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Abstract

In Universal Algebra, identities are used to classify algebras into collec-
tions, called varieties and hyperidentities are use to classify varieties into
collections, called hypervarities. The concept of a hypersubstitution is a
tool to study hyperidentities and hypervarieties.

Generalized hypersubstitutions and strong identities generalize the con-
cepts of a hypersubstitution and of a hyperidentity, respectively. The set
of all generalized hypersubstitutions forms a monoid. In this paper, we de-
termine the set of all completely regular elements of this monoid of type
τ = (n).

Keywords: generalized hypersubstitution, regular element, completely reg-
ular element.

2010 Mathematics Subject Classification: 20B30, 20M05, 20M17.

1Corresponding author.

http://dx.doi.org/10.7151/dmgaa.1203


212 A. Boonmee and S. Leeratanavalee

1. Introduction

Hyperidentities and hypervarieties of a given type τ without nullary operations
were first introduced by J. Aczèl [1], V.D. Belousov [2], W.D. Neumann [9] and
W. Taylor [10]. The main tool used to study hyperidentities and hypervarieties
is the concept of a hypersubstitution. The notion of a hypersubstitution orig-
inated by K. Denecke, D. Lau, R. Pöschel and D. Schweigert [4]. In 2000, S.
Leeratanavalee and K. Denecke generalized the concepts of a hypersubstitution
and a hyperidentity to the concepts of a generalized hypersubstitution and a
strong hyperidentity, respectively [8]. The set of all generalized hypersubstitu-
tions together with a binary operation and the identity hypersubstitution forms
a monoid. There are several published papers on algebraic properties of this
monoid and its submonoids. The present paper will determine the set of all
completely regular elements of this monoid of type τ = (n).

2. Monoid of all generalized hypersubstitutions

In this section, we give the concept of the monoid of all generalized hypersubsti-
tutions.

LetX := {x1, x2, x3, . . .} be a countably infinite set of symbols called variables.
We often refer to these variables as letters, to X as an alphabet, and also refer
to the set Xn := {x1, x2, x3, . . . , xn} as an n-element alphabet. Let (fi)i∈I be an
indexed set which is disjoint from X. Each fi is called ni-ary operation symbol,
where ni ≥ 1 is a natural number. Let τ be a function which assigns to every fi
the number ni as its arity. The function τ , on the values of τ written as (ni)i∈I
is called a type. An n-ary term of type τ , for simply an n-ary term, is defined
inductively as follows:

(i) The variables x1, x2, . . . , xn are n-ary terms.

(ii) If t1, t2, . . . , tni are n-ary terms then fi(t1, t2, . . . , tni) is an n-ary term.

The smallest set, which contains x1, x2, . . . , xn and is closed under finite appli-
cation of (ii), is denoted by Wτ (Xn). It is clear that every n-ary term is also an
m-ary term for all m ≥ n. Let Wτ (X) :=

⋃∞
n=1Wτ (Xn). It is called the set of

all terms of type τ .

Example 1. Let τ = (2, 3). That means we have one binary operation symbol
and one ternary operation symbol, say f and g respectively. These are some ex-
amples of ternary terms of type (2, 3): x1, x2, x3, f(x3, g(x1, x3, x3)), g(f(x2, x3),
x1, g(x3, x1, x2)).
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A generalized hypersubstitution of type τ is a mapping σ : {fi| i ∈ I} → Wτ (X)
which does not necessarily preserve the arity. We denote the set of all generalized
hypersubstitutions of type τ by HypG(τ). To define a binary operation on this
set, we need the concept of generalized superposition of terms Sm : Wτ (X)m+1 →
Wτ (X) which is defined by the following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(t, t1, . . . , tm) = Sm(xj , t1, . . . , tm) := tj .

(ii) If t = xj , m < j ∈ N, then Sm(t, t1, . . . , tm) = Sm(xj , t1, . . . , tm) := xj .

