-ideals. The Proposition 12 shows that such semiring
can also be characterized by their strong quasi k-ideals.

Lemma 13. Let S be a semiring such that for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS.

Then

1. for all a, b ∈ S, a ∈ Sb ∩ bS implies that a ∈
√

Qk(b2
r ) for all r ∈ N;

2. for all a, b ∈ S, a ∈
√

Qk(b) implies that
√

Qk(a) ⊆
√

Qk(b).

Proof. (1) Let a, b ∈ S be such that a ∈ Sb ∩ bS. Then a + sb = sb and
a + bs = bs for some s ∈ S. Now, by hypothesis, there are n ∈ N and t ∈ S
such that (bs)n + tb = tb and (sb)n + bt = bt. Again a+ sb = sb and a+ bs = bs
implies that an+1 + (sb)n+1 = (sb)n+1 and an+1 + (bs)n+1 = (bs)n+1. Then we
have an+1 + stb2 = stb2 and an+1 + b2ts = b2ts and hence a ∈

√

Qk(b2), by
Lemma 11. Thus the result is true for r = 1. Assume that k ∈ N is such that

a ∈
√

Qk(b2
k). Then am + ub2

k

= ub2
k

and am + b2
k

u = b2
k

u for some m ∈ N ,

u ∈ S. Then proceeding as above we get a ∈
√

Qk(b2
k+1). Therefore, by the

principle of induction, we have a ∈
√

Qk(b2
r ), for all r ∈ N.

(2) Let a ∈
√

Qk(b). Then there are n ∈ N and s ∈ S such that an + sb = sb
and an + bs = bs. Consider x ∈

√

Qk(a). Then there is m ∈ N such that
xm ∈ Sa ∩ aS. Let r ∈ N be such that 2r > n. Then by (1) we find p ∈ N

and t ∈ S such that xp + ta2
r

= ta2
r

and xp + a2
r

t = a2
r

t which implies that
xp + ta2

r
−nsb = ta2

r
−nsb and xp + bsa2

r
−nt = bsa2

r
−nt. Then x ∈

√

Qk(b) by
Lemma 11.
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Recall that for a, b ∈ S,

aHb if and only if Qk(a) = Qk(b).

Let us define
√
H, the radical of H on S by: for a, b ∈ S,

a
√

Hb if
√

Qk(a) =
√

Qk(b).

Now we have the main theorem of this section:

Theorem 14. The following conditions are equivalent on a semiring S:

1. S is a distributive lattice of t-k-Archimedean semirings;

2. for all a, b ∈ S, b ∈ SaS implies b ∈
√

Qk(a);

3. for all a, b ∈ S, ab ∈
√
Sa ∩

√
bS;

4.
√
Q is a k-ideal of S for every strong quasi k-ideal Q of S;

5.
√

Qk(a) is a k-ideal of S, for all a ∈ S;

6. N(a) = {x ∈ S|a ∈
√

Qk(x)} for all a ∈ S;

7. N =
√
H is the least distributive lattice congruence and each of its congru-

ence classes is a t-Archimedean semiring.

Proof. We prove this theorem in the following scheme: (1) ⇒ (2) ⇒ (3) ⇒
(6) ⇒ (7) ⇒ (1) and (3) ⇒ (4) ⇒ (5) ⇒ (3)

(1) ⇒ (2): Let γ be a distributive lattice congruence on S such that the γ-
classes Tα : α ∈ S/γ are t-k-Archimedean semirings. Let a, b ∈ S be such that
b ∈ SaS. Then b+sas = sas, for some s ∈ S by Lemma 2 and hence b3+bsasb =
bsasb which implies b3 + ubu = ubu, where u = bs + sb. Now uauγau2γauγua
implies that uau, au, ua ∈ Tα for some α ∈ D. Since Tα is a t-k-Archimedean
semiring, there exist m ∈ N and v ∈ Tα such that (uau)m + auv = auv and
(uau)m+vua = vua. Therefore b3m+(uau)m = (uau)m implies b3m+auv = auv
and b3n + vua = vua. Thus b ∈

√
Sa ∩ aS =

√

Qk(a).

(2) ⇒ (3): Let a, b ∈ S. Now (ab)2 + abab = abab implies that (ab)2 ∈
SaS ∩ SbS. Then there exist m,n ∈ N such that (ab)2m ∈ Sa and (ab)2n ∈ bS.
Thus ab ∈

√
Sa ∩

√
bS.

