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Abstract

In the paper there are investigated some properties of Lie algebras, the
construction which has a wide range of applications like computer sciences
(especially to computer visions), geometry or physics, for example. We con-
centrate on the semidirect sum of algebras and there are extended some
theoretic designs as conditions to be a center, a homomorphism or a deriva-
tive. The Killing form of the semidirect sum where the second component
is an ideal of the first one is considered as well.
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1. Preliminaries

The aim of the paper is to extend some theoretic designs of Lie algebras for the
concept of the semidirect sum of Lie algebras. The construction of the semidirect
sum is important for both theoretical and practical reasons. It can be viewed as
a generalization of the direct sum of Lie algebras. The construction appears in
the Levi decomposition (see, for example, [3, 15], or [22] for details) and it is one
of the main tools for obtaining so called non-reductive Lie algebras. The Levi
decomposition expresses a Lie algebra as a sum of two components, semisimple
and solvable. It gives a possibility to reduce problems about finite dimensional
Lie algebras (over a field of characteristic zero) by separating them in those two
classes. The construction has its applications in physics (it appears in Young-
Mills equations [14]) or in geometry (an affine space is the semidirect sum of the
general linear Lie algebra and a vector space as an abelian Lie algebra).
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234 T. Ostrowski

Lie algebras can be constructed in many various ways; via linear space or linear
maps (endomorphisms) on a vector space, via vector fields, via Lie groups, via a
set of structure constants, or via differential operators (see [11] for details). In
the paper we shall restrict our attention to the first way. To establish notation
recall some definitions.

Definition 1. An algebraic structure g = (V, [ , ]) is said to be the Lie algebra, if
V is a linear space over a field F , and V is endowed with a multiplication of its
elements and a binary operation [ , ] (the Lie bracket or commutator) satisfying
the following axioms:

(1a) A.1 (bilinearity): [αA+ βB,C] = α[A,C] + β[B,C],

(1b) [A,αB + βC] = α[A,B] + β[A,C],

(2) A.2 (skew-symmetry): [A,B] + [B,A] = 0,

(3) A.3 (the Jacobi identity): [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

for all scalars α, β ∈ F and elements A,B,C ∈ V .
Recall that the vector product is not associative but holds the Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0; a, b, c ∈ R3

and by defining [a, b] = a × b we obtain the Lie algebra structure on R3. It is
interesting that the geometrical meaning of the Jacobi identity is equivalent to
the basic fact that altitudes of a triangle are intersected in the one point [1].

Under assumption charF 6= 2 the axiom (2) can be replaced by [A,A] = 0;
A ∈ g. Throughout the paper we shall always take F to be the field of charac-
teristic zero.

It will be convenient to identify g and V and denote a commutant of sets a
and b by [a,b], i.e., the linear span of all elements of the form [A,B]; A ∈ a,
B ∈ b.

Definition 2. A sub Lie algebra of g is a subspace h ⊂ g that is closed under
the Lie bracket (closed under commutation with itself) i.e.,

(4) [h,h] ⊂ h.

Definition 3. An ideal in g is a subalgebra a such that a is invariant by com-
mutation with all elements of g:

(5) [a,g] ⊂ a.

The condition (5) is stronger than (4). To be the ideal a is closed not just under
commutation with itself, but also under commutation with any other element
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of g. It is obvious that, by (2), there is no need to distinguish between left and
right ideals.

Definition 4. The center of a Lie algebra g, denoted by Z(g), is a set of elements
commuting with g, that is

(6) Z(g) = {A ∈ g : [A,g] = 0}.

Clearly, Z(g) is an ideal of the Lie algebra g, so it is an important example of
an ideal which frequently is not trivial. In literature one can find the equivalent
definition of the center (see, for example, [20]), namely Z(g) = max a : [a,g]
= {0}.

