
Discussiones Mathematicae
General Algebra and Applications 33 (2013) 221–231
doi:10.7151/dmgaa.1202

VAGUE IDEALS OF IMPLICATION GROUPOIDS

Ravi Kumar Bandaru1

Department of Engineering Mathematics
GITAM University, Hyderabad Campus

Andhra Pradesh, India-502329

e-mail: ravimaths83@gmail.com

and

K.P. Shum

Insititute of Mathematics
Yunnan University, Kunming-650091, China

e-mail: kpshum@ynu.edu.cn

Abstract

We introduce the concept of vague ideals in a distributive implication
groupoid and investigate their properties. The vague ideals of a distributive
implication groupoid are also characterized.
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1. Introduction

I. Chajda and R. Halas [5] first introduced the concept of an implication groupoid
as a generalization of the implication reduct of intuitionistic logic, i.e., a Hilbert
algebra [1, 4] and studied some connections among ideals, deductive systems
and congruence kernels whenever implication groupoid is distributive. In [6, 8],
Y.B. Jun et. al introduced the concept of fuzzy ideal, fuzzy deductive systems in
Hilbert algebras and discuss the relation between fuzzy ideals and fuzzy deductive
systems. It is noticed that fuzzy algebra is now a well established branch of study
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[10]. Recently W.L. Gau, and D.J. Buehrer [7] proposed the theory of vague sets
as an improvement of theory of fuzzy sets in approximating the real life situations.
According to Gau and Buehrer,a vague set A in the Universe of discourse U is
a pair (tA, fA) where tA and fA are fuzzy subsets of U satisfying the condition
tA ≤ 1− fA, i.e., tA(u) ≤ 1− fA(u) for all u ∈ U . Ranjit Biswas [3] initiated the
study of vague algebra by studying vague groups, vague normal groups and the
properties related to them. In [9], Jun and Park introduced the concept of vague
ideals in a subtraction algebra and studied their properties.

In this paper we use the notion of vague set to study the vague ideals of a
distributive implication groupoid and then we obtain some related results.

2. Preliminaries

In this section, we present some preliminaries on the theory of vague sets (VS).
In his pioneer work [11], Zadeh proposed the theory of fuzzy sets. Since then,
the fuzzy sets have been applied in wide varieties of fields like Computer Science,
Management Science, Medical Sciences, Engineering problems, etc. to list a few
only. Let U = {u1, u2, . . . , un} be the universe of discourse. The membership
function for fuzzy sets can take any value from the closed interval [0, 1]. An fuzzy
set A is defined as the set of ordered pairs A = {(u, µA(u)) | u ∈ U} where µA(u)
is the grade of membership of element u in set A. The greater µA(u) is the greater
of the truth of the statement that the element u belongs to the set A. But Gau
and Buehrer [7] pointed out that this single value combines the vidence for u and
the evidence against u. It does not indicate the vidence for u and the vidence
against u, and it does not also indicate how much there is of each. Consequently,
there is a genuine necessity of a different kind of fuzzy sets which could be treated
as a generalization of the fuzzy sets proposed by Zadeh in [11].

Definition 2.1. A vague set A in the universe of discourse U is characterized by
two membership functions given by:

(1) A truth membership function tA : U → [0, 1] and

(2) A false membership function fA : U → [0, 1]

where tA(u) is a lower bound of the grade of membership of u derived from the
“evidence for u”, and fA(u) is a lower bound on the negation of u derived from
the “evidence against u”, and tA(u) + fA(u) ≤ 1.

Thus the grade of membership of u in the vague set A is bounded by a sub interval
[tA(u), 1− fA(u)] of [0, 1]. This indicates that if the actual grade of membership
is µ(u), then

tA(u) ≤ µ(u) ≤ 1− fA(u).
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The vague set A is written as

A = {(u, [tA(u), fA(u)]) | u ∈ U},

where the interval [tA(u), 1 − fA(u)] is called the vague value of u in A and is
denoted by VA(u).