(3) ⇒ (6): Let a ∈ S and F = {x ∈ S|a ∈
√

Qk(x)}. Let y, z ∈ F . Then
there are n ∈ N and s ∈ S such that an + sy = sy, an + sz = sz and an + ys =
ys, an + zs = zs. Then an + s(y + z) = s(y + z) and an + (y + z)s = (y + z)s
implies that y+z ∈ F . Again, by hypothesis, there are m ∈ N and t ∈ S such that
(ys)m+ ty = ty and (sz)m+zt = zt. Then we have an(m+1)+(sy)msz = (sy)msz
and an(m+1) + ys(zs)m = ys(zs)m. Then an(m+1) + s(ys)mz = s(ys)mz and
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an(m+1) + y(sz)ms = y(sz)ms implies that an(m+1) + styz = styz and an(m+1) +
yzts = yzts. Thus yz ∈ F and hence F is a subsemiring of S.

Consider u ∈ F and v ∈ S such that u + v = v. Now a ∈
√

Qk(u) implies
that there are n ∈ N and s ∈ S such that an + su = su and an + us = us. From
these we have an + sv = sv and an + vs = vs and hence v ∈ F . Now let x, y ∈ S
be such that xy ∈ F . Then there are m ∈ N and s1 ∈ S such that

am + s1xy = s1xy(1)

and am + xys1 = xys1.(2)

Again we have p ∈ N and s2 ∈ S such that (xy)p+s2x = s2x and (xy)p+ys2 = ys2,
by (3). Since F is a subsemiring, (xy)p ∈ F ; and so there are q ∈ N and s3 ∈ S
such that aq + s3(xy)

p = s3(xy)
p and aq + (xy)ps3 = (xy)ps3. Then we have

aq + s3s2u = s3s2u(3)

and aq + us2s3 = us2s3.(4)

Now (1) and (4) together implies that y ∈ F and (2) and (3) together implies
that x ∈ F . Thus F is a filter and a ∈ F .

Suppose T is a filter a ∈ T . Consider z ∈ F . Then there exist n ∈ N and
s ∈ S such that an + sz = sz and an + zs = zs. Since T is a filter, an ∈ T and so
an + sz = sz and an + zs = zs which implies that z ∈ T . Thus F is the smallest
filter that contains a i.e., F = N(a).

(6) ⇒ (7): Consider a, b ∈ S. Since N(ab) is a filter and contains ab, we have
a, b ∈ N(ab). Then ab ∈

√

Qk(a) ∩
√

Qk(b) ⊆
√
Sa ∩

√
bS. Now for a, b ∈ S, the

following holds.

aN b ⇔ N(a) = N(b)

⇔ a ∈ N(b) and b ∈ N(a)

⇔ b ∈
√

Qk(a) and a ∈
√

Qk(b), by (6)

⇔
√

Qk(b) ⊆
√

Qk(a) and
√

Qk(a) ⊆
√

Qk(b), by (1) of Lemma 13

⇔ a
√

Hb

which shows that N =
√
H is the least distributive lattice congruence.

Let T be an N -class in S. Since N is a distributive lattice congruence, T is a
subsemiring. Consider a, b ∈ T . Then aN b implies that N(a) = N(b), and by (6)
we have b ∈

√

Qk(a). Thus there are n ∈ N and s ∈ S such that bn+a+sa = a+sa
and bn + a + as = a + as which implies that bn+1 + (b + bs)a = (b + bs)a and
bn+1 + a(b + sb) = a(b + sb). Now since N is a distributive lattice congruence
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(b + bs)N bN (b + sb) which implies that t1 = b + bs ∈ T and t2 = b + sb ∈ T .
Thus b ∈

√
Ta ∩

√
aT and hence T is a t-k-Archimedean semiring.

(7) ⇒ (1): Follows directly.

(3) ⇒ (4): Let Q be a strong quasi k-ideal of S. Consider u ∈ √
Q and

c ∈ S. Then there are n ∈ N, q ∈ Q such that un = q. Now by (3) there
exist x, y ∈ S, n1,m1 ∈ N such that (uc)n1 = xu and (ux)m1 = yu. Then
(uc)n1(m1+1) = x(ux)m1 u = x(yu)u = xyu2 implies (uc)n2 = x1u

2 where n2 =
n1(m1 + 1) and x1 = xy. Also, there exist s ∈ S,m2 ∈ N such that (u2x1)m2 =
su2. Proceeding as above we find by iteration that every r ∈ N, there exists
p ∈ N such that (uc)p = xru

2r . Let r ∈ N be such that 2r > n. Then there exists
q ∈ N such that (uc)q = xru

2r . By (3), there exist m ∈ N and z ∈ S such that
(xru

2r)(m+1) = (xru
2r)(m+1) = u2

r

zxru
2r = qu2

r
−nzxru

2r−nq. Hence uc ∈ √
Q.

