CONGRUENCES AND BOOLEAN FILTERS OF QUASI-MODULAR p-ALGEBRAS

Abd El-Mohsen Badawy
Department of Mathematics
Faculty of Science
Tanta University, Tanta, Egypt
e-mail: abdelmohsen.badawy@yahoo.com
AND
K.P. Shum
Institute of Mathematics
Yunnan University
Kunning, P.R. China
e-mail: kpshum@ynu.edu.cn

Abstract

The concept of Boolean filters in p-algebras is introduced. Some properties of Boolean filters are studied. It is proved that the class of all Boolean filters $B F(L)$ of a quasi-modular p-algebra L is a bounded distributive lattice. The Glivenko congruence Φ on a p-algebra L is defined by $(x, y) \in \Phi$ iff $x^{* *}=y^{* *}$. Boolean filters $\left[F_{a}\right), a \in B(L)$, generated by the Glivenko congruence classes F_{a} (where F_{a} is the congruence class $[a] \Phi$) are described in a quasi-modular p-algebra L. We observe that the set $F_{B}(L)=\left\{\left[F_{a}\right): a \in B(L)\right\}$ is a Boolean algebra on its own. A one-one correspondence between the Boolean filters of a quasi-modular p-algebra L and the congruences in $[\Phi, \nabla]$ is established. Also some properties of congruences induced by the Boolean filters $\left[F_{a}\right), a \in B(L)$ are derived. Finally, we consider some properties of congruences with respect to the direct products of Boolean filters.

Keywords: p-algebras, quasi-modular p-algebras, Boolean filters, direct products, congruences.
2010 Mathematics Subject Classification: 06A06, 06A20, 06A30, 06D15.

1. Introduction

The notion of pseudo-complements was introduced in semi-lattices and distributive lattices by O. Frink [7] and G. Birkhof [3]. The pseudo-complements in Stone algebras were studied and discussed by R. Balbes [1], O. Frink [7] and G. Grätzer [4] etc. Recently, the concept of Boolean filter of pseudo-complemented distributive lattices was introduced by M. Sambasiva Rao and K.P. Shum in [9].

In this paper, we further study the Boolean filters in a p-algebra L and many properties of Boolean filters are also given. We observe that every maximal filter of L is a Boolean filter, however the converse of this statement is not true. It is observed that a filter F of a p-algebra L is a prime Boolean filter if and only if it is a maximal filter. We will give a characterization theorem of Boolean filters of a quasi-modular p-algebra L. We also notice that the set of all Boolean filters of a quasi-modular p-algebra forms a bounded distributive lattice. Then, we introduce a Boolean filter $\left[F_{a}\right)$ which is generated by the congruence class F_{a} (notice that $[x] \Phi$ is denoted by F_{a}) of the Glivenko congruence relation Φ on L, where a is a closed element of a quasi-modular p-algebra L. It is proved that the set $F_{B}(L)=\left\{\left[F_{a}\right): a \in B(L)\right\}$ forms a Boolean algebra on its own. We also observe that $F_{B}(L)$ is isomorphic to $B(L)$. The relationship between the Boolean filters and the congruences in $[\Phi, \nabla]$ of a quasi-modular p-algebra L is introduced. It is proved that there is a one-one correspondence between the congruences in $[\Phi, \nabla]$ and the Boolean filters of L. We also prove that the Boolean algebras $F_{B}(L)$ and $\operatorname{Con}_{B}(L)=\left\{\theta_{\left[F_{a}\right)}: a \in B(L)\right\}$ are isomorphic, where $\theta_{\left[F_{a}\right)}$ is the congruence on L induced by a Boolean filter F_{a} for a closed element a of L. Moreover, we show that the Boolean algebra $\operatorname{Con}_{B}(L)$ can be embedded into the interval $[\Phi, \nabla]$ of $\operatorname{Con}(L)$. It is proved that the lattice of all Boolean filters of a finite quasi-modular p-algebra L is isomorphic to the sublattice $[\Phi, \nabla]$ of $\operatorname{Con}(L)$. Finally, some properties of congruences with respect to the direct products of Boolean filters are explored and investigated.

Several results of [9] are still possible for p-algebras or quasi-modular p algebras. Namely, Lemma 3.2, Lemma 3.3, Theorem 3.4, Theorem 3.6 and Theorem 6.1 correspond respectively to Proposition 2.3, Corollary 2.4, Theorem 2.6, Theorem 2.8 and Theorem 2.10 from [9].

2. Preliminaries

In this section, we cite some known definitions and basic results which can be found in the papers $[2,5,6,7,8]$ and $[10]$.

A p-algebra is a universal algebra $\left(L, \vee, \wedge,{ }^{*}, 0,1\right)$, where $(L, \vee, \wedge, 0,1)$ is a bounded lattice and the unary operation * is defined by $x \wedge a=0 \Leftrightarrow x \leq a^{*}$.

It is well known that the class of all p-algebras is equational. We now call
a p-algebra L distributive (modular) if the lattice $(L, \vee, \wedge, 0,1)$ is distributive (modular). The variety of modular p-algebras contains the variety of distributive p-algebras. We call a p-algebra quasi-modular if $\left((x \wedge y) \vee z^{* *}\right) \wedge x=(x \wedge y) \vee$ ($z^{* *} \wedge x$). Clearly, the class of all modular p-algebras is a subclass of the class of quasi-modular p-algebras. If the Stone identity $x^{*} \vee x^{* *}=1$ holds in a p-algebra, then we simply call this p-algebra an S-algebra. We usually call a distributive S-algebra a Stone algebra.

An element a of a p-algebra L is called closed if $a^{* *}=a$. Then $B(L)=$ $\left\{a \in L: a=a^{* *}\right\}$ is the set of all closed elements of L. It is known that $(B(L), \nabla, \wedge, 0,1)$, where $a \nabla b=\left(a^{*} \wedge b^{*}\right)^{*}$, forms a Boolean algebra. The set $D(L)=\left\{x \in L: x^{*}=0\right\}=\left\{x \vee x^{*}: x \in L\right\}$ of all dense elements of L is a filter of L. If L is an S-algebra, then $(x \wedge y)^{*}=x^{*} \vee y^{*}$ for all $x, y \in L$. It follows that $a \nabla b=a \vee b$ for all $a, b \in B(L)$.