Definition 5. Let Mn,n(F ) denotes a linear space of n by n matrices over a
field F . A general linear algebra, denoted by gln(F ), is the Lie algebra having
the structure

(7) gln(F ) = {A ∈Mn,n(F ), [ , ]}.

gln(F ) is called classical algebra, which is also applied to some subalgebras of
gln(F ), like special linear Lie algebra sln(F ) = {A ∈ Mn,n(F ) : trA = 0}, n-
th orthogonal Lie algebra on(F ) = {A ∈ Mn,n(F ) : A + AT = 0} or special
orthogonal Lie algebra son(F ) = {A ∈ sln(F ) : A + AT = 0}. For classical
Lie algebras it is known [sln(F ),gln(F )] ⊂ sln(F ), Z(gln(F )) = {αI : α ∈ F},
Z(sln(F )) = {0}, Z(son(F )) = son(F ); n = 2, Z(son(F )) = {0}; n 6= 2.

Matrix Lie algebras are especially important, because, according to deep Ado’s
theorem, every finite-dimensional real or complex Lie algebra has a faithful rep-
resentation by matrices (the theorem is proved, for instance, in [22]).

Definition 6. Let g be any algebra over a field F . A derivation of g (the Lie
derivative) is a linear operator δ on g satisfying the Leibniz law with respect to
the commutator:

(8) ∂([A,B]) = [∂(A), B] + [A, ∂(B)]; A,B ∈ g.

Definition 7. For any element A ∈ g, an inner derivation (also referred as
adjoint homomorphism, adjoint representation or the adjoint of A) of the Lie
algebra g is the operator adA defined as follows

(9) adA(B) = [A,B], B ∈ g.

It is clear that the inner derivation holds the following properties:

(i) adC(AB) = adC(A)B +AadC(B),
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(ii) adA[B,C] = [adA(B), C] + [B, adA(C)],

(iii) ad[A,B] = [adA, adB],

(iv) [g,g] ⊂ Z(g)⇐⇒ adA◦adB = ad[A,B].

Properties (ii) and (iii) create another forms of Jacobi identity (see [12]; (iii) is
proved in [9]), expressed in the term of the adjoint homomorphism (thinking of
[X,Y ] as a linear map in Y for each fixed X gives a somewhat different perspective
[9]). An ideal a in g can be defined with the adjoint homomorphism as a subset for
which g is invariant under the adjoint representation, i.e., ada(g) ⊂ a. Similarly,
(6) can be rewritten as Z(g) = Ker(adg).

The inner derivation is a very important case of derivations because if a Lie
algebra is semisimple (the algebra has no non-zero abelian ideals) then every
derivation is inner (for proof see, for instance, [18]).

Definition 8. The set Der(g) of linear operators on g which are also derivations
of g is called the derivation algebra.

For example, sln(F ) = Der(gln(F )). It is obvious, that adg is an ideal of Der(g),
i.e.,

(10) [adg,Der(g)] ⊂ adg.

Definition 9. Let g and h be two Lie algebras over the same ground field F .
Let be given a linear map f : g → h that is compatible with the commutators.
Saying more precisely, for all elements A,B in g, the following equality holds

(11) f([A,B]) = [f(A), f(B)].

The map f is called a homomorphism (or a Lie algebra morphism) between g
and h.

Clearly, Kerf is an ideal in g, and Imf is the Lie subalgebra of h (proof can be
found, for example, in [5]). Formally

[Kerf,g] ⊂ Kerf, [Imf, Imf ] ⊂ Imf.

A simple example of a Lie algebra morphism is Tr : gln(F )→ F . Of course, the
trace is linear and (11) holds. Moreover, KerTr= sln(F ), and the first isomor-
phism theorem implies that gln(F )/sln(F ) ∼= F .

