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1. Introduction

Finding the relationship between the algebraic structure of rings using properties
of graphs associated to them has become an interesting topic in recent years.
Indeed, it is worthwhile to relate algebraic properties of rings to combinatorial
properties of their assigned graphs. One of the associated graphs to a ring R
is the zero-divisor graph, denoted by Γ(R). It is a simple graph with vertex
set Z(R) \ {0}, and two vertices x and y are adjacent if and only if xy = 0.
It is due to Anderson and Livingston [1]. This graph was first introduced by
Beck, in [5], where all the elements of R were considered as the vertices. Since
then, there has been a lot of interest in this subject and various papers were
published establishing different properties of these graphs as well as relations
between graphs of various extensions [1–8]. In [8], Redmond introduced and
investigated the zero-divisor graph with respect to an ideal. Let I be an ideal of
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a commutative ring R. The zero-divisor graph of R with respect to I, denoted
by ΓI(R), is the graph whose vertices are the set ZI(R)∗ = ZI(R) \ I = {x ∈ R :
xy ∈ I for some y ∈ R \ I} \ I with distinct vertices x and y adjacent if and only
if xy ∈ I. In [8], Redmond showed that for an ideal I of R, diam(ΓI(R)) ≤ 3 and
gr(ΓI(R)) ≤ 4 (if it contains cycle). In [2], Axtell, Stickles, and Warfel studied
zero-divisor graphs of direct products of commutative rings. In this paper, we
completely characterize the diameter and girth of the zero-divisor graph with
respect to an ideal of a finite direct product of rings.

In order to make this paper easier to follow, we recall in this section various
notions from graph theory which will be used in the sequel. For a graph Γ, we
denote the set of all edges and vertices by E(Γ) and V (Γ), respectively. We
recall that a graph is connected if there exists a path connecting any two distinct
vertices. The distance between two distinct vertices a and b, denoted by d(a, b),
is the length of a shortest path connecting them (d(a, a) = 0 and d(a, b) = ∞ if
there is no such path). The diameter of a graph Γ, denoted by diam(Γ), is equal
to sup {d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected with diameter
less than or equal to one. The girth of a graph Γ, denoted by gr(Γ), is the length
of a shortest cycle in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞.

2. Diameter and direct products

In this section, we will investigate the relation between the diameter of an ideal-
based zero-divisor graph of a finite direct product R1 × R2 × · · · × Rn with the
diameters of the zero-divisor graphs with respect to ideals of R1, R2, · · · , Rn−1,
and Rn.

Proposition 1. Let I be an ideal of a commutative ring S. Then the following

hold.

(1) If diam(ΓI(S)) = 1 and S = ZI(S), then S2 ⊆ I, where S2 = {rs : r, s ∈ S}.
(2) If diam(ΓI(S)) = 2 and ZI(S) is a (not necessarily proper) subring of S,

then for all x, y ∈ ZI(S), there exists z ∈ ZI(S)
∗ such that zx, zy ∈ I.

Proof. (1) Suppose that x2 /∈ I for some x ∈ S. If S = {0, x}, then we have
S 6= ZI(S), which is a contradiction. Hence, there is an element y ∈ S\I such
that x 6= y. Observe that x + y 6= x. By assumption, xy, x(x + y) ∈ I; hence
x2 ∈ I since I is an ideal of S, a contradiction.

(2) Let x, y ∈ ZI(S). We split the proof into two cases.