For an arbitrary lattice L, the set $F(L)$ of all filters of L ordered by the set inclusion forms a lattice. It is known that $F(L)$ is modular (distributive) if and only if L is a modular (distributive) lattice. Let $a \in L$ and $[a)$ be the principal filter of L generated by $a:[a)=\{x \in L: x \geq a\}$. A proper filter P of L is called prime if $x \vee y \in P$ implies $x \in P$ or $y \in P$ for all $x, y \in L$. We call a proper filter M of L maximal if $M \subseteq G$ for no proper filter G.

The following results on quasi-modular p-algebras may be found in [8].
Let L be a quasi-modular p-algebra. Then every element $x \in L$ can be represented by $x=x^{* *} \wedge\left(x \vee x^{*}\right)$, where $x^{* *} \in B(L)$ and $x \vee x^{*} \in D(L)$. The relation Φ of a quasi-modular p-algebra L is defined by $(x, y) \in \Phi \Leftrightarrow x^{* *}=y^{* *}$ and is called the Glivenko congruence relation. It is known that the Glivenko congruence is indeed a congruence on L such that $L / \Phi \cong B(L)$ holds. Every congruence class of Φ contains exactly one element of $B(L)$ which is the greatest element in the congruence class, the greatest element of a congruence class $[x] \Phi$ is $x^{* *}$. Hence Φ partitions L into $\left\{F_{a}: a \in B(L)\right\}$, where $F_{a}=\left\{x \in L: x^{* *}=a\right\}=[a] \Phi$. It is clear that $F_{0}=\{0\}$ and $F_{1}=D(L)$.

We frequently use the following rules in the computations of p-algebras (see $[5,10]):$
(1) $0^{* *}=0$ and $1^{* *}=1$;
(2) $a \wedge a^{*}=0$;
(3) $a \leq b$ implies $b^{*} \leq a^{*}$;
(4) $a \leq a^{* *}$;
(5) $a^{* * *}=a^{*}$;
(6) $(a \vee b)^{*}=a^{*} \wedge b^{*}$;
(7) $(a \wedge b)^{*} \geq a^{*} \vee b^{*}$;
(8) $(a \wedge b)^{* *}=a^{* *} \wedge b^{* *}$;
(9) $(a \vee b)^{* *}=\left(a^{*} \wedge b^{*}\right)^{*}=\left(a^{* *} \vee b^{* *}\right)^{* *}$.

3. Boolean Filters of p-Algebras

In this section, we introduce the concept of Boolean filter of a p-algebra. Some properties of Boolean filters in a p-algebra are derived. We show that the maximal filter and prime Boolean filter of a p-algebra are equivalent. A characterization theorem of Boolean filters of a quasi-modular p-algebra will be given. Also we will prove that the set of all Boolean filters of a quasi-modular p-algebra is a bounded distributive lattice.

Definition 3.1. Let L be a p-algebra. Then, we call a filter F of L a Boolean filter if $x \vee x^{*} \in F$ for each $x \in L$.

We now give some examples of Boolean filters of a p-algebra L.
Example 3.2. (1) Let L be a p-algebra. Then the filter $D(L)$ is a Boolean filter of L as $x \vee x^{*} \in D(L)$ for all $x \in L$. Moreover $D(L)$ is the smallest Boolean filter of L and L is the greatest Boolean filter of L;
(2) Let B be a Boolean algebra. Then any filter F of B is a principal Boolean filter as $x \vee x^{*}=1 \in F$ for each $x \in B$;
(3) Let $C_{4}=\{0, a, b, c: 0<a, b<c\}$ be a four element Boolean lattice and a pentagon $N_{5}=\{u, x, y, z, 1: u<x<y<1, u<z<1, x \wedge z=y \wedge$ $z=u, x \vee z=y \vee z=1\}$. Clearly $L=C_{4} \bigoplus N_{5}$ is a quasi-modular p-algebra where \bigoplus stands for ordinal sum. Then the set of all Boolean filters of L is $\{\{c, u, x, y, z, 1\},\{a, c, u, x, y, z, 1\},\{b, c, x, y, z, 1\}, L\} ;$

We observe that the filters $\{x, y, 1\},\{y, 1\},\{z, 1\},\{u, x, y, z, 1\}$ and $\{1\}$ are not Boolean filters.

The results in Corollary 2.4, Theorem 2.6 and Theorem 2.8 from [9] are already stated for the class of all bounded distributive pseudocomplemented lattices. Now we have the following Lemma

Lemma 3.3. Every maximal filter of a p-algebra L is a Boolean filter.
Proof. Let M be a maximal filter of L. Suppose that $x \vee x^{*} \notin M$ for some $x \in L$. Then $M \vee\left[x \vee x^{*}\right)=L$. Hence $a \wedge b=0$ for some $a \in M, b \in\left[x \vee x^{*}\right)$. Now we have the following implications:

$$
\begin{aligned}
a \wedge b=0 & \Rightarrow 0=a \wedge b \geq a \wedge\left(x \vee x^{*}\right) \geq(a \wedge x) \vee\left(a \wedge x^{*}\right) \\
& \Rightarrow a \wedge x=0 \text { and } a \wedge x^{*}=0 \\
& \Rightarrow a \leq x^{*} \text { and } a \leq x^{* *} \\
& \Rightarrow a \leq x^{*} \wedge x^{* *}=0
\end{aligned}
$$

This result leads to $0=a \in M$ which is a contradiction. Hence $x \vee x^{*} \in M$ for all $x \in L$. Therefore, M is a Boolean filter of L.

We note that it is not true that every Boolean filter of L is a maximal filter. For, in Example 3.1(3), the filter $\{c, u, x, y, z, 1\}$ of L is a Boolean filter but not a maximal filter of L.

The proof of Corollary 2.4 of [9] is still appropriate for the following Lemma.
Lemma 3.4. A proper filter of a p-algebra L which contains either x or x^{*} for all $x \in L$ is a Boolean filter.

Now, we characterize the maximal filters of a p-algebra.
Theorem 3.5. Let F be a proper filter of a p-algebra L. Then the following conditions are equivalent
(1) F is a maximal of L,
(2) $x \notin F$ implies $x^{*} \in F$ for all $x \in L$,
(3) F is prime Boolean.

