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Abstract

A semigroup S is said to be completely π-regular if for any a ∈ S there
exists a positive integer n such that an is completely regular. A completely π-
regular semigroup S is said to be a GV-semigroup if all the regular elements
of S are completely regular. The present paper is devoted to the study of
generalized quasi-orthodox GV-semigroups and least Clifford congruences
on them.
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1. Introduction

The study of the structure of semigroups is essentially influenced by the study
of the congruences defined on them. We know that the set of all congruences
defined on a semigroup S is a partially ordered set with respect to inclusion
and relative to this partial order it forms a lattice, the lattice of congruences
on S. The study of lattice of congruences on different types of semigroups such
as regular semigroups and eventually regular semigroups led to breakthrough
innovations made by T.E. Hall [3], LaTorre [5], S.H. Rao and P. Lakshmi [10].
The congruences that they looked into were mostly group congruences. In paper
[10], S.H. Rao and P. Lakshmi characterized group congruences on eventually
regular semigroups in which they used self-conjugate subsemigroups. Further
studies were continued by S. Sattayaporn [11] with weakly self-conjugate subsets.
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Over the years, congruence structures have been an integral part of discussion in
mathematics.

In this paper, we study various types of congruences on GV-semigroups. To
be more precise, we characterize least Clifford congruences on generalized quasi-
orthodox GV-semigroups.

2. Preliminaries

An element a in a semigroup (S, ·) is said to be regular if there exists an element
x ∈ S such that axa = a. A semigroup (S, ·) is said to be regular if every element
of S is regular. In this case there also exists y ∈ S such that aya = a and yay = y.
Such an element y is called an inverse of a. An element a in a semigroup (S, ·)
is said to be π-regular (or power regular) if there exists a positive integer n such
that an is regular. Naturally, a semigroup (S, ·) is said to be π-regular (or power
regular) if every element of S is π-regular. An element a in a semigroup (S, ·) is
said to be completely regular if there exists an element x ∈ S such that a = axa
and ax = xa. We know that an element a in a semigroup S is completely regular
if and only if it belongs to a subgroup of G. We call a semigroup S, a completely
regular semigroup if every element of S is completely regular.

An element a in a semigroup (S, ·) is said to be completely π-regular if there
exists a positive integer n such that an is completely regular. Naturally, a semi-
group S is said to be completely π-regular if every element of S is completely
π-regular.

Lemma 2.1 [7]. Let S be a semigroup and let x be an element of S such that
xn belongs to a subgroup G of S for some positive integer n. Then, if e is the
identity of G, we have

(a) ex = xe ∈ G,

(b) xm ∈ G for any integer m > n.

Let a be a completely π-regular element in a semigroup S. Then an lies in a
subgroup G of S for some positive integer n. The inverse of an in G is denoted
by (an)−1. From the above lemma, it follows that for a completely π-regular
element a in a semigroup S, all its completely regular powers lie in the same
subgroup of S. Let a0 be the identity of this group and a = (aa0)−1. Then
clearly, a0 = aa = aa and aa0 = a0a.

Throughout this paper, we always let E(S) be the set of all idempotents of
the semigroup S. Also we denote the set of all inverses of a regular element a in
a semigroup S by V (a). For a ∈ S, by “an is a-regular” we mean that n is the
smallest positive integer for which an is regular.
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As usual, we denote the Green’s relations [4] on the semigroup (S, ·) by L , R,
D , J and H . For any a ∈ S, we let Ha be the H -class in S containing a. If
(S, ·) be a π-regular semigroup, we consider the relations L ∗,R∗,J ∗,H ∗ and
D∗ defined by

aL ∗ b if and only if ap L bq ,

aR∗ b if and only if ap R bq ,

aJ ∗ b if and only if ap J bq ,

H ∗ = L ∗ ∩R∗ and D∗ = L ∗ oR∗

where ap is a-regular and bq is b-regular.
A semigroup (S, ·) is said to be a band if each element of S is idempotent, i.e.,

a2 = a for all a ∈ S. A commutative band is called a semilattice. A band S is
said to be a rectangular band if it satisfies the identity axa = a for all a, x ∈ S.
A congruence ρ on a semigroup S is called a semilattice congruence if S/ρ is a
semilattice. A semigroup S is called a semilattice Y of semigroups Sα(α ∈ Y )
if S admits a semilattice congruence ρ on S such that Y = S/ρ and each Sα is
a ρ-class mapped onto α by the natural epimorphism ρ# : S −→ Y . We write
S = (Y ;Sα). For other notations and terminologies not given in this paper, the
reader is referred to the texts of Bogdanovic [1] and Howie [4].