Definition 10. Lie algebra is called solvable if the Lie algebra commutator series
(called the derived series) gi = [gi−1,gi−1], i = 1, 2, . . . , vanishes for some i.
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2. Semidirect sum (product) of Lie algebras

2.1. The construction

Definition 11. Let g and h be given Lie algebras. A semidirect sum (product)
of g and h is the vector space g × h made into a Lie algebra by defining

(12) [(A,X), (B, Y )]τ = ([A,B], [X,Y ]+τ(A)Y −τ(B)X); A,B ∈ g, X, Y ∈ h,

where τ ∈ Hom(g,Derh). The semidirect sum will be denoted here by g ⊕τ h.
In a particular case, when τ(g)h = 0, then the semidirect sum reduces to the

direct sum of Lie algebras, where

[(A,X), (B, Y )] = ([A,B], [X,Y ]); A,B ∈ g, X, Y ∈ h.

Example 1. Let V be a module or a vector space over a field F and dimV = n.
The structure (V, [ , ]) is a commutative Lie algebra, that is [u,v] = 0; u,v ∈ V .
Together with the general linear Lie algebra can be constructed the semidirect
sum gln(F )⊕τ V , where τ ∈ Hom(gln(F ),DerV ) is the induced action of gln(F )
on V by concatenation:

τ(A)v = Av; A ∈ gln(F ), v ∈ V.

It is easy to see that for all A ∈ glnn(F ), u,v ∈ V the Leibniz condition (8) is
fulfilled by identity, that is

A[u,v] = [Au,v] + [u, Av],

which can be rewritten as

τ(A)[u,v] = [τ(A)u,v] + [u, τ(A)v].

The equality above means that the algebra gln(F ) stands for the derivation al-
gebra of the Lie algebra (V, [ , ]). Formally, gln(F ) = DerV .

The commutator of gln(F )⊕τ V is given as follows:

[(A,u), (B,v)]τ = ([A,B], Av −Bu), for all A,B ∈ gln(F ), u,v ∈ V.

Multiplication of elements of the semidirect product is defined as follows:

(A,u)(B,v) = (AB,Av + u) for all A ∈ gln(F ), u,v ∈ V.

The unity of multiplication is the element (I, 0), and if A is nonsingular then

(A,u)1 = (A1,−A1u).
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Example 2. Euclidean algebra e(3) of the form

e(3) = {


0 −c b d
c 0 −a e
−b a 0 f
0 0 0 0

 ; [ , ]}

which stands for the Lie algebra of the group of isometries of R3 is the semidirect
sum of the angular momentum algebra and abelian algebra R3 :

e(3) = so3(R)⊕τ R3,

where by isomorphisms R3 is identified with an algebra of R4,4 matrices, and
so3(R) is identified with the algebra of R4,4 matrices and with vectors from R3

as well, that is

{u ∈ R3 : u =

 x
y
z

} ∼= {X ∈ R4,4 : X =


0 0 0 x
0 0 0 y
0 0 0 z
0 0 0 0

 ;x, y, z ∈ R},

so3(R) = {

 0 −c b
c 0 −a
−b a 0

} ∼= {A : A =


0 −c b 0
c 0 −a 0
−b a 0 0
0 0 0 0

},
and A is identified with the vector of the form [a b c]T .

Therefore τ(A)X = AX means the cross product of two vectors from R3 via
their matrix representations in R4,4. If

A =


0 −c b 0
c 0 −a 0
−b a 0 0
0 0 0 0

 , B =


0 −f e 0
f 0 −d 0
−e d 0 0
0 0 0 0

 ,
then, of course, [A,B] can be also identified with a

b
c

×
 d
e
f

 =

 bf − ce
cd− af
ae− bd

 .
It is easy to see that τ : so3(R)→ DerR3 and for any A,B ∈ so3(R), u,v ∈ R3

τ(A)[u,v] = [τ(A)u,v] + [u, τ(A)v]
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and, by definition, the commutator of the semidirect sum has the form

[(A,u), (B,v)]τ = ([A,B], Av −Bu).

For more examples of the semidirect sums of Lie algebras see [21]. A generaliza-
tion of the construction gln(F )⊕τ V can be found in [10, 13].