Proof. The most proof of Theorem 2.6 in [9] is still appropriate for this Theorem, we need only to prove that F is a prime filter of L without using distributivity in $(2) \Rightarrow(3)$. Suppose that F is not prime. Let $x \vee y \in F$ such that $x \notin F$ and $y \notin F$. By condition (2), we immediately see that $x^{*} \in F$ and $y^{*} \in F$. Hence $(x \vee y)^{*}=x^{*} \wedge y^{*} \in F$. Therefore $0=(x \vee y) \wedge(x \vee y)^{*} \in F$, a contradiction (as F is a proper filter of L). This shows that F is prime.

By Definition of Boolean filter, the following lemma is obvious.
Lemma 3.6. Let L be a p-algebra. Then the following statements hold.
(1) Any filter of L containing a Boolean filter is a Boolean filter,
(2) The class $B F(L)$ of all Boolean filters of L is a $\{1\}$-sublattice of the lattice $F(L)$.

We now characterize the Boolean filters of a quasi-modular p-algebra L.
Theorem 3.7. Let F be a proper filter of a quasi-modular p-algebra L. Then the following conditions are equivalent.
(1) F is a Boolean filter;
(2) $x^{* *} \in F$ implies $x \in F$;
(3) For $x, y \in L, x^{*}=y^{*}$ and $x \in F$ imply $y \in F$.

Proof. We prove only that $(1) \Rightarrow(2)$ without using distributivity. Assume that F is a Boolean filter of L. Suppose that $x^{* *} \in F$. Since F is a Boolean filter, we have $x \vee x^{*} \in F$ and so $x^{* *} \wedge\left(x \vee x^{*}\right) \in F$. Since L is a quasi-modular p-algebra, it follows that $x=x^{* *} \wedge\left(x \vee x^{*}\right) \in F$ and condition (2) hold.

The proofs $(2) \Rightarrow(3)$ and $(3) \Rightarrow(1)$ are given in Theorem 2.8 of [9].

Theorem 3.8. The class of Boolean filters BF(L) of a quasi-modular p-algebra L forms a bounded distributive lattice on its own.

Proof. Clearly $(B F(L), \vee, \wedge, D(L), L)$ is a bounded lattice. For any $F, H, G \in$ $B F(L)$, we have $(F \cap G) \vee(H \cap G) \subseteq(F \vee H) \cap G$. Then we have to prove that $(F \vee H) \cap G \subseteq(F \cap G) \vee(H \cap G)$. Let $x \in(F \vee H) \cap G$. Then by the distributivity of $B(L)$ and the fact that $(F \cap G) \vee(H \cap G)$ is a Boolean filter we deduce the following implications.

$$
\begin{aligned}
x \in(F \vee H) \cap G & \Rightarrow x \in F \vee H \text { and } x \in G \\
& \Rightarrow x \geq f \wedge h \text { for some } f \in F, h \in H \\
& \Rightarrow x^{* *} \geq(f \wedge h)^{* *}=f^{* *} \wedge h^{* *} \\
& \Rightarrow x^{* *}=x^{* *} \nabla\left(f^{* *} \wedge h^{* *}\right) \\
& \Rightarrow x^{* *}=\left(x^{* *} \nabla f^{* *}\right) \wedge\left(x^{* *} \nabla h^{* *}\right) \\
& \Rightarrow x^{* *}=(x \vee f)^{* *} \wedge(x \vee h)^{* *} \in(F \cap G) \vee(H \cap G) \\
& \Rightarrow x \in(F \cap G) \vee(H \cap G) \text { by Theorem } 3.6(2) .
\end{aligned}
$$

Notice that $(x \vee f)^{* *} \geq(x \vee f) \in F \cap G$ and $(x \vee h)^{* *} \geq(x \vee h) \in H \cap G$. It follows that $(B F(L), \vee, \wedge, D(L), L)$ is a bounded distributive lattice.

4. Boolean filters via Glivenko congruence classes

In this section, we will show that, for every closed element a of a quasi-modular p-algebra L, the congruence class $F_{a}=[a] \Phi$ of the Glivenko congruence relation Φ on L generates a Boolean filter $\left[F_{a}\right)$. Many properties of the Boolean filters $\left[F_{a}\right)$ for all $a \in B(L)$ are discovered. Also, we derive that the set $F_{B}(L)=\left\{\left[F_{a}\right)\right.$: $a \in B(L)\}$ forms a Boolean algebra. It is proved that $F_{B}(L)$ is isomorphic to $B(L)$. Also we express a Boolean filter as a union of certain elements of $F_{B}(L)$.

Theorem 4.1. Let L be a quasi-modular p-algebra. Then for any two closed elements a, b of L, the following statements hold.
(1) $\left[F_{a}\right)=\left\{x \in L: x^{* *} \geq a\right\}=[a) \vee D(L)$,
(2) $\left[F_{a}\right)$ is a Boolean filter of L,
(3) $a \leq b$ in $B(L)$ if and only if $\left[F_{b}\right) \subseteq\left[F_{a}\right)$ in $F_{B}(L)$,
(4) The set $F_{B}(L)$ forms a Boolean algebra on its own. Moreover, $B(L) \cong F_{B}(L)$,
(5) $\left[F_{a \wedge b}\right)=\left[F_{a}\right) \vee\left[F_{b}\right)$,
(6) $\left[F_{a \nabla b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$,
(7) $\left[F_{a \vee b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$ whenever L is a quasi-modular S-algebra.