3. Completely Archimedean semigroups and GV-semigroups

In this section we recall some definitions and state some of their important prop-
erties.

Definition 3.1. A semigroup S is said to be an Archimedean semigroup if for
any two elements a, b ∈ S there exists a positive integer n such that an ∈ SbS.

Definition 3.2. An Archimedean semigroup S is said to be completely Archime-
dean if it is completely π-regular.

Definition 3.3. Let I be an ideal of a semigroup S. We define a relation ρI on
S by aρI b if and only if either a, b ∈ I or a = b where a, b ∈ S. It is easy to verify
that ρI is a congruence on S. This congruence is said to be Rees congruence
on S and the quotient semigroup S/ρI contains a zero, namely I. This quotient
semigroup S/ρI is said to be the Rees quotient semigroup and is denoted by
S/I. In this case the semigroup S is said to be an ideal extension or simply an
extension of I by the semigroup S/I. An ideal extension S of a semigroup I is
said to be a nil-extension of I if S/I is nil semigroup, i.e., for any a ∈ S there
exists a positive integer n such that an ∈ I.
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Theorem 3.4 [1]. The following conditions on a semigroup are equivalent:

(i) S is a completely Archimedean semigroup;

(ii) S is a nil-extension of a completely simple semigroup.

In a completely π-regular semigroup, regular elements may not be completely
regular. A completely π-regular semigroup in which every regular element is
completely regular is said to be a GV-semigroup. A completely π-regular semi-
group containing a single idempotent is called a π-group. It is well known that
a semigroup S is a π-group if and only if S is nil-extension of a group. The
following theorem gives the complete characterization of GV-semigroups.

Theorem 3.5 [1]. The following conditions on a semigroup S are equivalent:

(i) S is a GV-semigroup;

(ii) S is π-regular and every H ∗-class of S is a π-group;

(iii) S is semilattice of completely Archimedean semigroups.

In this connection, it is interesting to mention that J ∗ is a semilattice con-
gruence on a GV-semigroup S and each J ∗-class is a completely Archimedean
subsemigroup of S.

4. Generalized quasi-orthodox GV-semigroups

In this section we define generalized quasi-orthodox semigroups and study some
important properties of generalized quasi-orthodox GV-semigroups.

Definition 4.1. A semigroup (S, ·) is said to be an orthodox semigroup if E(S)
forms a subsemigroup of S.

Definition 4.2. A semigroup (S, ·) is said to be a generalized quasi-orthodox
semigroup if for any two elements e, f ∈ E(S), there exists a positive integer n
such that (ef)n = (ef)n+1.

Clearly, every orthodox semigroup is generalized quasi-orthodox. But the con-
verse is not true in general. We cite some examples to ensure that generalized
quasi-orthodox semigroup may not be an orthodox semigroup.

Example 4.3 [6]. Let S = {e, f, a, 0}. On S we define a multiplication ′·′ with
the following Cayley table:

· e f a 0

e e a a 0
f 0 f 0 0
a 0 a 0 0
0 0 0 0 0
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Then (S, ·) is a generalized quasi-orthodox semigroup but not an orthodox.

Example 4.4. Let S = {0, 1, 2, 3, 4, 5}. On S we define a multiplication ′·′ with
the following Cayley table:

· 0 1 2 3 4 5

0 0 2 2 3 0 0
1 3 1 3 3 1 5
2 3 2 3 3 2 0
3 3 3 3 3 3 3
4 0 1 2 3 4 5
5 5 1 1 3 5 5

Then (S, ·) is a semigroup with E(S) = {0, 1, 3, 4, 5}. Here, 0 · 1 = 2 /∈ E(S).
Hence S is not an orthodox semigroup. But, one can easily verify that (S, ·) is a
generalized quasi-orthodox semigroup.

Remark 4.5. A completely π-regular semigroup S is generalized quasi-orthodox
if and only if for any e, f ∈ E(S), (ef)(ef)0 = (ef)0.

Lemma 4.6. Let S be a GV-semigroup; e, f ∈ E(S), g = (ef)0e and h = f(ef)0.
Then ef(ef)0 = gh, g2 = g, h2 = h and (ef)J ∗gJ ∗h.

Proof. Firstly, gh = (ef)0(ef)(ef)0 = (ef)(ef)0. Again, g2 = (ef)0e(ef)0e =
(ef)0e = g. Similarly, h2 = h. Since S is a semilattice of its J ∗-classes [1], it
follows that (ef)J ∗gJ ∗h.