Case 1. x = y. If xy ∈ I, we choose z = x. If xy /∈ I, then there exists
z ∈ ZI(S)

∗ such that zx, zy ∈ I since diam(ΓI(S)) = 2.
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Case 2. x 6= y. If xy /∈ I, we are done. So we may assume that xy ∈ I. If
x2 ∈ I (resp., y2 ∈ I), then z = x (resp., z = y) yields the desired element. So,
suppose x2, y2 /∈ I. Also, if x + y ∈ I, then x(x + y) ∈ I gives x2 ∈ I, which
is a contradiction. Hence x + y /∈ I. Let X ′ = {x′ ∈ ZI(S)

∗ : xx′ ∈ I} and
Y ′ = {y′ ∈ ZI(S)

∗ : yy′ ∈ I}. Observe that x ∈ Y ′ and y ∈ X ′; hence X ′ and
Y ′ are nonempty. If X ′ ∩ Y ′ 6= ∅, choose z ∈ X ′ ∩ Y ′. Suppose X ′ ∩ Y ′ = ∅
and consider x + y. By assumption, x + y 6= x, x + y 6= y, x + y /∈ X ′, and
x + y /∈ Y ′. Since diam(ΓI(S)) = 2 and ZI(S) is a subring (so x + y ∈ ZI(S),
there exists w ∈ ZI(S)

∗ such that the following path exists: x−w− x+ y. Then
w(x + y)− wx = wy ∈ I, and so w ∈ X ′ ∩ Y ′, which is a contradiction.

Remark 2. Assume that R1, R2, . . . , Rn (n ≥ 2) are commutative rings. If I
is an ideal of R = R1 × R2 × · · · × Rn, then for each i (1 ≤ i ≤ n), Ii = {ai :
(0, 0, . . . , 0, ai, 0, . . . , 0) ∈ I} is an ideal of Ri.

Remark 3. Throughout this paper, we shall assume, unless otherwise stated,
that R, Ii, and I are as described in Remark 2.

Compare the next theorem with [2, Theorem 3.3].

Theorem 4. Let R, Ii, and I be as in Remark 3 such that Rn = ZIn(Rn) and

R1, R2, . . . , Rn−1 are domains.

(1) If diam(ΓIn(Rn)) ≤ 2, then diam(ΓI(R)) = 2.

(2) If diam(ΓIn(Rn)) = 3, then diam(ΓI(R)) = 3.

Proof. (1) Let x = (x1, . . . , xn) ∈ R. By assumption, there exists an ele-
ment yn ∈ ZIn(Rn)

∗ such that xnyn ∈ In. Then (0, 0, . . . , 0, yn) /∈ I and
x(0, 0, . . . , yn) ∈ I since Rn = ZIn(Rn); hence ZI(R) = R. If zn ∈ ZIn(Rn)

∗,
then (1, 1, 0, . . . , 0)(1, 1, . . . , zn) /∈ I; so

d((1, 1, 0, . . . , 0), (1, 1, . . . , zn)) ≥ 2.

Now if diam(ΓIn(Rn)) ≤ 2, then for a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R, we
either have ab ∈ I or for some cn ∈ ZIn(Rn)

∗, we have

a(0, 0, . . . , cn), b(0, . . . , cn) ∈ I

using Proposition 2 (2) in the diameter two case. So we have diam(ΓI(R)) = 2.
If diam(ΓIn(Rn)) = 3, then there exist xn, yn ∈ ZIn(Rn)

∗ such that d(xn, yn) =
3. Then for bi ∈ ZIi(Ri)

∗ (1 ≤ i ≤ n − 1), we have d(e, f) = 3, where e =
(b1, . . . , bn−1, xn) and f = (b1, . . . , bn−1, yn), as required.
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For the remainder of this section, we assume that R1, R2, . . . , Rn−1, and Rn

are commutative rings, not necessarily with identity, such that ZI1(R1), . . . ,
ZIn−1

(Rn−1), and ZIn(Rn) are nonempty.

Theorem 5. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 1 for

all i = 1, . . . , n.

(1) diam(ΓI(R)) = 1 if and only if R2
i ⊆ Ii for every i ∈ {1, 2, . . . , n}.

(2) diam(ΓI(R)) = 2 if and only if R2
i ⊆ Ii and R2

j * Ij for some

i, j ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R)) = 3 if and only if R2

i * Ii for every i ∈ {1, 2, . . . , n}.