Proof. (1) $x \in\left[F_{a}\right)$ if and only if there exists a positive integer n and f_{1}, f_{2}, \ldots, $f_{n} \in F_{a}$ such that $x \geq f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}$. Then $f_{i}^{* *}=a, i=1, \ldots, n$. Let $H=\left\{x \in L: x^{* *} \geq a\right\}$. Clearly H is a filter of L. Firstly we verify that $\left[F_{a}\right)=H$. Let $x \in\left[F_{a}\right)$. Now we have the following implications.

$$
\begin{aligned}
x \in\left[F_{a}\right) & \Rightarrow x \geq f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n} \text { for some } f_{1}, \ldots, f_{n} \in F_{a} \\
& \Rightarrow x^{* *} \geq\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right)^{* *} \\
& \Rightarrow x^{* *} \geq f_{1}^{* *} \wedge f_{2}^{* *} \wedge \ldots \wedge f_{n}^{* *} \\
& \Rightarrow x^{* *} \geq a \text { as } f_{i}^{* *}=a \\
& \Rightarrow x \in H .
\end{aligned}
$$

Then $\left[F_{a}\right) \subseteq H$. Conversely, suppose that $H \nsubseteq\left[F_{a}\right)$. Then there exists $y \in\left[F_{a}\right)$ with $y \notin H$. Hence $y \geq f_{1} \wedge f_{2} \wedge \ldots f_{n}$ for some $f_{1}, f_{2}, \ldots, f_{n} \in F_{a}$. It follows that $y^{* *} \geq\left(f_{1} \wedge f_{2} \wedge \ldots \wedge f_{n}\right)^{* *}=f_{1}^{* *} \wedge f_{2}^{* *} \wedge \ldots \wedge f_{n}^{* *}=a$ as $f_{i}^{* *}=a$. Then $y^{* *} \geq a$, which is a contradiction. Consequently $H \subseteq\left[F_{a}\right)$. Therefore $\left[F_{a}\right)=\left\{x \in L: x^{* *} \geq a\right\}$.

Now we prove that $\left[F_{a}\right)=[a) \vee D(L)$. Let $x \in\left[F_{a}\right)$. Then we have the following implications.

$$
\begin{aligned}
x \in\left[F_{a}\right) & \Rightarrow x^{* *} \geq a \\
& \Rightarrow x=x^{* *} \wedge\left(x \vee x^{*}\right) \geq a \wedge\left(x \vee x^{*}\right) \\
& \Rightarrow x \in[a) \vee D(L) \text { as } x \vee x^{*} \in D(L) .
\end{aligned}
$$

Then $\left[F_{a}\right) \subseteq[a) \vee D(L)$. Conversely, let $y \in[a) \vee D(L)$. Then $y \geq a \wedge z$ for some $z \in D(L)$. It follows that $y^{* *} \geq(a \wedge z)^{* *}=a^{* *} \wedge z^{* *}=a \wedge 1=a$ as $a^{* *}=a$ and z is a dense element of L. Therefore $y \in\left[F_{a}\right)$ and $[a) \vee D(L) \subseteq\left[F_{a}\right)$.
(2) By (1) above, $D(L) \subseteq\left[F_{a}\right)$ for all $a \in B(L)$. Now, by Lemma 3.6(1), [F_{a}) is a Boolean filter of L.
(3) Let $a \leq b$ in $B(L)$. Let $x \in\left[F_{b}\right)$. Then $x^{* *} \geq b \geq a$. Hence $x \in\left[F_{a}\right)$ and $\left[F_{b}\right) \subseteq\left[F_{a}\right)$ Conversely, suppose that $\left[F_{b}\right) \subseteq\left[F_{a}\right)$. Since $b \in F_{b} \subseteq\left[F_{b}\right) \subseteq\left[F_{a}\right)$, then $b=b^{* *} \geq a$.
(4) Define the mapping $g: B(L) \rightarrow F_{B}(L)$ by $g(a)=\left[F_{a}\right)$. It follows easily from (3) above that g is an order anti-isomorphism between $B(L)$ and $F_{B}(L)$. Then $F_{B}(L)$ is a Boolean algebra and g is a Boolean anti-isomorphism. It follows that the mapping $f: B(L) \rightarrow F_{B}(L)$ defined by $f(a)=\left[F_{a^{*}}\right)$ is a Boolean isomorphism. Therefore $B(L) \cong F_{B}(L)$.
(5), (6) Since $g: B(L) \rightarrow F_{B}(L)$ defined by $g(a)=\left[F_{a}\right)$ is an anti-isomorphism by (4) above between Boolean algebras $B=\left(B, \nabla, \wedge,{ }^{*}, 0,1\right)$ and $F_{B}(L)=$ $\left(F_{B}(L), \vee, \cap,{ }^{-}, D(L), L\right)$, where $\overline{\left[F_{a}\right)}=\left[F_{a^{*}}\right)$, we get

$$
\begin{aligned}
{\left[F_{a \wedge b}\right) } & =g(a \wedge b) \\
& =g(a) \vee g(b) \\
& =\left[F_{a}\right) \vee\left[F_{b}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[F_{a \nabla b}\right) } & =g(a \nabla b) \\
& =g(a) \cap g(b) \\
& =\left[F_{a}\right) \cap\left[F_{b}\right)
\end{aligned}
$$

(7) If L is a quasi-modular S-algebra, then $(x \wedge y)^{*}=x^{*} \vee y^{*}$ for all $x, y \in L$. Hence for all $a, b \in B(L)$ we have $a \nabla b=\left(a^{*} \wedge b^{*}\right)^{*}=a^{* *} \vee b^{* *}=a \vee b$. Therefore $\left[F_{a \vee b}\right)=\left[F_{a}\right) \cap\left[F_{b}\right)$ immediately follows from (6).

Corollary 4.2. Let L be a finite quasi-modular p-algebra. Then we have.
(1) Every Boolean filter can be expressed as $\left[F_{a}\right)$ for some $a \in B(L)$;
(2) $B F(L) \cong F_{B}(L)$.

Now, we are going to represent a Boolean filter of a quasi-modular p-algebra L as a union of certain elements of $F_{B}(L)$. We have the following theorem.
Theorem 4.3. Let F be a Boolean filter of L. Then $F=\bigcup_{x \in F}\left[F_{x^{* *}}\right)$.
Proof. Let $x \in F$. Then $x^{* *} \in F$ and $x \vee x^{*} \in D(L) \subseteq F$. Thus $x=x^{* *} \wedge$ $\left(x \vee x^{*}\right) \in\left[x^{* *}\right) \vee D(L)=\left[F_{x^{* *}}\right)$. Then $F \subseteq \bigcup_{x \in F}\left[F_{x^{* *}}\right)$. Conversely, let $y \in$ $\bigcup_{x \in F}\left[F_{x^{* *}}\right)$. Then $y \in\left[F_{z^{* *}}\right)$ for some $z \in F$. Hence $y^{* *} \geq z^{* *} \in F$. Then $y^{* *} \in F$, which implies $y \in F$ as F is Boolean. Therefore $\bigcup_{x \in F}\left[F_{x^{* *}}\right) \subseteq F$.