Similarly, cu ∈ √
Q. Hence

√
Q is a k-ideal of S.

(4) ⇒ (5): Trivial.

(5) ⇒ (3): Let a, b ∈ S. Then
√

Qk(a) and
√

Qk(b) are k-ideals of S. Then
ab ∈

√

Qk(a) ∩
√

Qk(b) and hence ab ∈
√
Sa ∩

√
bS.

Theorem 15. The following conditions on a semiring S are equivalent:

1. S is a chain of t-k-Archimedean semirings;

2. S is a distributive lattice of t-k-Archimedean semirings and for all a, b ∈ S,

b ∈
√

Qk(a) or a ∈
√

Qk(b);

3. For all a, b ∈ S, N(a) = {x ∈ S|a ∈
√

Qk(x)} and N(ab) = N(a) ∪N(b);

4. N =
√
H is the least chain congruence of S such that each of its congruence

classes is a t-k-Archimedean semiring.

Proof. (1) ⇒ (2): Let S be a chain C of t-k-Archimedean semirings Sα(α ∈ C).
Then S is a distributive lattice of t-k-Archimedean semirings. Let a, b ∈ S. Then
a ∈ Sα and a ∈ Sβ for some α, β ∈ C. Since C is a chain, either αβ = α or αβ = β.
If αβ = α then a, ab ∈ Sα; and since Sα is a t-k-Archimedean semiring, there
exist n ∈ N and x ∈ Sα such that an + xab = xab and an + abx = abx. Now, by
Theorem 14, as S is a distributive lattice of t-k-Archimedean semiring, there are
m ∈ N and s ∈ S such that (abx)m + bxs = bxs. Then we have anm + s1b = s1b
and anm + bxs = bxs for some s1 ∈ S and hence a ∈

√

Qk(b). Again if αβ = β,
then b, ab ∈ Sβ and similarly as above we have b ∈

√

Qk(a).

(2) ⇒ (3): Since S is a distributive lattice of t-k-Archimedean semirings,
we have N(a) = {x ∈ S|a ∈

√

Qk(x)}, by Theorem 14. Let a, b ∈ S. Then
ab ∈ N(ab) implies that a ∈ N(ab) and b ∈ N(ab), and N(a) ∪ N(b) ⊆ N(ab).
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Again, either a ∈
√

Qk(b) or b ∈
√

Qk(a). If a ∈
√

Qk(b), then there are n ∈ N

and s ∈ S such that an + bs = bs and so an+1 + abs = abs. Since S is a
distributive lattice of t-k-Archimedean semirings, there exist m ∈ N and t ∈ S
such that (abs)m + tab = tab, by Theorem 14. Then we have a(n+1)m + tab = tab
and a(n+1)m+abt1 = abt1 for some t1 ∈ S. Then a ∈

√

Qk(ab) which implies that
ab ∈ N(a). Thus N(ab) ⊆ N(a). If b ∈

√

Qk(a), then similarly we have N(ab) ⊆
N(b), which shows that N(ab) ⊆ N(a) ∪N(b). Hence N(ab) = N(a) ∪N(b).

(3) ⇒ (4): It follows by Theorem 14 that N =
√
H is the least distributive

lattice congruence on S and each N -class is a t-k-Archimedean semiring.

Now consider a, b ∈ S. Then ab ∈ N(a) ∪ N(b) shows that ab ∈ N(a) or
ab ∈ N(b). Again N(a) ⊆ N(ab) and N(b) ⊆ N(ab). Thus either N(ab) ⊆
N(a) ⊆ N(ab) or N(ab) ⊆ N(b) ⊆ N(ab), i.e., either aNab or bNab. Hence N is
a chain congruence on S. Since every chain is a distributive lattice and N is the
least distributive lattice congruence, it is the least chain congruence on S.

(4) ⇒ (1): Trivial.

Theorem 16. Let S be a semiring. Then the following conditions on S are

equivalent:

1. S is a chain of t-k-Archimedean semirings;

2.
√
Q is a completely prime k-ideal of S, for every strong quasi k-ideal Q of

S;

3.
√

Qk(a) is a completely prime k-ideal of S, for every a ∈ S;

4.
√

Qk(ab) =
√

Qk(a)∩
√

Qk(b) for all a, b ∈ S and every strong quasi k-ideal
of S is semiprimary.