(iii) If t = fi(s1, s2, . . . , sni), then Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm),

. . . , Sm(sni , t1, . . . , tm)).

Every generalized hypersubstitution σ can be extended to a mapping σ̂ : Wτ (X)→
Wτ (X) defined as follows:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, t2, . . . , tni)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni ]), for any ni-ary operation
symbol fi and supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Example 2. Let τ = (2), i.e., there is only one binary operation symbol, say f .
Let σ ∈ HypG(2) where σ(f) = f(x2, f(x3, x2)). Then

σ̂[f(f(x1, x5), x3)] = S2(σ(f), σ̂[f(x1, x5)], σ̂[x3])

= S2(f(x2, f(x3, x2)), S
2(σ(f), σ̂[x1], σ̂[x5]), x3)

= S2(f(x2, f(x3, x2)), S
2(f(x2, f(x3, x2)), x1, x5), x3)

= S2(f(x2, f(x3, x2)), f(x5, f(x3, x5)), x3)

= f(x3, f(x3, x3)).

We define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦
denotes the usual composition of mappings. Let σid be the hypersubstitution
which maps each ni-ary operation symbol fi to the term fi(x1, x2, . . . , xni). In
[8], S. Leeratanavalee and K. Denecke proved that:

For arbitrary terms t, t1, . . . , tn ∈Wτ (X) and for arbitrary generalized hyper-
substitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], . . . , σ̂[tn]) = σ̂[Sn(t, t1, . . . , tn)],

(ii) (σ̂1 ◦ σ2)̂ = σ̂1 ◦ σ̂2.

Then HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and the set of all hypersubsti-
tutions of type τ forms a submonoid of HypG(τ).
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3. All completely regular elements in HypG(n)

To determine the set of all completely regular elements of HypG(n), we first
introduce some notations which will be used throughout this paper.

For a type τ = (n) with n-ary operation symbol f and t ∈W(n)(X), we denote

σt := the generalized hypersubstitution σ of type τ = (n) which maps f to
the term t,

var(t) := the set of all variables occurring in the term t.

A subterm of t is defined inductively by the following steps.

(i) Every variable x ∈ var(t) is a subterm of t.

(ii) If t = f(t1, . . . , tn) then t1, . . . , tn and t itself are subterms of t.

We denote the set of all subterms of t by sub(t).

Lemma 3. Let σs, σt ∈ HypG(n) where t = f(t1, . . . , tn) such that ti1 = xj1 , . . . ,
tim = xjm for some i1, . . . , im and for distinct j1, . . . , jm ∈ {1, . . . , n} and var(t)∩
Xn = {xj1 , . . . , xjm}. Then σt ◦G σs ◦G σt = σt if and only if s = f(s1, . . . , sn)
where sjl = xil for all l ∈ {1, . . . ,m}.

Proof. Assume that σt ◦G σs ◦G σt = σt and let s = f(s1, . . . , sn). Suppose that,
there exists sjl such that sjl ∈Wn(X) \ {xil} for some l ∈ {1, . . . ,m}. Then

(σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]

= σ̂t[S
n(f(s1, . . . , sn), σ̂s[t1], . . . , σ̂s[tn])]

= σ̂t[f(w1, . . . , wn)] (where wi = Sn(si, σ̂s[t1], . . . , σ̂s[tn])

for all i ∈ {1, . . . , n})

= Sn(f(t1, . . . , tn), σ̂t[w1], . . . , σ̂t[wn])

= f(u1, . . . , un) (where ui = Sn(ti, σ̂t[w1], . . . , σ̂t[wn])

for all i ∈ {1, . . . , n}).

Since til = xjl for all l ∈ {1, . . . ,m}, thus uil = Sn(til , σ̂t[w1], . . . , σ̂t[wn]) =
σ̂t[wjl ]. Since wjl = Sn(sjl , σ̂s[t1], . . . , σ̂s[tn]) and sjl 6= xil , wjl 6= σ̂s[til ] = xjl ,
we get uil = σ̂t[wjl ] 6= xjl , and then f(u1, . . . , un) 6= t. This is a contradiction.
Hence sjl = xil for all l ∈ {1, . . . ,m}.