5. Boolean filters and congruences

In this section we investigate the relationships between the set of Boolean filters of a quasi-modular p-algebra L and the set of congruences on the interval $[\Phi, \nabla]$, where ∇ is the universal congruence on L.

We first state the following lemma.
Lemma 5.1. Let θ be a congruence relation on a quasi-modular p-algebra L such that $\theta \in[\Phi, \nabla]$. Then Coker θ is a Boolean filter of L.
Proof. Obviously Coker $\theta=\{x \in L:(x, 1) \in \theta\}$ is a filter of L. For every $x \in L,\left(x \vee x^{*}\right)^{* *}=1=1^{* *}$. Then $\left(x \vee x^{*}, 1\right) \in \Phi \subseteq \theta$. Hence $x \vee x^{*} \in \operatorname{Coker} \theta$. Therefore, Coker θ is a Boolean filter of L.

For a Boolean filter F of a quasi-modular p-algebra L, define a relation θ_{F} on L as follows :

$$
(x, y) \in \theta_{F} \Leftrightarrow x^{* *} \wedge a=y^{* *} \wedge a \text { for some } a \in F \cap B(L)
$$

We now establish the following theorem for a Boolean filter of L.
Theorem 5.2. Let F be a Boolean filter of a quasi-modular p-algebra L. Then the following statements hold.
(1) θ_{F} is a congruence on L such that $\Phi \subseteq \theta_{F}$;
(2) $\left[x^{* *}\right] \theta_{F}=[x] \theta_{F}$, for all $x \in L$;
(3) $\operatorname{Coker}_{F}=F$;
(4) $\theta_{D(L)}=\Phi$ and $\theta_{L}=\nabla$ whenever F is identical with $D(L)$, respectively, L;
(5) L / θ_{F} is a Boolean algebra.

Proof. (1) Clearly, θ_{F} is an equivalence relation on L. Now we prove that θ_{F} is a lattice congruence on L. Let $(x, y),(c, d) \in \theta_{F}$. Then $x^{* *} \wedge a=y^{* *} \wedge a$ and $c^{* *} \wedge b=d^{* *} \wedge b$ for some $a, b \in F \cap B(L)$. Now we have the following equalities.

$$
\begin{aligned}
(x \wedge c)^{* *} \wedge(a \wedge b) & =x^{* *} \wedge c^{* *} \wedge a \wedge b \\
& =y^{* *} \wedge d^{* *} \wedge a \wedge b \\
& =(y \wedge d)^{* *} \wedge(a \wedge b)
\end{aligned}
$$

Then $(x \wedge c, y \wedge d) \in \theta_{F}$. Now by distributivity of $B(L)$ we have

$$
\begin{aligned}
(x \vee c)^{* *} \wedge(a \wedge b) & =\left(x^{*} \wedge c^{*}\right)^{*} \wedge(a \wedge b) \\
& =\left(x^{* * *} \wedge c^{* * *}\right)^{*} \wedge(a \wedge b) \\
& =\left(x^{* *} \nabla c^{* *}\right) \wedge(a \wedge b) \\
& =\left(x^{* *} \wedge a \wedge b\right) \nabla\left(c^{* *} \wedge a \wedge b\right) \\
& =\left(y^{* *} \wedge a \wedge b\right) \nabla\left(d^{* *} \wedge a \wedge b\right) \\
& =\left(y^{* *} \nabla d^{* *}\right) \wedge(a \wedge b) \\
& =(y \vee d)^{* *} \wedge(a \wedge b)
\end{aligned}
$$

Then $(x \vee c, y \vee d) \in \theta_{F_{a}}$ as $a \wedge b \in F \cap B(L)$. Now we show that θ_{F} preserves the operation *. Let $(x, y) \in \theta_{F}$. Then $x^{* *} \wedge a=y^{* *} \wedge a$ for some $a \in F \cap B(L)$. Now by the distributivity of $B(L)$ we have the following set of implications.

$$
\begin{aligned}
x^{* *} \wedge a=y^{* *} \wedge a & \Rightarrow\left(x^{* *} \wedge a\right) \nabla a^{*}=\left(y^{* *} \wedge a\right) \nabla a^{*} \\
& \Rightarrow\left(x^{* *} \nabla a^{*}\right) \wedge\left(a \nabla a^{*}\right)=\left(y^{* *} \nabla a^{*}\right) \wedge\left(a \nabla a^{*}\right) \\
& \Rightarrow x^{* *} \nabla a^{*}=y^{* *} \nabla a^{*}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(x^{* * *} \wedge a^{* *}\right)^{*}=\left(y^{* * *} \wedge a^{* *}\right)^{*} \\
& \Rightarrow \quad\left(x^{* * *} \wedge a\right)^{* *}=\left(y^{* * *} \wedge a\right)^{* *} \\
& \Rightarrow \quad x^{* * *} \wedge a=y^{* * *} \wedge a \\
& \Rightarrow \quad\left(x^{*}, y^{*}\right) \in \theta_{F} .
\end{aligned}
$$

It is immediate that θ_{F} is a congruence on L. Let $(x, y) \in \Phi$. Then $x^{* *}=y^{* *}$. Hence, $x^{* *} \wedge a=y^{* *} \wedge a$, for some $a \in F \cap B(L)$. Thus $(x, y) \in \theta_{F}$ and $\Phi \subseteq \theta_{F}$.
(2) Since $x^{* * * *} \wedge a=x^{* *} \wedge a,\left(x^{* *}, x\right) \in \theta_{F_{a}}$, and thereby $\left[x^{* *}\right] \theta_{F}=[x] \theta_{F}, \forall x \in L$.
(3) It is known that $\operatorname{Coker} \theta_{F}=[1] \theta_{F_{a}}$. Let $x \in \operatorname{Coker} \theta_{F}$. Then we get the following implications.