The semidirect sum of the form g ⊕τ a, where a is a commutative ideal has
been researched by Panyushev in [16]. Note that if τ = ad, then the commutator
of the semidirect sum g⊕ad a (there is no restriction for the ideal a) has the form

(13) [(A,B), (X,Y )]ad = ([A,X], [B, Y ] + [A, Y ]− [X,B]).

Some results connected with the semidirect sum of a semisimple Lie algebra
and solvable Lie algebra can be found in [4]. For some special Lie algebras the
semidirect sum (called the wreath product) has been recently investigated by
a number of researchers; Sushchansky, Netreba [19], Petrogradsky, Razmyslov,
Shishkin [17].

2.2. Some properties of the semidirect sum

Let be given a semidirect sum of Lie algebras g ⊕τ h. It is well known that the
algebra g, identified by isomorphism with g ⊕τ O, is an ideal of the semidirect
sum iff the semidirect sum reduces to the direct sum, and the second algebra h,
identified by isomorphism with O⊕τ h, is always an ideal of the semidirect sum,
that is

(14) (i) [g ×O, g × h]τ ⊂ ⊕τO ⇐⇒ τ(g)h = O,

(15) (ii) [O × h, g × h]τ ⊂ O ⊕τ h.

A proof can be found in [8]. Now we can go to some results of the paper. At first
will be given a necessary condition for the direct sum of centers of Lie algebras
to be the center of the semidirect sums of those algebras.

Theorem 1. Let be given a semidirect sum g⊕τ h of Lie algebras g and h. Then
the following relations hold

(16) Z(g ⊕τ h) ⊂ Z(g)×Ker τ(g),

(17) (A,B) ∈ Z(g ⊕τ h)⇒ τ(A) = −adB.

Proof. Let fix any (A,B) ∈ Z(g⊕τ h). For all elements (X,O) ∈ g×h, we have
then

[(A,B), (X,O)]τ = ([A,X], τ(X)B) = (O,O).



240 T. Ostrowski

Therefore

[A,X] = O ⇒ A ∈ Z(g), and τ(X)B = O ⇒ B ∈ Ker τ(g),

On the other hand, for all elements (O, Y ) we obtain

[(A,B), (O, Y )]τ = (O, [B, Y ] + τ(A)Y ) = (O,O),

which implies that τ(A) = −adB.

It is easy to see that in any semidirect sum g⊕τh of Lie algebras, for τ : g→ Derh
the following relations hold:

τ ∈ Hom(g,Derh)⇒ τ(Z(g)) ⊂ Z(Derg),

τ ∈ Isom(g,Derh)⇒ τ(Z(g)) = Z(Derg).

2.3. Derivation, homomorphism, Killing form

At first it will be given a necessary and sufficient condition for the product of
derivatives of two Lie algebras to be a derivative of the semidirect sums of the
algebras.

Theorem 2. Let gi (i = 1, 2) be Lie algebras and let ∂i ∈ Dergi (i = 1, 2). Then
the following equivalence holds true

(18) ∂1 × ∂2 ∈ Der(g1 ⊕τ g2)⇐⇒ (τ ◦ ∂1)(A) = [∂2, τ(A)], A ∈ g1.

Proof. ⇒ If ∂1×∂2 ∈ Der(g1⊗τ g2), then for all P,Q ∈ g1×g2, by (8), we have

(19) (∂1 × ∂2)[P,Q]τ = [(∂1 × ∂2)P,Q]τ + [P, (∂1 × ∂2)Q]τ .