It is worth to mention here that the interval-valued fuzzy sets (i-v fuzzy sets)
are not vague sets. In the (i-v fuzzy sets), an interval valued membership value
is assigned to each element of the universe considering the vidence for u without
considering the vidence against u. In vague sets both values are independent
proposed by the decision maker. This makes a major difference in the judgment
about the grade of membership.

We now give the following crucial definition.

Definition 2.2. A vague set A of a set U is called

(1) the zero vague set of U if tA(u) = 0 and fA(u) = 1 for all u ∈ U ,

(2) the unit vague set of U if tA(u) = 1 and fA(u) = 0 for all u ∈ U.
(3) the α-vague set of U if tA(u) = α and fA(u) = 1 − α for all u ∈ U, where

α ∈ (0, 1).

For α, β ∈ [0, 1] we now define the (α, β)-cut and the α-cut of a vague set.

Definition 2.3. Let A be a vague set of a universe X with the true-membership
function tA and the false-membership function fA. The (α, β)-cut of the vague
set A is a crisp subset A(α,β) of the set X given by

A(α,β) = {x ∈ X | VA(x) ≥ [α, β]},

where α ≤ β. Clearly, A(0,0) = X.

The (α, β)-cuts are also called the vague-cuts of the vague set A.

We give the following definitions.

Definition 2.4. The α-cut of the vague set A is a crisp subset Aα of the set X
given by Aα = A(α,α).

Note that A0 = X, and if α ≥ β, then Aβ ⊆ Aα and A(α,β) = Aα. Equivalently,
we can define the α-cut as

Aα = {x ∈ X | tA(x) ≥ α}.

For our discussion, we shall use the following notations which were given in [3]
on interval arithmetic.



224 R.K. Bandaru and K.P. Shum

I1 ≥ I2 if a1 ≥ a2 and b1 ≥ b2. Similarly, we understand the relations I1 ≤ I2 and
I1 = I2 . Clearly the relation I1 ≥ I2 does not necessarily imply that I1 ⊇ I2 and
conversely. We define the term “imax” to mean the maximum of two intervals as

imax(I1, I2) = [max(a1, a2),max(b1, b2)].

Similarly, we define “imin”. The concept of “imax” and “imin” could be extended
to define “isup” and “iinf” of infinite number of elements of I[0, 1]. It is obvious
that L = {I[0, 1], isup, iinf,≤} is a lattice with universal bounds [0, 0] and [1, 1].

Let us recall some definitions and results which were discussed in [5, 2] for the
development of the paper.

Definition 2.5. An algebra (X, ∗, 1) of type (2, 0) is called an implication groupoid
if it satisfies the following identities:

(1) x ∗ x = 1
(2) 1 ∗ x = x for all x, y ∈ X.

Example 2.6. Let X = {1, a, b} in which ∗ is defined by

∗ 1 a b

1 1 a b

a a 1 b

b a b 1

Then (X, ∗, 1) is an implication groupoid.

Definition 2.7. An Implication groupoid (X, ∗, 1) of type (2,0) is called a dis-
tributive implication groupoid if it satisfies the following identity:

(LD) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) (left distributivity)

for all x, y, z ∈ X.

Example 2.8. Let X = {1, a, b, c, d} in which an operation ∗ is defined by

∗ 1 a b c d

1 1 a b c d

a 1 1 b b 1

b 1 a 1 1 d

c 1 a 1 1 d

d 1 1 c c 1

Then (X, ∗, 1) forms a distributive implication groupoid.
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In every implication groupoid, one can introduce the so called induced relation
≤ by the setting

x ≤ y if and only x ∗ y = 1.

Lemma 2.9. Let (X, ∗, 1) be a distributive implication groupoid. Then X sat-
isfies the identities

x ∗ 1 = 1 and x ∗ (y ∗ x) = 1.

Moreover, the induced relation ≤ is a quasiorder on X and the following rela-
tionships are satisfied

(i) x ≤ 1 (v) y ∗ z ≤ (x ∗ y) ∗ (x ∗ z)
(ii) x ≤ y ∗ x (vi) x ≤ y implies y ∗ z ≤ x ∗ z
(iii) x ∗ ((x ∗ y) ∗ y) = 1 (vii) x ∗ (y ∗ z) ≤ y ∗ (x ∗ z)
(iv) 1 ≤ x implies x = 1 (viii) x ∗ y ≤ (y ∗ z) ∗ (x ∗ z).