$$
\begin{aligned}
x \in \operatorname{Coker} \theta_{F} & \Rightarrow(x, 1) \in \theta_{F} \\
& \Rightarrow x^{* *} \wedge a=1^{* *} \wedge a \text { for some } a \in F \cap B(L) \\
& \Rightarrow x^{* *} \wedge a=a \text { as } 1^{* *}=1 \\
& \Rightarrow x^{* *} \geq a \in F \\
& \Rightarrow x^{* *} \in F \\
& \Rightarrow x \in F \text { as } F \text { is a Boolean filter of } L .
\end{aligned}
$$

Then $\operatorname{Coker} \theta_{F} \subseteq F$. Conversely, let $y \in F$. Then

$$
\begin{aligned}
y \in F & \Rightarrow y^{* *} \wedge y^{* *}=y^{* *}=1^{* *} \wedge y^{* *} \\
& \Rightarrow(y, 1) \in \theta_{F} \text { as } y^{* *} \in F \cap B(L) \\
& \Rightarrow y \in \operatorname{Coker} \theta_{F} .
\end{aligned}
$$

Then $F \subseteq \operatorname{Coker}{ }_{F}$.
(4) Since $D(L) \cap B(L)=\{1\}$ and $L \cap B(L)=B(L)$, we deduce the following equalities:

$$
\begin{aligned}
\theta_{D(L)}= & \left\{(x, y) \in L \times L: x^{* *} \wedge 1=y^{* *} \wedge 1\right\}=\left\{(x, y) \in L \times L: x^{* *}=y^{* *}\right\}=\Phi \\
\theta_{L}= & \left\{(x, y) \in L \times L: x^{* *} \wedge 0=y^{* *} \wedge 0\right\}=\{(x, y) \in L \times L: x, y \in L\} \\
& =L \times L=\nabla
\end{aligned}
$$

(5) From (2) we have, $L / \theta_{F}=\left\{[x] \theta_{F}: x \in L\right\}=\left\{\left[x^{* *}\right] \theta_{F}: x \in L\right\}$. Let $[x] \theta_{F},[y] \theta_{F},[z] \theta_{F} \in L / \theta_{F}$. Then

$$
\begin{aligned}
{[x] \theta_{F} \wedge\left([y] \theta_{F} \vee[z] \theta_{F}\right) } & =[x \wedge(y \vee z)] \theta_{F} \\
& =\left[(x \wedge(y \vee z))^{* *}\right] \theta_{F} \\
& =\left[x^{* *} \wedge(y \vee z)^{* *}\right] \theta_{F}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[x^{* *} \wedge\left(y^{* *} \nabla z^{* *}\right)\right] \theta_{F} \\
& =\left[\left(x^{* *} \wedge y^{* *}\right) \nabla\left(x^{* *} \wedge z^{* *}\right)\right] \theta_{F} \\
& =\left[(x \wedge y)^{* *} \nabla(x \wedge z)^{* *}\right] \theta_{F} \\
& =\left[((x \wedge y) \vee(x \wedge z))^{* *}\right] \theta_{F} \\
& =[(x \wedge y) \vee(x \wedge z)] \theta_{F} \\
& =[x \wedge y] \theta_{F} \vee[x \wedge z] \theta_{F} \\
& =\left([x] \theta_{F} \wedge[y] \theta_{F}\right) \vee\left([x] \theta_{F} \wedge[z] \theta_{F}\right) .
\end{aligned}
$$

This shows that L / θ_{F} is a distributive lattice. Clearly, $[0] \theta_{F}$ and $[1] \theta_{F}=F$ are the zero and the unit elements of L / θ_{F}. This shows that L / θ_{F} is a bounded distributive lattice. Now we proceed to show that every $[x] \theta_{F}$ of L / θ_{F} has a complement. Since $x \wedge x^{*}=0,[x] \theta_{F} \wedge\left[x^{*}\right] \theta_{F}=\left[x \wedge x^{*}\right] \theta_{F}=[0] \theta_{F}$. Since F is a Boolean filter, $x \vee x^{*} \in F$. Hence, we have $[x] \theta_{F} \vee\left[x^{*}\right] \theta_{F}=\left[x \vee x^{*}\right] \theta_{F}=F$. Thus we have proved that L / θ_{F} is a Boolean algebra.

Now, let $F=\left[F_{a}\right)$ be a Boolean filter of L for some $a \in B(L)$. Then $a \in F \cap B(L)$. For brevity, we write $\theta_{F_{a}}$ instead of $\theta_{\left[F_{a}\right)}$.

In the following Corollary, we state some congruence properties of a quasimodular p-algebra.

Corollary 5.3. Let L be a quasi-modular p-algebra. Then the following statements hold.
(1) $(x, y) \in \theta_{F_{a}} \Leftrightarrow x^{* *} \wedge a=y^{* *} \wedge a$,
(2) $\operatorname{Coker} \theta_{F_{a}}=\left[F_{a}\right)$ and $\operatorname{Ker} \theta_{F_{a}}=\left(a^{*}\right]$,
(3) $\theta_{F_{1}}=\Phi$ and $\theta_{F_{0}}=\nabla$.

Proof. (1) Let $(x, y) \in \theta_{F_{a}}$. Then

$$
\begin{aligned}
(x, y) \in \theta_{F_{a}} & \Rightarrow x^{* *} \wedge b=y^{* *} \wedge b \text { for some } b \in\left[F_{a}\right) \cap B(L) \\
& \Rightarrow x^{* *} \wedge b \wedge a=y^{* *} \wedge b \wedge a \\
& \Rightarrow x^{* *} \wedge a=y^{* *} \wedge a \text { as } b=b^{* *} \geq a
\end{aligned}
$$

Conversely, let $x^{* *} \wedge a=y^{* *} \wedge a$. Then $(x, y) \in \theta_{F_{a}}$ as $a \in\left[F_{a}\right) \cap B(L)$.
(2) By Theorem 5.2(3), we have $\operatorname{Coker} \theta_{F_{a}}=\left[F_{a}\right)$. Now we prove the second equality in (2) as follows:

$$
\begin{aligned}
\operatorname{Ker} \theta_{F_{a}} & =\left\{x \in L:(x, 0) \in \theta_{F_{a}}\right\} \\
& =\left\{x \in L: x^{* *} \wedge a=0^{* *} \wedge a\right\} \\
& =\left\{x \in L: x^{* *} \wedge a=0\right\} \text { as } 0^{* *}=0 \\
& =\left\{x \in L: x \leq x^{* *} \leq a^{*}\right\} \\
& =\left(a^{*}\right] .
\end{aligned}
$$

(3) Using Theorem 5.2(4), we get $\theta_{F_{1}}=\theta_{D(L)}=\Phi$ and $\theta_{F_{0}}=\theta_{\left[F_{0}\right)}=\theta_{L}=\nabla$

By combining Lemma 5.1 and Theorem 5.2(1), (3) we establish the following characterization theorem of a Boolean filter of L.

