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Abstract

We provide several characterizations and investigate properties of Prüfer
modules. In fact, we study the connections of such modules with their
endomorphism rings. We also prove that for any Prüfer module M , the
forcing linearity number of M , fln(M), belongs to {0, 1}.
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1. Introduction

Throughout this paper, R will denote a commutative domain with identity and
M a unital R-module. For the sake of completeness, we state some definitions
and notations used throughout. A nonzero ideal I of R is said to be invertible
if II−1 = R, where I−1 = {x ∈ K : xI ⊆ R} and K is the field of fractions
of R. The concept of an invertible submodule was introduced by Naoum and
Al-Alwan [9] as a generalization of the concept of an invertible ideal. Let M be
an R-module and S the set of all nonzero divisors of R. Then

T = {t ∈ S : tm = 0 for some m ∈M implies m = 0}
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is a multiplicatively closed subset of R. It is clear that if M is torsion free, then
T = S. Now let T−1R be the localization of R at T in the usual sense. Let N be
a nonzero submodule of M and N ′ = {x ∈ T−1R : xN ⊆M}. Following Naoum
and Al-Alwan [9], we say that N is invertible, if NN ′ = M and M is called a
Dedekind module provided that each nonzero submodule of M is invertible.

An R-module M is called a Prüfer module, if every nonzero finitely generated
submodule of M is invertible. Clearly, Dedekind modules are Prüfer modules.
But the converse is not true. Let R be a Prüfer domain which is not a Dedekind
domain, then every nonzero finitely generated ideal of R is a Prüfer R-module
which is not a Dedekind R-module.

In the present paper, we show that every Prüfer module is uniform (i.e., every
two nonzero submodules have nonzero intersection), and also every torsion free
Prüfer module has rank one. We give equivalent conditions for Prüfer modules
and Prüfer domains. We also prove that a finitely generated torsion free R-
module M is Prüfer module if and only if O(M) is a Prüfer domain and M is a
uniform R-module. Moreover, for a Prüfer module over a commutative domain
R we study the concept of a forcing linearity number which is a type of measure
of how much local linearity is needed to imply global linearity.

2. Preliminaries

In order to make this paper easier to follow, we recall in this section various
notions from module theory which will be used in the sequel.

Definition. (a) The rank of an R-module M is defined to be the maximal
number of elements of M linearly independent over R (it is easy to see that
rankR(M) equals dimK(S−1M)).

(b) An R-module M is called a cancellation module, if for all ideals I and J
of R, IM ⊆ JM implies I ⊆ J .

(c) An R-module M is called a multiplication module when for each submodule
N of M , there exists an ideal I of R such that N = IM .

(d) A submodule N of M is called fully invariant, if f(N) ⊆ N for each
f ∈ End(M) (we denote the ring of R-endomorphism of M by End(M)). An
R-module M is called a duo module provided that every submodule of M is fully
invariant [11].

(e) Let M be an R-module. A submodule N of M is called dense if,

TrM (N) =
∑

γ∈HomR(N,M)

γ(N) = M.

Also M is called a π-module if each nonzero submodule of M is dense in M .
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Remark 1. (1) We say that xn ∈M where x = r
t ∈ T

−1R and n ∈M −{0} as
long as there exists an element m ∈M such that tm = rn for some r ∈ R [9].

(2) If M is a torsion-free R-module, then O(M) = {x ∈ K : xM ⊆ M}, the
order of M in K. Note that O(M) is a subring of K containing R, and M is an
O(M)-module. We will use the notation O(M)M to indicate that M is regarded
as an O(M)- module.

(3) Let

MR(M) = { f : M →M | f(rx) = rf(x), r ∈ R, x ∈M},

EndR(M) = { f ∈MR(M)| f(x+ y) = f(x) + f(y), x, y ∈M}.