Since any element (A,B) ∈ g1 × g2 can be decomposed as the sum

(A,B) = (A,O) + (O,B),

then on the left side of (19), for P = (A,O), Q = (O,B), applying linearity of
the derivations and bilinearity of the commutator, we obtain

(∂1 × ∂2)[(A,O), (O,B)]τ

= (∂1 × ∂2)([A,O], [O,B] + τ(A)B − τ(O)O) = (∂1 × ∂2)(O, τ(A)B)

= (O, (∂2 ◦ τ(A))B).
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On the right side of (19), by (17) and (9), we have as follows

[(∂1 × ∂2)(A,O), (O,B)]τ + [(A,O), (∂1 × ∂2)(O,B)]τ

= [(∂1A,O), (O,B)]τ + [(A,O), (O, ∂2B)]τ

= (O, τ(∂1(A)B) + (O, (τ(A) ◦ ∂2)B) = (O, (τ ◦ ∂1(A) + τ(A) ◦ ∂2)B).

Therefore ∂2 ◦ τ(A) = τ ◦ ∂1(A) + τ(A) ◦ ∂2, and from above

(τ ◦ ∂1)(A) = ∂2 ◦ τ(A)− τ(A) ◦ ∂2 = [∂2, τ(A)].

⇐ Let P = (A,B), Q = (X,Y ) ∈ g1 ⊗τ g2.

[(∂1 × ∂2)P,Q]τ + [P, (∂1 × ∂2)Q]τ

= [(∂1 × ∂2)(A,B), (X,Y )]τ + [(A,B), (∂1 × ∂2)(X,Y )]τ

= [(∂1A, ∂2B), (X,Y )]τ + [(A,B), (∂1X, ∂2Y )]τ

= ([∂1A,X], [∂2B, Y ] + τ(∂1A)Y − τ(X)∂2B)

+ ([A, ∂1X], [B, ∂2Y ] + τ(A)∂2Y − τ(∂1X)B)

= (∂1[A,X], ∂2[B, Y ] + (∂2 ◦ τ(A))Y − (∂2 ◦ τ(X))B]

= (∂1 × ∂2)([A,X], [B, Y ] + τ(A)Y − τ(X)B]

= (∂1 × ∂2)[(A,B), (X,Y )]τ = (∂1 × ∂2)[P,Q]τ .

Next theorem expresses a necessary and sufficient condition for the product of
homomorphisms of Lie algebras to be a homomorphism of their semidirect sum.

Theorem 3. Let g1⊕σ g2,h1⊕τ h2 be given two semidirect sums of Lie algebras
and let fi ∈ Hom(gi,hi); i = 1, 2. Then for all A ∈ g1 the following equivalence
holds true

(20) f1 × f2 ∈ Hom(g1 ⊕σ g2,h1 ⊕τ h2)⇐⇒ f2 ◦ σ(A) = τ(f1(A)) ◦ f2.

Proof. ⇐ By supposition fi ∈ Hom(gi,hi); i = 1, 2, and linearity of f1 × f2 is
obvious.

Let (A,B), (X,Y ) ∈ g1 × g2). Then, by supposition, the following equalities
hold:

f1[A,X] = [f1(A), f1(X)], f2[B, Y ] = [f2(B), f2(Y )].
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Therefore, by (12) and by the assumption again, we have

[(f1 × f2)(A,B), (f1 × f2)(X,Y )]τ = [(f1(A), f2(B)), (f1(X), f2(Y ))]τ

= ([f1(A), f1(X)], [f2(B), f2(Y )] + (τ(f1(A)) ◦ f2)Y − (τ(f1(X)) ◦ f2)B)

= (f1[A,X], f2[B, Y ] + (f2 ◦ σ(A))Y − (f2 ◦ σ(X))B)

= (f1 × f2)([A,X], [B, Y ] + σ(A)Y − σ(X)B) = (f1 × f2)[(A,B), (X,Y )]σ.

⇒ To prove the necessity condition of (20) let notice first that the mapping f1×f2
preserves commutator, i.e., for any elements K,L ∈ g1 × g2

(f1 × f2)[K,L]σ = [(f1 × f2)(K), (f1 × f2)(L)]τ .

Let set then K = (A,O), L = (O,B). Therefore we obtain

(f1 × f2)[(A,O), (O,B)]σ = (f1 × f2)(O, σ(A)B) = (O, (f2 ◦ σ(A)B).