Theorem 5.4. A filter F of a quasi-modular p-algebra L is a cokernel of a congruence $\theta \in[\Phi, \nabla]$ if and only if F is a Boolean filter.

Consider $\operatorname{Con}_{B}(L)=\left\{\theta_{F_{a}}: a \in B(L)\right\}$, we observe that $\operatorname{Con}_{B}(L)$ is a partially ordered set under set inclusion. We now study properties of the elements in the set $C o n_{B}(L)$.

Theorem 5.5. Let L be a quasi-modular p-algebra. Then for every $a, b \in B(L)$, the following statement hold in $\operatorname{Con}_{B}(L)$.
(1) $a \leq b$ if and only if $\theta_{F_{b}} \subseteq \theta_{F_{a}}$,
(2) The set $\operatorname{Con}_{B}(L)$ is a Boolean algebra on its own. Moreover, $F_{B}(L) \cong$ $\operatorname{Con}_{B}(L)$,
(3) $\theta_{F_{a}} \sqcup \theta_{F_{b}}=\theta_{F_{a \wedge b}}$ and $\theta_{F_{a}} \sqcap \theta_{F_{b}}=\theta_{F_{a \nabla b}}$,
(4) $\theta_{F_{a}} \sqcap \theta_{F_{a^{*}}}=\Phi$ and $\theta_{F_{a}} \sqcup \theta_{F_{a^{*}}}=\nabla$.

Proof. (1) Let $a \leq b$ and $(x, y) \in \theta_{F_{b}}$. Then $x^{* *} \wedge b=y^{* *} \wedge b$. Hence $x^{* *} \wedge b \wedge a=$ $y^{* *} \wedge b \wedge a$. This leads to $x^{* *} \wedge a=y^{* *} \wedge a$. Thus $(x, y) \in \theta_{F_{a}}$ and $\theta_{F_{b}} \subseteq \theta_{F_{a}}$. Conversely, let $\theta_{F_{b}} \subseteq \theta_{F_{a}}$. Then we have $(b, 1) \in \theta_{F_{b}} \subseteq \theta_{F_{a}}$. This implies that $b \wedge a=1 \wedge a=a$. Thus $a \leq b$.
(2) Define the mapping $\Psi: B(L) \rightarrow \operatorname{Con}_{B}(L)$ as follows :

$$
\Psi(a)=\theta_{F_{a}} \text { for all } a \in B(L)
$$

By (1) above, Ψ is an order anti-isomorphism between $B(L)$ and $\operatorname{Con}_{B}(L)$. This immediately implies that $\operatorname{Con}_{B}(L)$ is a Boolean algebra. Now if we define the mapping $f: B(L) \rightarrow \operatorname{Con}_{B}(L)$ by $f(a)=\theta_{F_{a^{*}}}$, then f is an isomorphism between Boolean algebras $B(L)$ and $C o n_{B}(L)$. Then $B(L) \cong \operatorname{Con}_{B}(L)$ and $B(L) \cong F_{B}(L)$ imply $F_{B}(L) \cong \operatorname{Con}_{B}(L)$.
(3) Since by (2) above Ψ is a anti-isomorphism, we have $\Psi(a \wedge b)=\Psi(a) \sqcup \Psi(b)$ and $\Psi(a \nabla b)=\Psi(a) \sqcap \Psi(b)$, where \sqcup and \sqcap are the join and meet operations on $\operatorname{Con}_{B}(L)$. Now

$$
\theta_{F_{a}} \sqcup \theta_{F_{b}}=\Psi(a) \sqcup \Psi(b)=\Psi(a \wedge b)=\theta_{F_{a \wedge b}}
$$

and

$$
\theta_{F_{a}} \sqcap \theta_{F_{b}}=\Psi(a) \sqcap \Psi(b)=\Psi(a \nabla b)=\theta_{F_{a \nabla b}}
$$

(4) From (3) above we have

$$
\theta_{F_{a}} \sqcap \theta_{F_{a^{*}}}=\theta_{F_{a \nabla a^{*}}}=\theta_{F_{1}}=\Phi
$$

and

$$
\theta_{F_{a}} \sqcup \theta_{F_{a^{*}}}=\theta_{F_{a \wedge a^{*}}}=\theta_{F_{0}}=\nabla .
$$

Therefore $\operatorname{Con}_{B}(L)=\left(\operatorname{Con}_{B}(L), \sqcup, \sqcap,,^{-}, \Phi, \nabla\right)$, where $\bar{\theta}_{F_{a}}=\theta_{F_{a^{*}}}$ is the complement of $\theta_{F_{a}}$ on $\operatorname{Con}_{B}(L)$ and Φ, ∇ are the smallest and greatest elements of $\mathrm{Con}_{B}(L)$ respectively.

In the following Corollary an isomorphism between the sublattice $[\Phi, \nabla]$ of $\operatorname{Con}(L)$ and the lattice $B F(L)$ of all Boolean filters of L is obtained.

Corollary 5.6. Let L be a finite quasi-modular p-algebra. Then $[\Phi, \nabla] \cong B F(L)$.
Proof. Since L is finite, $B F(L)=F_{B}(L)$ and hence $\operatorname{Con}_{B}(L)=[\Phi, \nabla]$. By the above Theorem 5.5 (2), we deduce that $B F(L) \cong[\Phi, \nabla]$.

6. Congruences and direct product of Boolean filters

Let L_{1} and L_{2} be two p-algebras. Then the direct product $L_{1} \times L_{2}$ is also a p-algebra, where * is defined on $L_{1} \times L_{2}$ by $(a, b)^{*}=\left(a^{*}, b^{*}\right)$. Now we study the direct product of Boolean filters of p-algebras. Some properties of congruences with respect to direct product are given.