Following Hausen and Johnson [4] an R-module M is called endomorphal if
EndR(M) = MR(M). The set MR(M) is the collection of homogeneous func-
tions determined by the R-module M . Note thatMR(M) contains EndR(M). If
MR(M) = EndR(M), that is, if every R-homogeneous function from M to M is
an endomorphism, then M is said to be endomorphal.

We need the following propositions proved in [9, Proposition 1.3(ii)], [15, Theo-
rem A], [11, Theorem 3.7, Lemma 3.2] and [14, Lemma 2.8], respectively.

Proposition 2. Let M be non-zero R-module and N be a submodule of M .

(i) If N = Rn, then N is invertible in M if and only if for each m ∈M , there
exist t ∈ T and r ∈ R such that tm = rn.

(ii) If Ann(M) = A, then the following statements are equivalent.

(a) M is a multiplication module.

(b) M is a finitely projective (R/A)-module and every submodule of M is
fully invariant.

(c) M is a finitely projective (R/A)-module and End(M) is a commutative
ring.

(iii) If R is a commutative domain, then the following statements are equivalent
for a non-zero finitely generated torsion-free R-module M.

(d) M is a duo module.

(e) M contains a non-zero cyclic fully invariant submodule.

(f) M is a uniform module and O(M) = R.

(iv) Let U be a torsion-free uniform R-module. Then a mapping f : U → U
is an endomorphism of U if and only if there exists k ∈ O(U) such that
f(u) = ku for all u ∈ U .

(v) If M is a torsion-free R-module, then MR(M) = EndR(M) if and only if
M has rank one.
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3. Prüfer modules

To prove the main theorems of this paper, we need to develop some further
properties of Prüfer modules. We start with the following proposition:

Proposition 3. Let M be a Prüfer R-module. Then the following hold:

(i) T−1M is a simple module as a T−1R-module.

(ii) If M is a torsion-free R-module, then rankR(M) = 1.

Proof. (i) Assume that M is a Prüfer R-module; we show that T−1M is simple
as a T−1R-module. Let N be a nonzero submodule of T−1M . Then N = T−1N
for some N ≤ M . Let m

s ∈ T−1M (m ∈ M, s ∈ T ). Since for each n ∈ N ,
Rn is an invertible submodule (see [9]), there exist t ∈ T and r ∈ R such that
tm = rn by Proposition 2(i). Therefore m

s ∈ T−1N . Thus T−1M is a simple
T−1R-module.

(ii) Since M is a torsion free module, T = S; hence the module S−1M is a
simple K-module by (i). Therefore rankR(M) = 1.

Lemma 4. Every finitely generated torsion free Prüfer R-module is isomorphic
to an ideal of R.

Proof. We will prove this lemma similar to [1, Corollary 3.7]. Let M = Rm1 +
. . . + Rms, where s is a positive integer, and choose a nonzero element x ∈ M .
Then by Proposition 3, S−1M = Kx. Therefore, mi = ai

t x for some ai ∈ R and
0 6= t ∈ R. Thus M ⊆ R(xt ) and for each element m of M , there exists a ∈ R such
that m = a(xt ). The element a is uniquely determined by m. Consequently, we
can define an R-monomorphism f from M to R with f(m) = a, where m = a(xt ).
An inspection will show that f is a monomorphism. Hence M is isomorphic to
an ideal of R.

Now we give the following proposition which will be very useful in proving our
aims.

Proposition 5. If M is a Prüfer R-module, then M is a uniform module.

Proof. Let N and N ′ be two nonzero submodules of M , and N ∩ N ′ = {0}.
Let n ∈ N such that n /∈ N ′. Since Rn is invertible, for each 0 6= n′ ∈ N ′,
there exist t ∈ T and r ∈ R such that tn′ = rn, by Proposition 2(i). Therefore
tn′ = rn ∈ N ∩N ′ = {0}, whence n′ = 0, a contradiction. Thus for each nonzero
submodules N, N ′ of M , N ∩N ′ 6= 0 and so M is a uniform R-module.