Proof. (1) ⇒ (2): Let S be a chain C of t-k-Archimedean semirings {Sα|α ∈ C}.
Consider a strong quasi k-ideal Q of S. Then

√
Q is a k-ideal of S, by Theorem

14. Let x, y ∈ S be such that xy ∈ √
Q. Then there is n ∈ N such that

(xy)n = u =∈ Q = Q. Suppose x ∈ Sα and y ∈ Sβ, α, β ∈ C. Since C is
a chain, either αβ = α or αβ = β. If αβ = α, then x, u ∈ Sα shows that
x ∈

√

Qk(u) ⊆ √
Q. Similarly, if αβ = β, then y ∈ √

Q. Hence
√
Q is a

completely prime k-ideal of S.

(2) ⇒ (3): Obvious.

(3) ⇒ (4): Let a, b ∈ S. Then,
√

Qk(a),
√

Qk(b) and
√

Qk(ab) are completely
prime k-ideals of S. Consider x ∈

√

Qk(ab). Then there exist n ∈ N and s ∈ S
such that xn + abs = abs and xn + sab = sab. Again, by Theorem 14, there are
m ∈ N and t ∈ S such that (abs)m + ta = ta. Then we have xnm + ta = ta. Also
xnm+as1 = as1 for some s1 ∈ S. Then x ∈

√

Qk(a). Thus
√

Qk(ab) ⊆
√

Qk(a).
Similarly, considering xn + sab = sab we have

√

Qk(ab) ⊆
√

Qk(b). Therefore
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√

Qk(ab) ⊆
√

Qk(a)∩
√

Qk(b). Now consider y ∈
√

Qk(a)∩
√

Qk(b). Then there
exist p ∈ N, u ∈ S such that yp+ua = ua, yp+au = au and yp+ub = ub, yp+bu =
bu. Then we have y2p + uabu = uabu. Also there exist q1, q2 ∈ N and v1, v2 ∈ S
such that (uabu)q1 + abuv1 = abuv1 and (uabu)q2 + v2uab = v2uab. Then we get
y2pq1 + abuv1 = abuv1 and y2pq2 + v2uab = v2uab and so y ∈

√

Qk(ab). Hence
√

Qk(ab) =
√

Qk(a) ∩
√

Qk(b).
Now let Q be a strong quasi k-ideal of S. Let a, b ∈ S be such that ab ∈ Q.

Then ab ∈
√

Qk(ab) implies that a ∈
√

Qk(ab) or b ∈
√

Qk(ab), since
√

Qk(ab) is

completely prime. Then an ∈ Qk(ab) = Qk(ab) ⊆ Q or bn ∈ Qk(ab) = Qk(ab) ⊆
Q for some n ∈ N. Hence Q is semiprimary.

(4) ⇒ (1): Consider a, b ∈ S. Then ab ∈
√

Qk(ab) =
√

Qk(a) ∩
√

Qk(b) ⊆√
Sa ∩

√
bS shows that S is a distributive lattice t-k-Archimedean semirings.

Again since
√

Qk(ab) is completely prime, a ∈
√

Qk(ab) or b ∈
√

Qk(ab) which
implies that a ∈

√

Qk(b) or b ∈
√

Qk(a). Thus S is a chain of t-k-Archimedean
semirings by Theorem 15 (2).
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[15] V.P. Maslov and S.N. Samborskĭi, Idempotent Analysis (Advances in Soviet Math-
ematics, Vol. 13, Amer. Math. Soc., Providence RI, 1992).

[16] M. Mohri, Semiring frameworks and algorithms for shortest distance problems , J.
Autom. Lang. Comb. 7 (2002) 321–350.

[17] T.K. Mondal, Distributive lattice of t-k-Archimedean semirings , Discuss. Math. Gen.
Alg. and Appl. 31 (2011) 147–158. doi:10.7151/dmgaa.1179

[18] T.K. Mondal and A.K. Bhuniya, Semirings which are distributive lattices of t-k-
simple semirings, communicated.

[19] M.K. Sen and A.K. Bhuniya, On additive idempotent k-regular semirings , Bull. Cal.
Math. Soc. 93 (2001) 371–384.

[20] O. Steinfeld, Quasi-ideals in Rings and Regular Semigroups (Akademiai Kiado, Bu-
dapest, 1978).

[21] H.S. Vandiver, Note on a simple type of algebra in which the cancellation law of

addition does not hold , Bull. Amer. Math. Soc. 40 (1934) 914–920.
doi:10.1090/S0002-9904-1934-06003-8

[22] H.J. Weinert, on quasi-ideals in rings , Acta Math. Hung. 43 (1984) 85–99.
doi:10.1007/BF01951330

Received 26 April 2013
Revised 7 October 2013

Powered by TCPDF (www.tcpdf.org)

http://dx.doi.org/10.7151/dmgaa.1179
http://dx.doi.org/10.1090/S0002-9904-1934-06003-8
http://dx.doi.org/10.1007/BF01951330
http://www.tcpdf.org