Conversely, let s = f(s1, . . . , sn) where sjl = xil for all l ∈ {1, . . . ,m}. Then
(σt ◦G σs ◦G σt)(f) = σ̂t[f(w1, . . . , wn)] where wi = Sn(si, σ̂s[t1], . . . , σ̂s[tn]) for
all i ∈ {1, . . . , n}. Since sjl = xil for all l ∈ {1, . . . ,m}, wil = Sn(xil , σ̂s[t1], . . . ,
σ̂s[tn]) = σ̂s[til ] = xjl , we get
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σ̂t[f(w1, . . . , wn)] = Sn(f(t1, . . . , tn), σ̂t[w1], . . . , σ̂t[wn]) = f(t1, . . . , tn) = t.

Hence σt ◦G σs ◦G σt = σt.

Definition [6]. An element a of a semigroup S is called regular if there exists
x ∈ S such that axa = a.

Let σt ∈ HypG(n), we denote

R1 := {σxi |xi ∈ X};
R2 := {σt|var(t) ∩Xn = ∅};
R3 := {σt|t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm for some i1, . . . , im and

for distinct j1, . . . , jm ∈ {1, . . . , n} and var(t) ∩Xn = {xj1 , . . . , xjm}}.

In 2010, W. Puninagool and S. Leeratanavalee [5] showed that
⋃3
i=1Ri is the set

of all regular elements in HypG(n).

Definition [6]. For any monoid S, an element u ∈ S is called unit if there exists
u−1 ∈ S such that uu−1 = e = u−1u where e is the identity element of S, and
U(S) denote the set of all unit elements of S.

Let Sn be the set of all permutations of {1, 2, . . . , n}. In 2013, A. Boonmee
and S. Leeratanavalee [3] showed that U(HypG(n)) := {σt ∈ HypG(n)|t =
f(xπ(1), . . . , xπ(n)) where π ∈ Sn} is the set of all unit elements in HypG(n).
And we see that U(HypG(n)) ⊂ R3.

Definition [6]. An element e of a semigroup S is called idempotent if e2 = ee = e,
and we denote the set of all idempotents in S by E(S).

Let σt ∈ HypG(n), we denote E := {σt|t = f(t1, . . . , tn) where ti1 = xi1 , . . . , tim =
xim for some i1, . . . , im ∈ {1, . . . , n} and var(t) ∩Xn = {xi1 , . . . , xim}} ⊂ R3.

In 2010, W. Puninagool and S. Leeratanavalee [5] showed that E(HypG(n)) =
(R1 ∪R2 ∪ E) is the set of all idempotent elements in HypG(n).

Definition [7]. An element a of a semigroup S is called completely regular ele-
ment if there exists b ∈ S such that a = aba and ab = ba.

Proposition 4. For each σt ∈ U(HypG(n)), σt is a completely regular element
in HypG(n).

Proof. Let σt ∈ U(HypG(n)). Then there exists σt−1 ∈ U(HypG(n)) ⊆ HypG(n)
such that σt ◦G σt−1 = σid = σt−1 ◦G σt and σt ◦G σt−1 ◦G σt = σt.

Proposition 5. For each σt ∈ E(HypG(n)), σt is completely regular element in
HypG(n).



216 A. Boonmee and S. Leeratanavalee

Proof. The proof is obvious.

Let σt ∈ HypG(n), we denote CR(R3) := {σt|t = f(t1, . . . , tn) where ti1 = xπ(i1),
. . . , tim = xπ(im) and π is a bijective map on {i1, . . . , im} for some i1, . . . , im ∈
{1, . . . , n} and var(t) ∩Xn = {xπ(i1), . . . , xπ(im)}}.

Then we have (E ∪ U(HypG(n))) ⊆ CR(R3) ⊂ R3.