Proof. (1) Assume that R2
i ⊆ Ii for all i, and let x = (x1, . . . , xn), y =

(y1, . . . , yn) ∈ ZI(R)∗. Then xy ∈ I1 × I2 × · · · × In ⊆ I; hence diam(ΓI(R)) = 1.
Conversely, assume that R2

j * Ij for some j ∈ {1, 2, . . . , n}. Then xjyj /∈ Ij for
some xj , yj ∈ Rj . Let zi ∈ ZIi(Ri) for i 6= j. Set X = (0, . . . , xj , . . . , 0), Y =
(0, . . . , yj, . . . , 0) and Z = (0, . . . , zi, . . . , 0). Then XZ,Y Z ∈ I; hence X −Y −Z
is a path of length 2 from X to Y in ZI(R)∗, which is a contradiction.

(2) Let R2
i ⊆ Ii and R2

j * Ij for some i, j ∈ {1, 2, . . . , n}. Then diam(ΓI(R)) 6=
1 by (1). Let ci ∈ ZIi(Ri)

∗, and set c = (0, . . . , ci, . . . , 0). For every x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ ZI(R)∗, at worst we have x − c − y is a path
from x to y in ZI(R)∗. So, diam(ΓI(R)) ≤ 2. The result then follows from (1).
Conversely, assume that diam(ΓI(R)) = 2. If R2

i ⊆ Ii, then Ri = ZIi(Ri) for all
i = 1, . . . , n (see Proposition 1); so diam(ΓI(R)) = 1 by (1), a contradiction. If
for each i, ZIi(Ri) 6= Ri, then there must exists xi ∈ Ri with xi /∈ ZIi(Ri) for all
i = 1, . . . , n. For each i, let zi ∈ ZIi(Ri)

∗. So for all i, there is an element wi ∈
ZIi(Ri)

∗ such that ziwi ∈ Ii. If a = (z1, x2, . . . , xn) and b = (x1, z2, x3, . . . , xn),
then a(w1, 0, . . . , 0), b(0, w2 , . . . , 0) ∈ I; hence a, b ∈ ZI(R)∗. Since ab /∈ I, we get
d(a, b) > 1. As diam(ΓI(R)) = 2, there exists c = (c1, . . . , cn) ∈ ZI(R)∗ such that
ac, bc ∈ I. It follows that there exists i (1 ≤ i ≤ n) such that xi ∈ ZIi(Ri)

∗, a
contradiction. Thus the proof is complete. (3) follows from (1) and (2).

Compare the next theorem with [2, Theorem 3.5].

Theorem 6. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 2 for

all i = 1, . . . , n.

(1) diam(ΓI(R)) 6= 1.

(2) diam(ΓI(R)) = 2 if and only if Ri = ZIi(Ri) for some i ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R)) = 3 if and only if Ri 6= ZIi(Ri) for every i ∈ {1, 2, . . . , n}.
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Proof. (1) Since diam(ΓIn(Rn)) = 2, there exist distinct yn, wn ∈ ZIn(Rn)
∗ with

ynwn /∈ I. Set a = (0, 0, . . . , yn) and b = (0, 0, . . . , wn). Then ab /∈ I. Therefore
diam(ΓI(R)) > 1.

(2) Assume that Ri = ZIi(Ri) for some i ∈ {1, 2, . . . , n}. So for xi, yi ∈
ZIi(Ri), there exists zi ∈ ZIi(Ri)