Definition 2.10. Let X = (X, ∗, 1) be an implication groupoid. Then, a subset
I ⊆ X is called an ideal of X if

(I1) 1 ∈ I,
(I2) x ∈ X, y ∈ I imply x ∗ y ∈ I,
(I3) x ∈ X, y1, y2 ∈ I imply (y2 ∗ (y1 ∗ x)) ∗ x ∈ I.

Remark 2.11. If I is an ideal of an implication groupoid X = (X, ∗, 1) and
a ∈ I, x ∈ X then (a ∗ x) ∗ x ∈ I.

Definition 2.12. Let X = (X, ∗, 1) be an implication groupoid. Then,a subset
D ⊆ X is called a deductive system of X if

(D1) 1 ∈ D,

(D2) x ∈ D and x ∗ y ∈ D imply y ∈ D.

Theorem 2.13. A nonempty subset I of a distributive implication groupoid X
is an ideal if and only if it is a deductive system of X .

Definition 2.14. Let X be a set. A fuzzy set in X is a function µ : X −→ [0, 1].

Definition 2.15. Let µ be a fuzzy set in a set X. For α ∈ [0, 1], the set µα =
{x ∈ X | µ(x) ≥ α} is called a level subset of µ.

Definition 2.16. If µ is a fuzzy relation on a set X and ν is a fuzzy set in X,
then µ is called a fuzzy relation on ν if

µ(x, y) ≤ min{ν(x), ν(y)} for all x, y ∈ X.
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3. Vague ideals

In this section we introduce the concept of a vague ideal in a distributive impli-
cation groupoid X.

Throughout this section X is a distributive implication groupoid unless oth-
erwise specified.

We first begin with the following definition.

Definition 3.1. A vague set A of X is called a vague ideal of X if the following
conditions hold:

(V I1) VA(1) ≥ VA(x), for all x ∈ X.
(V I2) VA(y) ≥ imin{VA(x ∗ y), VA(x)}, that is,

(V I1) tA(1) ≥ tA(x), 1− fA(1) ≥ 1− fA(x)

and

(V I2) tA(y) ≥ min{tA(x ∗ y), tA(x)}, 1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(x)}

for all x, y ∈ X.

Example 3.2. Let X = {1, a, b, c, d} in which ∗ is defined by

∗ 1 a b c d

1 1 a b c d

a 1 1 1 1 d

b 1 1 1 1 d

c 1 1 1 1 d

d 1 a b c 1

Then (X, ∗, 1) is a distributive implication groupoid. Let A be a vague set in X
defined as follows:

A = {< 1, [0.7, 0.2] >,< a, [0.5, 0.3] >,< b, [0.5, 0.3] >,

< c, [0.5, 0.3] >,< d, [0.7, 0.2] >}.

Then A is a vague ideal of X.

Proposition 3.3. Every vague ideal A of X satisfies

x ≤ y ⇒ VA(x) ≤ VA(y),

for all x, y ∈ X.
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Proof. Let x, y ∈ X and x ≤ y. Then x ∗ y = 1 and so

tA(y) ≥ min{tA(x ∗ y), tA(x)} = min{tA(1), tA(x)} = tA(x)

1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(x)} = 1− fA(x).

Therefore VA(x) ≤ VA(y).

Proposition 3.4. Every vague ideal A of X satisfies

(V I3) VA(x ∗ z) ≥ imin{VA(x ∗ (y ∗ z)), VA(y)}

for all x, y, z ∈ X.

Proof. Let x, y, z ∈ X. Then, by Definition 3.1(2) and Proposition 3.3, we
deduce that

VA(x ∗ z) ≥ imin{VA(y ∗ (x ∗ z)), VA(y)} ≥ imin{VA(x ∗ (y ∗ z)), VA(y)}.

The following theorem can be proved easily.

Theorem 3.5. Let A be a vague set in X. Then A is a vague filter of X if and
only if it satisfies (V F1) and (V F3)

For Vague ideals, we have the following theorem.