We first consider the Boolean filters of the p-algebras in the following theorem.
Theorem 6.1. If F_{1} and F_{2} are Boolean filters of p-algebras L_{1} and L_{2} respectively, then $F_{1} \times F_{2}$ is a Boolean filter of $L_{1} \times L_{2}$. Conversely, every Boolean filter F of $L_{1} \times L_{2}$ can be expressed as $F=F_{1} \times F_{2}$ where F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively.

Proof. Let F_{1} and F_{2} be Boolean filters of L_{1} and L_{2} respectively. Then, it is clear that $F_{1} \times F_{2}$ is a filter of $L_{1} \times L_{2}$. Since F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively, we get $a \vee a^{*} \in F_{1}$ for each $a \in L_{1}$ and $b \vee b^{*} \in F_{2}$ for each $b \in L_{2}$. Hence we have $(a, b) \vee(a, b)^{*}=(a, b) \vee\left(a^{*}, b^{*}\right)=\left(a \vee a^{*}, b \vee b^{*}\right) \in F_{1} \times F_{2}$ This shows that $F_{1} \times F_{2}$ is a Boolean filter of $L_{1} \times L_{2}$. Conversely, if F is a Boolean filter of $L_{1} \times L_{2}$, then we consider F_{1} and F_{2} as follows:

$$
F_{1}=\left\{x \in L_{1}:(x, 1) \in F\right\} \text { and } F_{2}=\left\{y \in L_{2}:(1, y) \in F\right\}
$$

Clearly F_{1} and F_{2} are filters of L_{1} and L_{2} respectively. We now prove that F_{1} and F_{2} are Boolean filters of L_{1} and L_{2} respectively. For all $x \in F_{1}$, we have $(x, 1) \in F$. Since F is Boolean, $\left(x \vee x^{*}, 1\right)=(x, 1) \vee(x, 1)^{*} \in F$. Hence, we have $x \vee x^{*} \in F_{1}$. Therefore, F_{1} is a Boolean filter of L_{1}. Similarly, F_{2} is a Boolean filter of L_{2}. Now we prove that $F=F_{1} \times F_{2}$. For this purpose, we let $(x, y) \in F$. Then we have the following implications.

$$
\begin{aligned}
(x, y) \in F & \Rightarrow(x, 1) \in F \text { and }(1, y) \in F \\
& \Rightarrow x \in F_{1} \text { and } y \in F_{2} \\
& \Rightarrow(x, y) \in F_{1} \times F_{2}
\end{aligned}
$$

Hence, $F \subseteq F_{1} \times F_{2}$. Conversely, if $(x, y) \in F_{1} \times F_{2}$, then the following implications hold.

$$
\begin{aligned}
(x, y) \in F_{1} \times F_{2} & \Rightarrow x \in F_{1} \text { and } y \in F_{2} \\
& \Rightarrow(x, 1) \in F \text { and }(1, y) \in F \\
& \Rightarrow(x, y)=(x, 1) \wedge(1, y) \in F
\end{aligned}
$$

Consequently, we have $F_{1} \times F_{2} \subseteq F$. This shows that $F_{1} \times F_{2}=F$.
In closing this paper, we state two equalities concerning Boolean filters of quasimodular p-algebras.

Theorem 6.2. Let $\left[F_{a}\right)$ and $\left[F_{b}\right)$ be two Boolean filters of the quasi-modular p-algebras L_{1} and L_{2}, respectively. Then
(1) $\left[F_{a}\right) \times\left[F_{b}\right)=\left[F_{(a, b)}\right)$
(2) $\theta_{F_{a} \times F_{b}}=\theta_{F_{(a, b)}}$.

Proof. (1) From the above Theorem 6.1, we see immediately that $\left[F_{a}\right) \times\left[F_{b}\right)$ is a Boolean filter of $L_{1} \times L_{2}$. Now, we have

$$
\begin{aligned}
(x, y) \in\left[F_{a}\right) \times\left[F_{b}\right) & \Leftrightarrow x \in\left[F_{a}\right) \text { and } y \in\left[F_{b}\right) \\
& \Leftrightarrow x^{* *} \geq a \text { and } y^{* *} \geq b \\
& \Leftrightarrow(x, y)^{* *}=\left(x^{* *}, y^{* *}\right) \geq(a, b) \\
& \Leftrightarrow(x, y) \in\left[F_{(a, b)}\right) .
\end{aligned}
$$

Therefore, $\left[F_{a}\right) \times\left[F_{b}\right)=\left[F_{(a, b)}\right)$.
(2) By (1), we obtain $\theta_{F_{a} \times F_{b}}=\theta_{\left[F_{a}\right) \times\left[F_{b}\right)}=\theta_{\left[F_{(a, b)}\right)}=\theta_{(a, b)}$.

Acknowledgments

The authors would like to thank the referee for his/her useful comments and valuable suggestions given to this paper.

References

[1] R. Balbes and A. Horn, Stone lattices, Duke Math. J. 37 (1970) 537-543. doi:10.1215/S0012-7094-70-03768-3
[2] R. Balbes and Ph. Dwinger, Distributive Lattices (Univ. Miss. Press, 1975).
[3] G. Birkhoff, Lattice theory, Amer. Math. Soc., Colloquium Publications, 25, New York, 1967.
[4] G. Grätzer, A generalization on Stone's representations theorem for Boolean algebras, Duke Math. J. 30 (1963) 469-474. doi:10.1215/S0012-7094-63-03051-5
[5] G. Grätzer, Lattice Theory, First Concepts and Distributive Lattice (W.H. Freeman and Co., San-Francisco, 1971).
[6] G. Grätzer, General Lattice Theory (Birkhäuser Verlag, Basel and Stuttgart, 1978).
[7] O. Frink, Pseudo-complments in semi-lattices, Duke Math. J. 29 (1962) 505-514. doi:10.1215/S0012-7094-62-02951-4
[8] T. Katrin̆ák and P. Mederly, Construction of p-algebras, Algebra Universalis 4 (1983) 288-316.
[9] M. Sambasiva Rao and K.P. Shum, Boolean filters of distributive lattices, Int. J. Math. and Soft Comp. 3 (2013) 41-48.
[10] P.V. Venkatanarasimhan, Ideals in semi-lattices, J. Indian. Soc. (N.S.) 30 (1966) 47-53.