∗ such that xizi, yizi ∈ I by Proposition 2
(2). So, for any x = (x1, · · · , xn), y = (y1, . . . , yn) ∈ ZI(R)∗, there exists z =
(0, 0, . . . , zi, 0, . . . , 0) ∈ ZI(R)∗ such that xz, yz ∈ I. If, without loss of generality,
y = z, we have xy ∈ I. Therefore, diam(ΓI(R)) ≤ 2. By (1), it must be
that diam(ΓI(R)) = 2. Conversely, suppose that diam(ΓI(R)) = 2 and Ri 6=
ZIi(Ri) for all i ∈ {1, 2, . . . , n}. Let ei ∈ ZIi(Ri) and mi ∈ Ri \ ZIi(Ri) for all
i. Set a = (e1,m2, . . . ,mn) and b = (m1, e2,m3, . . . ,mn). Then ab /∈ I. Since
diam(ΓI(R)) = 2, there exists z = (z1, . . . , zn) ∈ ZI(R)∗ such that az, bz ∈ I.
Then e1z1 ∈ I1, mizi ∈ Ii (2 ≤ i ≤ n), m1z1 ∈ I1, e2z2 ∈ I2, and mizi ∈ Ii
(3 ≤ i ≤ n), which is a contradiction. (3) follows from (1) and (2).

Compare the next theorem with [2, Theorem 3.9].

Theorem 7. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 3 for

all i = 1, . . . , n. Then diam(ΓI(R)) = 3.

Proof. Since for each i, diam(ΓIi(Ri)) = 3, there exist distinct xi, yi ∈ ZIi(Ri)
∗

with xiyi /∈ Ii and there is no zi ∈ ZIi(Ri)
∗ such that xiyi, yizi ∈ Ii. Consider

x = (x1, . . . , xn) and y = (y1, . . . , yn). Now for every i ∈ {1, 2, . . . , n}, there
are elements x′i, y

′

i ∈ ZIi(Ri)
∗ such that xix

′

i, yiy
′

i ∈ Ii; hence x, y ∈ ZI(R)∗.
Since xy /∈ I, we have diam(ΓI(R)) > 1. If diam(ΓI(R)) = 2, there exists a =
(a1, · · · , an) ∈ ZI(R)∗ such that ax, ay ∈ I. Since a /∈ I, ai /∈ Ii for some i; hence
xiai, yiai ∈ Ii, which is a contradiction. Thus diam(ΓI(R)) = 3.

Compare the next theorem with [2, Theorem 3.5].

Theorem 8. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 1,
diam(ΓIj(Rj)) = 2 for some i, j ∈ {1, 2, . . . , n}, and there is no k ∈ {1, 2, . . . , n}
with diam(ΓIk(Rk)) = 3.

(1) diam(ΓI(R)) 6= 1.

(2) diam(ΓI(R)) = 2 if and only if Ri = ZIi(Ri) for some i ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R)) = 3 if and only if Ri 6= ZIi(Ri) for every i ∈ {1, 2, . . . , n}.

Proof. (1) Same as Theorem 6 (1).

(2) Let Ri = ZIi(Ri) and diam(ΓIi(Ri)) = 1. Thus we have R2
i ⊆ Ii by

Proposition 1 (1). Let xi ∈ Ri \ {0}. Since (0, . . . , 0, xi, 0, . . . , 0)(y1, . . . , yn) ∈ I
for all (y1, . . . , yn) ∈ ZI(R)∗, we have diam(ΓI(R)) ≤ 2. It follows from (1)
that diam(ΓI(R)) = 2. Conversely, assume that diam(ΓI(R)) = 2. Suppose
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Ri 6= ZIi(Ri) for every i ∈ {1, 2, . . . , n}. Without loss of generality, let z1 ∈
ZI1(R1)

∗. Then there exists w1 ∈ ZI1(R1)
∗ such that z1w1 ∈ I1. For each i, let

ri ∈ Ri \ ZIi(Ri), and set a = (r1, 0, . . . , 0), b = (0, r2, 0, . . . , 0), c = (z1, 0, . . . , 0),
and d = (w1, r2, r3, . . . , rn). Then a − b − c − d is a path of length 3. Now
we show that d(a, d) 6= 2. Assume contrary d(a, d) = 2. Then there exists
x = (x1, . . . , xn) ∈ ZI(R)∗ such that ax, dx ∈ I. Since ax ∈ I, r1x1 ∈ I1 with
r1 ∈ R1 \ ZI1(R1); thus x1 ∈ I1. As dx ∈ I, rixi ∈ Ii with ri ∈ Ri \ ZIi(Ri);
so xi ∈ Ii (2 ≤ i ≤ n). Thus x ∈ I, a contradiction. Therefore d(a, d) =
3, and hence diam(ΓI(R)) = 3, which is a contradiction. (3) follows from (1)
and (2).