Proposition 6. For each σt ∈ CR(R3), σt is completely regular element in
HypG(n).

Proof. Let σt ∈ CR(R3). Then t = f(t1, . . . , tn) where ti1 = xπ(i1), . . . , tim =
xπ(im) and π is a bijective map on {i1, . . . , im} for some i1, . . . , im ∈ {1, . . . , n}
and var(t) ∩Xn = {xπ(i1), . . . , xπ(im)}. Let s ∈W(n)(X) where s = f(s1, . . . , sn)
such that sπ(i1) = xi1 , . . . , sπ(im) = xim . Let tk ∈ sub(tj) and sk ∈ sub(sj) for
all j ∈ {1, . . . , n} \ {i1, . . . , im} and k ∈ {1, . . . , n}. If var(tk) ∩Xn = ∅ then we
choose sk = tk. And, if tk = xπ(il) and π(ip) = il for some ip, il ∈ {i1, . . . , im} we
choose sk = xip . By Lemma 3, we have σt ◦G σs ◦G σt = σt. Next, we will show
that σt ◦G σs = σs ◦G σt. Consider

(σt ◦G σs)(f) = Sn(f(t1, . . . , tn), σ̂t[s1], . . . , σ̂t[sn]) = f(w1, . . . , wn)

where wi = Sn(ti, σ̂t[s1], . . . , σ̂t[sn]) for all i ∈ {1, . . . , n}. And consider

(σs ◦G σt)(f) = Sn(f(s1, . . . , sn), σ̂s[t1], . . . , σ̂s[tn]) = f(u1, . . . , un)

where ui = Sn(si, σ̂s[t1], . . . , σ̂s[tn]) for all i ∈ {1, . . . , n}.

Case 1. il ∈ {i1, . . . , im}.
Since π is a bijective map on {i1, . . . , im}, there exists ip ∈ {i1, . . . , im} such that
π(ip) = il. Then

uil = Sn(sil , σ̂s[t1], . . . , σ̂s[tn]) = Sn(xip , σ̂s[t1], . . . , σ̂s[tn]) = σ̂s[tip ] = xπ(ip) = xil

and

wil = Sn(til , σ̂t[s1], . . . , σ̂t[sn]) = Sn(xπ(il), σ̂t[s1], . . . , σ̂t[sn]) = σ̂t[sπ(il)] = xil .

So uil = wil for all l ∈ {1, . . . ,m}.

Case 2. j ∈ {1, . . . , n} \ {i1, . . . , im}.
Let tk ∈ sub(tj) and sk ∈ sub(sj) for all k ∈ {1, . . . , n}. Then wj = Sn(tj , σ̂t[s1],
. . . , σ̂t[sn]) and uj = Sn(sj , σ̂s[t1], . . . , σ̂s[tn]). We put w′k = Sn(tk, σ̂t[s1], . . . ,
σ̂t[sn]) and u′k = Sn(sk, σ̂s[t1], . . . , σ̂s[tn]) for all k ∈ {1, . . . , n}. If var(tk)∩
Xn = ∅, then w′k = tk and u′k = sk = tk. If tk = xπ(il) and π(ip) = il, then
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w′k = Sn(tk, σ̂t[s1], . . . , σ̂t[sn]) = Sn(xπ(il), σ̂t[s1], . . . , σ̂t[sn]) = σ̂t[sπ(il)] = xil

and

u′k = Sn(sk, σ̂s[t1], . . . , σ̂s[tn]) = Sn(xip , σ̂s[t1], . . . , σ̂s[tn]) = σ̂s[tip ] = xπ(ip) = xil .

So wj = uj for all j ∈ {1, . . . , n} \ {i1, . . . , im}.
Hence f(w1, . . . , wn) = f(u1, . . . , un), so σt ◦G σs = σs ◦G σt. Therefore σt is

completely regular element in HypG(n).