On the other hand, we have

[(f1×f2)(A,O), (f1×f2)(O,B)]τ = [(f1A,O), (O, f2B)]τ = (O, (τ(f1(A))◦f2)(B)).

From above the following equality holds

(O, (f2 ◦ σ(A)B) = (O, (τ(f1(A) ◦ f2)(B)),

which implies f2 ◦ σ(A) = τ(f1(A)) ◦ f2.

Recall now that the Killing form on a given Lie algebra g over a field F is a
bilinear symmetric mapping B : g× g→ F defined as B(A,B) = Tr(adA ◦ adB);
A,B ∈ g.

Similarly, on the direct or semidirect sum of Lie algebras g and h the Killing
form is defined by B((A,B), (X,Y )) = Tr(ad(A,B) ◦ ad(X,Y )); (A,B), (X,Y ) ∈
g × h.

Theorem 4. Let g⊕ada be a semidirect sum, where a is an ideal of a Lie algebra
g over a field F . Then the following equality holds:

B((A,B), (X,Y )) = B(A,X) +B(A+B,X + Y ); A,X ∈ g, B, Y ∈ a.
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Proof.

(ad(A,B) ◦ ad(X,Y ))(U, V ) = [(A,B), [(X,Y )), (U, V )]ad]ad

= [(A,B), ([X,U ], [Y, V ] + [X,V ] + [Y,U ])]ad

= ([A, [X,U ]], [A+B, [X + Y, V ] + [Y,U ]] + [B, [X,U ]])

= (O, [A+B, [Y, U ]] + [B, [X,U ]]) + ([A, [X,U ]], [A+B, [X + Y, V ])

= (O, ((adA + adB) ◦ adY + adB ◦ adX)U) + (adA ◦ adX)

× (adA + adB) ◦ (adX + adY )(U, V ).

It can be written in the following matrix form

(
ad(A,B) ◦ ad(X,Y )

)
=

[
U

V

]

=

[
adA ◦ adX O

(adA + adB) ◦ adY + adB ◦ adX (adA + adB) ◦ (adX + adY )

] [
U

V

]
.

By linearity of the adjoint homorphism and bilinearity of the Killing form we
have

B((A,B), (X,Y )) = Tr(adA ◦ adX) + Tr((adA + adB) ◦ (adX + adY ))

= B(A,X) +B(A+B,X + Y ).

Corollary. If a is an abelian ideal in a Lie algebra g over a field of characteristic
different from 2, then B((A,B), (X,Y )) = 2B(A,X).

Proof. Really, in this special case we obtain

(ad(A,B) ◦ ad(X,Y ))(U, V ) = [(A,B), [(X,Y )), (U, V )]ad]ad

= [(A,B), ([X,U ], [X,V ] + [Y,U ])]ad

= ([A, [X,U ]], [A, [X,V ] + [Y, U ]] + [B, [X,U ]])

= (O, [A, [Y,U ]] + [B, [X,U ]]) + ([A, [X,U ]], [A, [X,V ])

= (O, (adA ◦ adY + adB ◦ adX)U) + ((adA ◦ adX)× (adA ◦ adX))(U, V ).
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Therefore we can write

(ad(A,B) ◦ ad(X,Y )) =

[
U

V

]
=

[
adA ◦ adX O

adA ◦ adY + adB ◦ adX adA ◦ adX

] [
U

V

]

and from above we obtain Tr(ad(A,B) ◦ ad(X,Y )) = 2Tr(adA ◦ adX).

3. Some remarks and corollaries

Remark 1. With two Lie algebras g,h and with τ ∈ Hom(g,Derh) a Lie algebra
f can be constructed on the Cartesian product g × h (Definition 11). The new
algebra will be a direct sum or semidirect one. The two possibilities are as follows:

1. Kerτ = g⇒ f = g ⊕ h, and

[(A,X), (B, Y )] = ([A,B], [X,Y ]);A,B ∈ g, X, Y ∈ h.