Theorem 9. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 1,
diam(ΓIj(Rj)) = 3 for some i, j ∈ {1, 2, . . . , n}, and there is no k ∈ {1, 2, . . . , n}
with diam(ΓIk(Rk)) = 2.

(1) diam(ΓI(R)) 6= 1.

(2) diam(ΓI(R)) = 2 if and only if Ri = ZIi(Ri) and diam(ΓIi(Ri)) = 1 for

some i ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R)) = 3 if and only if there is no k ∈ {1, 2, . . . , n} with Rk 6=

ZIk(Rk) and diam(ΓIk(Rk)) = 1.

Proof. (1) Same as Theorem 6 (1).

(2) (⇐=) Same as Theorem 8 (2). Conversely, assume that diam(ΓI(R) = 2; we
show that diam(ΓIi(Ri)) = 1 and Ri = ZIi(Ri) for some i ∈ {1, 2, . . . , n}. Suppose
either diam(ΓIi(Ri)) 6= 1 or Ri 6= ZIi(Ri) for every i ∈ {1, 2, . . . , n}. Let i1, . . . , ik
be such that diam(ΓIir

(Rir)) = 1 (1 ≤ r ≤ k), and let j1, . . . , jt be such that
diam(ΓIjs

(Rjs)) = 3 (1 ≤ s ≤ t). Since for each s (1 ≤ s ≤ t), diam(ΓIjs
(Rjs)) =

3, there exist distinct xjs , yjs ∈ ZIjs
(Rjs)

∗ with xjsyjs /∈ Ijs such that there
is no zjs ∈ ZIjs

(Rjs)
∗ with xjs , zjs ∈ Ijs . Moreover for each s (1 ≤ s ≤ t),

there must exist x′js , y
′

js
∈ ZIjs

(Rjs)
∗ with xjsx

′

js
, yjsy

′

js
∈ Ijs . Now for each r

(1 ≤ r ≤ k), let mir ∈ Rir \ ZIir
(Rir). Set c = (mi1 , . . . , xj1 , . . . , xjt , . . . , 0) and

d = (mi1 , . . . , yj1 , . . . , yjt , . . . , 0). Then c(0, . . . , x′j1 , 0, . . . , 0) ∈ I; so c ∈ ZI(R)∗.
As cd /∈ I and diam(ΓI(R)) = 2, there must be some e = (e1, . . . , en) ∈ ZI(R)∗

such that ce, de ∈ I. But this is a contradiction, as needed.

(3) Since ΓI(R) is connected and diam(ΓI(R)) ≤ 3, the diameter of ΓI(R)
is either 2 or 3 by (1). If diam(ΓI(R)) = 2, then by (2), diam(ΓIi(Ri)) = 1
and Ri = ZIi(Ri) for some i ∈ {1, 2, . . . , n}, which is a contradiction. Thus
diam(ΓI(R)) = 3. The proof of other implication is clear.

Compare the next theorem with [2, Theorem 3.7].
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Theorem 10. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 2,
diam(ΓIj(Rj)) = 3 for some i, j ∈ {1, 2, . . . , n}, and there is no k ∈ {1, 2, . . . , n}
with diam(ΓIk(Rk)) = 1.

(1) diam(ΓI(R)) 6= 1.

(2) diam(ΓI(R)) = 2 if and only if Ri = ZIi(Ri) and diam(ΓIi(Ri)) = 2 for

some i ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R))) = 3 if and only if there is no k ∈ {1, 2, . . . , n} with Rk 6=

ZIk(Rk) and diam(ΓIk(Rk)) = 2.