Lemma 7. Let t = f(t1, . . . , tn) where ti1 = xj1 , . . . , tim = xjm for some i1, . . . , im
and for distinct j1, . . . , jm ∈ {1, . . . , n} and var(t)∩Xn = {xj1 , . . . , xjm}. If there
exists l ∈ {1, . . . ,m} such that til = xjl where il /∈ {j1, . . . , jm}, then σt 6= σs◦Gσ2t
for all σs ∈ HypG(n).

Proof. Assume that the condition holds. Consider

(σt ◦G σt)(f) = σ̂t[t] = Sn(f(t1, . . . , tn), σ̂t[t1], . . . , σ̂t[tn]) = f(u1, . . . , un)

where ui = Sn(ti, σ̂t[t1], . . . , σ̂t[tn]) for all i ∈ {1, . . . , n}. We have ui =
Sn(ti, σ̂t[t1], . . . , σ̂t[tn]) ∈ {xj1 , . . . , xjm} if and only if ti = xik for some k ∈
{1, . . . ,m}. Since il /∈ {j1, . . . , jm}, ti 6= xil for all i ∈ {1, . . . , n}. So ui 6= xjl .
Hence σ2t (f) = f(u1, . . . , un) where ui 6= xjl for all i ∈ {1, . . . , n}. Let σs ∈
HypG(n). Next, we will show that σt 6= σs ◦G σ2t . If s = xi where xi ∈ X,
then (σs ◦G σ2t )(f) = xj 6= σt(f) for some xj ∈ X. If s = f(s1, . . . , sn) where
s1, . . . , sn ∈W(n)(X), then

(σs ◦G σ2t )(f) = σ̂s[f(u1, . . . , un)]

= Sn(f(s1, . . . , sn), σ̂s[u1], . . . , σ̂s[un])

= f(w1, . . . , wn)

where wi = Sn(si, σ̂s[u1], . . . , σ̂s[un]) for all i ∈ {1, . . . , n}. Since ui 6= xjl for
all i ∈ {1, . . . , n}, σ̂s[ui] 6= xjl . So wi 6= xjl for all i ∈ {1, . . . , n}. Hence
f(w1, . . . , wn) 6= f(t1, . . . , tn), so σt 6= σs ◦G σ2t .

Theorem 8. An element a of a semigroup S is completely regular if and only if
a ∈ a2Sa2.

Proof. See [7].

Theorem 9. Let CR(HypG(n)) := CR(R3) ∪ R1 ∪ R2. Then CR(HypG(n)) is
the set of all completely regular elements in HypG(n).
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Proof. By Proposition 5 and Proposition 6, every element in CR(HypG(n)) is
completely regular element. Let σt be a regular element where σt /∈ CR(HypG(n)).
Then σt ∈ R3 \CR(R3). By Lemma 7, σt 6= σs ◦G σ2t for all σs ∈ HypG(n). Then
σt 6= (σ2t ◦G σu) ◦G σ2t where σ2t ◦G σu ∈ HypG(n). By Theorem 8, σt is not
completely regular element in HypG(n). Therefore CR(HypG(n)) is the set of
all completely regular elements in HypG(n).

Definition [7]. An element a of a semigroup S is called left(right) regular if
a ∈ Sa2 (a ∈ a2S) and a is called intra-regular if a ∈ Sa2S.

Theorem 10. An element a of a semigroup S is completely regular if and only
if a is both left regular and right regular.

Proof. See [7].

Theorem 11. Let S be a semigroup and a ∈ S. If a is completely regular, then
a is intra-regular.

Proof. Let a be a completely regular. Then there exists b ∈ S such that a = aba
and ab = ba. So a = aba = a(ab) = aba(ab) = (ab)a2(b) ∈ Sa2S.

Corollary 12. Let σt ∈ CR(HypG(n)). Then σt is is both left regular and right
regular element in HypG(n), and σt is intra-regular element in HypG(n).

Corollary 13. If σt ∈ R3 \ CR(R3), then σt is not left regular element in
HypG(n).
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