Theorem 3.6. Let A be a vague set in X. Then A is a vague ideal of X if and
only if it satisfies the following conditions:

(V I4) VA(y ∗ x) ≥ VA(x) and

(V I5) VA((a ∗ (b ∗ x)) ∗ x) ≥ imin{VA(a), VA(b)}

for all x, y, a, b ∈ X.

Proof. Suppose that A is a vague ideal of X and x, y, a, b ∈ X. Then, by Defini-
tion 3.1 and Propositions 3.3, 3.4, we get

(V I4) VA(y ∗ x) ≥ imin{VA(x ∗ (y ∗ x)), VA(x)} = imin{VA(1), VA(x)} = VA(x)

(V I5)
VA((a ∗ (b ∗ x)) ∗ x) ≥ imin{VA((a ∗ (b ∗ x)) ∗ (b ∗ x)), VA(b)}

≥ imin{VA(a), VA(b)}.

Conversely, assume that the conditions hold. Put y = x in (V I3), then

VA(1) = VA(x ∗ x) ≥ VA(x)

for all x ∈ X. By (V I5), we get
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VA(y) = VA(1 ∗ y) = VA(((x ∗ y) ∗ (x ∗ y)) ∗ y) ≥ imin{VA(x ∗ y), VA(x)}

for all x, y ∈ X. Hence A is a vague ideal of X.

Theorem 3.7. Let A be a vague set in X. Then A is a vague ideal of X if and
only if it satisfies

(V I6) z ≤ x ∗ y ⇒ VA(y) ≥ imin{VA(x), VA(z)}

for all x, y, z ∈ X.

Proof. Assume that A is a vague ideal of X. Let x, y, z ∈ X be such that z ≤ x∗y.
Then, by Proposition 3.3 and (V I2), we have

VA(y) ≥ imin{VA(x ∗ y), VA(x)} ≥ imin{VA(z), VA(x)}.

Conversely, suppose that A satisfies (V I6). Since x ≤ x ∗ 1 for all x ∈ X, we
have VA(1) ≥ imin{VA(x), VA(x)} = VA(x) by (V I6). Also, x ≤ (x ∗ y) ∗ y for all
x, y ∈ X. Hence VA(y) ≥ imin{VA(x ∗ y), VA(x)}. Therefore A is a vague ideal
of X.

As a generalization of the above theorem, we have the following theorem.

Theorem 3.8. If a vague set A in X is a vague ideal of X, then

(V I7)
n∏
i=1

wi ∗ x = 1⇒ VA(x) ≥ imin{VA(wi) | i = 1, 2, . . . , n}

for all x,w1, w2, . . . , wn ∈ X, where
n∏
i=1

wi ∗ x = wn ∗ (wn−1 ∗ (· · · ∗ (w1 ∗ x) . . . )).

Proof. We prove this theorem by using Mathematical induction on n. Let A
be a vague ideal of X. Then, by Proposition 3.3 and (V I6), we know that the
condition (V I7) is valid for n = 1, 2. Assume that A satisfies the condition (V I7)
for n = k, i.e.,

k∏
i=1

wi ∗ x = 1⇒ imin{VA(wi) | i = 1, . . . , k}

for all x,w1, w2, . . . , wk ∈ X. Let x,w1, w2, . . . , wk, wk+1 ∈ X be such that
k+1∏
i=1

wi∗

x = 1. Then
VA(wi ∗ x) ≥ imin{VA(wj) | j = 2, . . . , k + 1}.
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Since A is a vague ideal of X, it follows from (V I2) that

VA(x) ≥ imin{VA(w1 ∗ x), VA(w1)}

≥ imin{VA(w1), {VA(wj) | j = 2, . . . , k + 1}}

= imin{VA(wj) | j = 1, 2, . . . , k + 1}.

Hence, by mathematical induction, we have proved that A satisfies (V I7).

Theorem 3.9. Let A be a vague set in X satisfying the condition (V I7). Then
A is a vague ideal of X.