Proof. (1) Same as Theorem 6 (1).

(2) (⇐=) Same as Theorem 6 (2). Conversely, assume that diam(ΓI(R)) = 2;
we show that diam(ΓIi(Ri)) = 2 and Ri = ZIi(Ri) for some i. Suppose not.
Let i1, . . . , ik be such that diam(ΓIir

(Rir)) = 2 (1 ≤ r ≤ k), and let j1, . . . , jt
be such that diam(ΓIjs

(Rjs)) = 3 (1 ≤ s ≤ t). Since for each s (1 ≤ s ≤ t),
diam(ΓIjs

(Rjs)) = 3, there exist distinct xjs , yjs ∈ ZIjs
(Rjs) with xjsyjs /∈ Ijs .

Moreover for each s (1 ≤ s ≤ t), there must exist x′js , y
′

js
∈ ZIjs

(Rjs)
∗ with

xjsx
′

js
, yjsy

′

js
∈ Ijs . Now for each r (1 ≤ r ≤ k), let mir ∈ Ri \ ZIir

(Rir).
Set c = (mi1 , . . . , xj1 , . . . , xjt , . . . , 0) and d = (mi1 , . . . , yj1 , . . . , yjt, . . . , 0). Then
c(0, . . . , x′j1 , 0, . . . , 0) ∈ I; so c ∈ ZI(R)∗. Similarly, d ∈ ZI(R)∗. As cd ∈
I and diam(ΓI(R)) = 2, there must be some e = (e1, . . . , en) ∈ ZI(R)∗ such
that ce, de ∈ I. But this is a contradiction, as required. (3) follows from (1)
and (2).

Theorem 11. Let R, Ii, and I be as in Remark 3 such that diam(ΓIi(Ri)) = 1,
diam(ΓIj(Rj)) = 2, and diam(ΓIk(Rk)) = 3 for some i, j, k ∈ {1, 2, . . . , n}.

(1) diam(ΓI(R)) 6= 1.

(2) diam(ΓI(R)) = 2 if and only if Ri = ZIi(Ri) and diam(ΓIi(Ri)) ≤ 2 for

some i ∈ {1, 2, . . . , n}.
(3) diam(ΓI(R)) = 3 if and only if there is no k ∈ {1, 2, . . . , n} with Rk 6=

ZIk(Rk) and diam(ΓIk(Rk)) ≤ 2.

Proof. (1) Is clear.

(2) Let diam(ΓIi(Ri)) ≤ 2 and Ri = ZIi(Ri) for some i ∈ {1, 2, · · · , n}. If
diam(ΓIi(Ri)) = 1 and Ri = ZIi(Ri) for some i, then by a similar argument as
in Theorem 8 (2), we get diam(ΓI(R))) = 2. If diam(ΓIi(Ri)) = 2 and Ri =
ZIi(Ri) for some i, then by a similar argument as in Theorem 9 (2), we obtain
diam(ΓI(R)) = 2. Conversely, assume that diam(ΓI(R)) = 2. It is easy to
see from Theorem 10 (2) that diam(ΓIi(Ri) ≤ 2 and Ri = ZIi(Ri) for some
i ∈ {1, 2, . . . , n}. (3) follows from (1) and (2).
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3. Girth and direct products

We continue to use the notation already established; so R, Ii, and I are as in
Remark 3. We are now ready to turn our attention toward describing the girth of
the zero-divisor graph with respect to an ideal of a direct product of commutative
rings, not necessarily with identity. Compare the next theorem with [2, Theorem
4.1].

Theorem 12. Let R, Ii, and I be as in Remark 3. Then gr(ΓI(R)) = 3 if and

only if one (or both) of the following hold.

(1) |ZIi(Ri)
∗| ≥ 2 for some i ∈ {1, 2, . . . , n}.