2. Kerτ 6= g⇒ f = g ⊕τ h, and

[(A,X), (B, Y )] = ([A,B], [X,Y ] + τ(A)Y − τ(B)X).

With Levi theorem (called also Levi-Maltsev theorem) we go from the opposite
side. The theorem states that any Lie algebra f is formed as a sum of two
components, g and h, where g stands for a semisimple Lie algebra, called the
Levi factor, and h is the maximal solvable ideal, called the radical. Since then
the subalgebra g can act on the ideal h, and it leads to two cases:

1. [g,h] = 0⇒ f = g ⊕ h.

2. [g,h] 6= 0. It implies the existence of a representation τ of the subalgebra h.

Therefore adA(X) = τ(A)X for any A ∈ g, X ∈ h, and f = g ⊕τ h.

Corollary 1. Theorem 1 implies that if g = Kerτ, then

Z(g ⊕τ h) = Z(g) ∩Kerτ × Z(h) ∩Kerτ(g),

or, in other words,

(A,B) ∈ Z(g ⊕τ h)⇔

{
A ∈ Z(g) and τ(A)h = O,

B ∈ Z(g) and τ(g)B = O.

Remark 2. The semidirect sum of Lie algebras of the form Kerτ ⊕τ h is Akivis
algebra. In non-associative theory Akivis algebras play the role of Lie algebras in
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associative theory. Recall that Akivis algebras can be constructed in the following
way (see [2, 7] for more details): a vector space V over a field F we endow with
two operations - a bilinear commutator [ , ] and a trilinear associator [ , , ], where
the following relations are true for all A,B,C ∈ V :

(i) [A,B] = ABBA,

(ii) [A,B,C] = (AB)CA(BC),

(iii) [[A,B], C] + [[B,C], A] + [[C,A], B] =

= [A,B,C] + [B,C,A] + [C,A,B]− [A,C,B]− [B,A,C]− [C,B,A].

The relation (iii) is called Akivis identity and reduces to Jacobi identity for as-
sociative algebras. Therefore Akivis algebra is a generalization of Lie algebra.

Corollary 2. Notice that Theorem 2 implies the following property:

(21) adX × τ(X) ∈ Der(g ⊕τ h), X ∈ g.

In fact, the property above follows immediately from (18) by setting

∂1 = adx, ∂2 = τ(X); X ∈ g.

Corollary 3. It is easy to see that in a particular case of the Theorem 3, that is
if g1 = g2, h1 = h2, f1 = f2, and τ = σ = ad, then (20) reduces to (11).

Remark 3. It is well known that for any Lie algebra g the inner derivations
form an ideal in Der(g), i.e.,

(22) ∂ ∈ Der(g)⇒ [∂, adA] = ad∂(A); A ∈ g.

Analogically is for the semidirect sum of Lie algebras. The following lemma states
a connection between the homomorphism τ and the adjoint representation on the
second summand of the semidirect sum.

Lemma. For the semidirect sum g ⊕τ h of Lie algebras the following equality
holds

(23) [τ(A), adB] = adτ(A)B; A ∈ g, B ∈ h.

Proof. Let Y ∈ h. Since τ(A) ∈ Derh, therefore we have

[τ(A), adB](Y ) = τ(A)[B, Y ]− adB(τ(A)Y ]

= [τ(A)B, Y ] + [B, τ(A)Y ]− [B, τ(A)Y ] = [τ(A)B, Y ] = adτ(A)B(Y ).
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Remark 4. Engels theorem (see [6, 12], or [18] for proof) states that a finite-
dimensional Lie algebra g is nilpotent (the lower central series, gi = [g,gi−1],
i = 1, 2, . . . , ends in the zero subspace) iff adg is the set of nilpotent operators.
It implies that if g is nilpotent and h is a subalgebra of g, then the semidirect
sum g⊕ad h has to be nilpotent too. Since any nilpotent Lie algebra is solvable,
then g ⊕ad h is solvable as well.
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