Proof. Note that 1 ∗ (1 ∗ (1 ∗ . . . (1︸ ︷︷ ︸
n times

∗x)) . . . ) = x. Since x ≤ x∗1, VA(1) ≥ VA(x)

for all x ∈ X. Thus (V I1) is valid. Let x, y, z ∈ X be such that z ≤ x ∗ y. Then

1 = z ∗ (x ∗ y) = z ∗ (1 ∗ . . . (1 ∗ (1︸ ︷︷ ︸
n−2 times

∗(x ∗ y))) . . . ))

and so

VA(y) ≥ imin{VA(z), VA(x), VA(1)} = imin{VA(z), VA(x)}.

Hence by Theorem 3.7, we conclude that A is a vague ideal of X.

Theorem 3.10. Let A be a vague ideal of X. Then for any α, β ∈ [0, 1], the
vague-cut A(α,β) is a crisp ideal of X.

Proof. Obviously, 1 ∈ A(α,β). Let x, y ∈ X be such that x ∈ A(α,β) and x ∗ y ∈
A(α,β). Then VA(x) ≥ [α, β], i.e., tA(x) ≥ α and 1− fA(x) ≥ β and VA(x ∗ y) ≥
[α, β], i.e., tA(x ∗ y) ≥ α and 1− fA(x ∗ y) ≥ β. It follows from (V I2) that

tA(y) ≥ min{tA(x ∗ y), tA(x)} ≥ α,

1− fA(y) ≥ min{1− fA(x ∗ y), 1− fA(y)} ≥ β

so that VA(y) ≥ [α, β]. Hence y ∈ A(α,β) is an ideal of X.

The ideal like A(α,β) are also called the vague-cut ideals of X. Now, we have the
following results.

Proposition 3.11. Let A be a vague ideal of X. Then, two vague-cut ideals
A(α,β) and A(ω,γ) with [α, β] < [ω, γ] are equal if and only if there is no x ∈ X
such that [α, β] ≤ VA(x) ≤ [ω, γ].
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Theorem 3.12. Let X be a finite distributive implication groupoid and A a
vague ideal of X. Consider the set V (A) given by

V (A) = {VA(x) | x ∈ X}.

Then Ai are the only vague-cut ideals of X, where Ai ∈ V (A).

Proof. Consider [a1, a2] ∈ I[0, 1] where [a1, a2] /∈ V (A). It [α, β] < [a1, a2] <
[ω, γ] where [α, β], [ω, γ] ∈ V (A), then A(α,β) = A(a1,a2) = A(ω,γ). If [a1, a2] <
[a1, a3] where [a1, a3] = imin{VA(x) | x ∈ X}, then A(a1,a3) = X = A(a1,a2).
Hence for any [a1, a2] ∈ I[0, 1], the vague-cut ideal A(a1,a2) is one of the Ai ∈
V (A). This completes the proof.

Theorem 3.13. Any ideal I of X is a vague-cut ideal of some vague ideal of X.

Proof. Consider the vague set A of X given by

VA =

{
[α, α], if x ∈ I
[0,0], if x /∈ I,

where α ∈ (0, 1). Since 1 ∈ I, we have VA(1) = [α, α] ≥ VA(x) for all x ∈ X. Let
x, y ∈ X. If y ∈ I, then

VA(y) = [α, α] ≥ imin{VA(x ∗ y), VA(x)}.

Assume that y /∈ I. Then x /∈ I or x ∗ y /∈ I. It follows that

VA(y) = [0, 0] = imin{VA(x ∗ y), VA(x)}.

Thus A is a vague ideal of X. Clearly F = A(α,α).

Theorem 3.14. Let A be a vague ideal of X. Then the set

I = {x ∈ X | VA(x) = VA(1)}

is a crisp ideal of X.

Proof. Obviously 1 ∈ I. Let x, y ∈ X be such that x ∗ y ∈ I and x ∈ I. Then
VA(x ∗ y) = VA(1) = VA(x) and so

VA(y) ≥ imin{VA(x ∗ y), VA(x)} = VA(1)

by (V I1). Since VA(1) ≥ VA(y) for all y ∈ X, it follows that VA(y) = VA(1), and
thereby we have y ∈ I. Therefore I is a crisp ideal of X.
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