(2) |
√
Ii| ≥ 2 and |

√

Ij| ≥ 2 for some i, j ∈ {1, 2, . . . , n} with i 6= j.

Proof. If (1) holds, there exists i ∈ {1, 2, . . . , n} such that |ZIi(Ri)| ≥ 2. Since
ΓIi(Ri) is connected, there must exist ai, bi ∈ ZIi(Ri)

∗ with ai 6= bi such that
aibi ∈ Ii. Then

(0, . . . , 0, ai, . . . , 0)− (0, . . . , bi, . . . , 0)− (0, . . . , cj , . . . , 0) − (0, . . . , 0, ai, . . . , 0)

is a cycle of length 3, where cj ∈ ZIj(Rj) and i 6= j. If (2) holds, let ai ∈ R∗

i

and bj ∈ R∗

j with a2i ∈ Ii and b2j ∈ Ij . We may assume that j > i. Then
(0, . . . , ai, . . . , 0) − (0, . . . , ai, . . . , bj , . . . , 0) − (0, . . . , bj , . . . , 0) − (0, . . . , ai, . . . , 0)
is a cycle of length 3. Conversely, suppose, without loss of generality,

√
Ii has

no nonzero elements for i ∈ {2, 3, . . . , n}. If |ZIi(Ri)| < 2, then |ZIi(Ri)| = 0
(2 ≤ i ≤ n). Let (a1, . . . , an)−(b1, . . . , bn)−(c1, . . . , cn)−(d1, . . . , dn)−(a1, · · · , an)
be a cycle in ΓI(R). Since |ZIi(Ri)| = 0 for each i (2 ≤ i ≤ n), there must exist
b1, c1 ∈ R1 such that b1, c1 /∈ I1 and b1c1 ∈ I1; hence b1, c1 ∈ ZI1(R1). Thus,
|ZI1(R1)| ≥ 2.

Compare the next theorem with [2, Theorem 4.2].

Theorem 13. Let R, Ii, and I be as in Remark 3 (for n = 2). Then gr(ΓI(R)) =
4 if and only if both of the following hold.

(1) |R1| ≥ 3 and |R2| ≥ 3.

(2) Without loss of generality, R1 is a domain and |ZI2(R2)| ≤ 1.

Proof. (⇐=) Clearly, gr(ΓI(R)) 6= 3 by Theorem 12. Now, let x1, x2 ∈ R1 \ {0}
be distinct and y1, y2 ∈ R2 \ {0} be distinct. Then (x1, 0) − (0, y1) − (x2, 0) −
(0, y2) − (x1, 0) is a cycle. Thus gr(ΓI(R)) = 4. Conversely, assume that
gr(ΓI(R)) = 4. Then Theorem 12 gives |ZI1(R1)| ≤ 1 and |ZI2(R2)| ≤ 1. With-
out loss of generality, assume R2 is not a domain; so there exists x ∈ ZI2(R2)
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such that x /∈ I2. It follows that |ZI2(R2)| = |√I2| = 1. If R1 is not a do-
main, then |ZI1(R1)| = |√I1| = 1. Thus gr(ΓI(R)) = 3, a contradiction.
Therefore R1 is a domain; so ZI1(R1) = ∅. Now a cycle must have the form
(x1, y1) − (0, y2) − (x2, y3) − (0, y4) − (x1, y1). In this cycle, y2 and y4 must be
nonzero and distinct. Thus |R2| ≥ 3. If either x1 or x2 is zero, then |ZI2(R2)| ≥ 2;
whence gr(ΓI(R)) = 3 by Theorem 3.1, a contradiction. If x1 = x2, then y1 and
y3 are distinct. If y3 = 0, then y1, y2, y4 ∈ ZI2(R2), implying y1 = y2 = y4, a con-
tradiction. If y3 6= 0, then y2, y3, y4 ∈ ZI2(R2), implying y2 = y3 = y4, another
contradiction. Therefore we must have x1 6= x2 and |R1| ≥ 3.
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