Definition 4.7. A GV-semigroup S is said to be generalized quasi-orthodox
GV-semigroup if S is a generalized quasi-orthodox semigroup.

Theorem 4.8. Let S = (Y ;Sα) be a GV-semigroup, where Y is a semilattice
and Sα (α ∈ Y ) is a completely Archimedean semigroup. Then the following
conditions are equivalent:

(i) S is generalized quasi-orthodox;

(ii) For all α ∈ Y , Sα is orthodox;

(iii) For all e ∈ E(S) and for all x ∈ S, there exist m,n ∈ N such that

(
xm−1(xm)−1ex

)n
=

(
xm−1(xm)−1ex

)n+1
;

(iv) For all a, b ∈ S there exists a positive integer n such that (a0b0)n =
(a0b0)n+1.



142 S.K. Maity

Proof. (i)⇐⇒(ii) This follows from Theorem X:2.1 [1].

(i)⇒(iii) For x ∈ S there exists a positive integer m such that xm is x-regular.
Let e ∈ E(S). As S is quasi-orthodox and x0 ∈ E(S), then there exists a positive
integer n such that (ex0)n−1 = (ex0)n. Therefore,(

xm−1(xm)−1ex
)n

= xm−1(xm)−1(ex0)n−1ex

= xm−1(xm)−1(ex0)nex

=
(
xm−1(xm)−1ex

)n+1
.

Hence, for all e ∈ E(S) and for all x ∈ S, there exist positive integers m,n ∈ N
such that (xm−1(xm)−1ex)n = (xm−1(xm)−1ex)n+1.

(iii)⇒(i) Let e, f ∈ E(S). Then by the given condition we have, (fef)n =
(fef)n+1, for some positive integer n.

Now, (ef)n+1 = e(fef)n = e(fef)n+1 = (ef)n+2. Hence, S is generalized
quasi-orthodox.

(i)⇒(iv) Since S is generalized quasi-orthodox and for all a, b ∈ S, a0, b0 ∈
E(S), hence there exists a positive integer n such that (a0b0)n = (a0b0)n+1.

(iv)⇒(i) This part is obvious.

Lemma 4.9. Let S = (Y ;Sα) be a generalized quasi-orthodox GV-semigroup,
where Y is a semilattice and Sα (α ∈ Y ) is a completely Archimedean semigroup.
Then for all α ∈ Y , E(Sα) is a rectangular band and for any two elements
a, b ∈ Sα, e ∈ E(Sβ), a0b0 = a0eb0, where α, β ∈ Y with α ≤ β.

Proof. Since each Sα is a completely Archimedean semigroup, then Sα has a
completely simple kernel Kα. As every element e ∈ E(Sα) is completely regular,
it follows that e ∈ E(Kα) and thus E(Sα) = E(Kα). Since Kα is completely
simple and orthodox, so E(Kα) is a rectangular band (Corollary III.5.3 [9]).
Hence E(Sα) is a rectangular band.

Now a0, a0e, b0 ∈ Kα. Since S is generalized quasi-orthodox, so there exists
a positive integer n such that (a0e)n = (a0e)n+1. Here (a0e)n ∈ E(Kα).

Therefore,

a0b0 = a0(a0e)nb0

= a0(a0e)
n+1

b0

= a0(a0e)na0eb0

= a0eb0.

Next we prove a very important result on generalized quasi-orthodox GV-semigroup.
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Theorem 4.10. Let S = (Y ;Sα) be a generalized quasi-orthodox GV-semigroup,
where Y is a semilattice and Sα (α ∈ Y ) is a completely Archimedean semigroup.
Let a ∈ Sα be a completely regular element and b ∈ Sβ where α ≤ β. Then ab is
completely regular.

Proof. For all α ∈ Y , Sα is the nil-extension of its kernel Kα, that is completely
simple.

Clearly, (ab) ∈ Sα. We show that (ab) ∈ Kα. As S is a GV-semigroup, then
there exists a positive integer n such that (ab)n is completely regular and (ab)n

is in a subgroup G ⊆ Kα. Let g be the identity of G. Then abg = gab ∈ G.
Now,

ab = a0ab,

= (a0ga0)ab,

since E(Sα) is a rectangular band and a0, g ∈ E(Sα).
Therefore,

ab = (a0ga0)ab

= a0(ga0ab)

= a0(gab) ∈ Kα,

since a0 ∈ Kα, gab ∈ G ⊆ Kα. Consequently, ab is completely regular.

5. Least Clifford congruences

In this section, we characterize least Clifford congruences on generalized quasi-
orthodox GV-semigroups. For this purpose we define a relation ν on a GV-
semigroup and finally we establish a necessary and sufficient condition for ν to
be a least Clifford congruence on a GV-semigroup.

Recall that a regular semigroup in which idempotents are central is said to be
a Clifford semigroup. It is interesting to mention that a semigroup S is a Clifford
semigroup if and only if S is semilattice of groups.

In order to characterize further the least Clifford congruence on a GV-semigroup,
we define the following relation ν.

Definition 5.1. Let S = (Y ;Sα) be GV-semigroup, where Y is a semilattice and
Sα (α ∈ Y ) is a completely Archimedean semigroup.

On S we define a relation ν as follows. For a, b ∈ S,

a ν b if and only if aa0 = a0bb0a0 and bb0 = b0aa0b0.

Theorem 5.2. Let S = (Y ;Sα) be GV-semigroup, where Y is a semilattice and
Sα (α ∈ Y ) is a completely Archimedean semigroup. Then the relation ν, as
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defined in Definition 5.1 is the least Clifford congruence on S if and only if S is
generalized quasi-orthodox.

Proof. Let S = (Y ;Sα) be a generalized quasi-orthodox GV-semigroup. We
prove that ν is the least Clifford congruence on S.

We first show that ν is an equivalence relation on S. Clearly, ν is reflexive
and symmetric.

Let a ν b and b ν c holds for a, b, c ∈ S. Then a, b, c ∈ Sα for some α ∈ Y .
Now, a ν b implies aa0 = a0bb0a0 and bb0 = b0aa0b0. Also, b ν c implies bb0 =

b0cc0b0 and cc0 = c0bb0c0.
Therefore,

aa0 = a0b0cc0b0a0,

i.e., c0aa0c0 = c0a0b0cc0b0a0c0

= c0a0b0cc0, [since E(Sα) is a rectangular band]

= c0a0b0c0c,

= c0c,

= cc0.

Similarly, aa0 = a0cc0a0. Thus, a ν c. Hence ν is an equivalence relation.
Let a ν b and c ∈ S. Let a, b ∈ Sα and c ∈ Sβ. Therefore, aa0 = a0bb0a0 and

bb0 = b0aa0b0. By using Lemma 4.9., we have

(ca)0(cb)(cb)0(ca)0 = (ca)0(cb)b0(cb)0(ca)0

= (ca)0cb0aa0b0(cb)0(ca)0

= (ca)0caa0b0(ca)0

= (ca)0caa0(ca)0

= (ca)0ca(ca)0

= (ca)(ca)0.

Similarly, (cb)0(ca)(ca)0(cb)0 = (cb)(cb)0. Therefore, (ca) ν (cb). Dually, we can
obtain, (ac) ν (bc). Consequently, ν is a congruence on S.

Now, for any a ∈ S, e ∈ E(S) we have e(ae)0 ∈ E(S).
Also,

(ea)0(ae)(ae)0(ea)0 = (ea)0(ae)(ea)0

= (ea)0e(ae)(ea)0

= (ea)0(ea)(ea)0

= (ea)(ea)0.

Similarly, (ae)0(ea)(ea)0(ae)0 = (ae)(ae)0. Therefore, (ae) ν (ea). Thus, we con-
clude that ν is a Clifford congruence on S.
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Now, we verify that ν is the least Clifford congruence on S.
Let ρ be any other Clifford congruence on S and a ν b, for a, b ∈ S. Then,

(aa0) ν (bb0). Now, aa0 = a0bb0a0 = (a0b0aa0b0a0) ρ (b0a0aa0a0b0) = b0aa0b0 =
bb0. Hence, (aa0) ρ (bb0). Now, a ρ (aa0) ρ (bb0) ρ b implies, ν ⊆ ρ. Hence, ν is the
least Clifford congruence on S.

To prove the converse, let ν be the least Clifford congruence on a GV-semi-
group S. We show that S is generalized quasi-orthodox. Now, let e, f ∈ E(S).
Then, by definition, (ef) ν (fe). This implies, (ef)ν = (fe)ν. Let (ef)n be (ef)-
regular. Then, (ef)n+1ν = (fe)ν(ef)nν, i.e., (ef)n+1ν = (ef)nν. This implies
((ef)(ef)0)ν = (ef)0ν, i.e., (ef)(ef)0 = (ef)0, i.e., (ef)n+1 = (ef)n. This proves
that S is generalized quasi-orthodox.
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