Saraç et al. used π-modules to characterize Dedekind modules, [13, Proposition
12]. In the following theorem, we characterize Prüfer modules by their finitely
generated dense submodules.
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Theorem 6. A torsion free R-module M is a Prüfer module if and only if M is
a uniform module and each finitely generated submodule of M is dense in M .

Proof. Assume that M is a Prüfer R-module and let N be a nonzero finitely
generated submodule of M such that f is an R-homomorphism from N to M .
Let n ∈ N . Since M is a uniform module (by Proposition 5), there exist a, b ∈ R
such that af(n) = bn. By uniformity of M , it is easy to see that f(n′) = b

an
′ for

each n′ ∈ N . Since f(N) ⊆M , b
a ∈ N

′. Thus NN ′ = M , because TrM (N) = M .
Therefore M is a Prüfer module. The other implication is clear.

LetW be a set of submodules of M . ThenW is forcing if an R-homogenous map
f : M → M , that is linear on each submodule W ∈ W, is linear on M [8]. As
in [14], to each non-zero R-module M we assign a number fln(M) ∈ N ∪ {0,∞},
call the forcing linearity number of M , as follows:

(i) If MR(M) = EndR(M), then fln(M) = 0;

(ii) If MR(M) 6= EndR(M), then

fln(M) = min {|W| :W is forcing}.

(iii) If neither of the above conditions holds, we say fln(M) =∞.

In the next theorem, we characterize the forcing linearity of Prüfer modules.

Theorem 7. If M is a Prüfer module, then fln(M) is either 0 or 1.

Proof. Let 0 6= m ∈ M . Set W = {Rm}. We claim that W forces linearity
on M . Let f be a homogeneous on M and linear on Rm. Let x, y ∈ M . Put
q = f(x + y) − f(x) − f(y). Since Rm is invertible, there exist t1, t2 ∈ T such
that t1x, t2x ∈ Rm. Thus we have t1t2q = f(t1t2x+ t1t2y)− f(t1t2x)− f(t1t2y).
Since f is linear on Rm, t1t2q = 0. So q = 0, as desired.

Now we give a condition on prüfer modules to satisfy the property ”every homo-
geneous map is linear”.

Proposition 8. If M is a torsion free prüfer module, then fln(M) = 0.

Proof. By Proposition 3, rank(M) = 1. Thus by Proposition 2(v), MR(M) =
EndR(M), whence fln(M) = 0.

Lemma 9. If M is a finitely generated torsion free Prüfer R-module, then M is
a Prüfer O(M)-module and O(M) is a Prüfer domain.

Proof. The proof is similar to [13, Lemma 2].
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Lemma 10. Let S be a Prüfer domain such that R ⊆ S ⊆ K. If I is a nonzero
finitely generated ideal of S, then I is a torsion free Prüfer R-module.

Proof. Let J be a finitely generated R-submodule of I. Since SJ is finitely
generated, SJ is invertible; hence (SJ )−1J = S. Thus [(SJ )−1I]J = I.

In the next proposition, we prove the converse of Proposition 8 by some condi-
tions.

Proposition 11. Let M be a finitely generated and torsion free R-module, where
O(M) is Prüfer. If fln(M) = 0, then M is Prüfer.

Proof. By Proposition 2(v), rankR(M) = 1; hence rankO(M)M = 1. By an
argument like that Lemma 4, M ∼= J for some ideal J of O(M). Therefore by
Lemma 10, M is a Prüfer module.

Now, we are ready to give several characterizations of Prüfer modules. In fact,
the following theorems give equivalent conditions for Prüfer domains and Prüfer
modules.

Theorem 12. If M is a finitely generated torsion free Prüfer R-module, then
the following are equivalent:

(i) R is integrally closed;

(ii) R is a Prüfer domain;

(iii) M is a multiplication module;

(iv) M is a duo module;

(v) M is a projective module;

(vi) M is a cancellation module.

Proof. (i)⇒(ii) Let I be a nonzero finitely generated proper ideal of R. Since
M is finitely generated, IM 6= M , and so IM is a finitely generated submodule
of M. Therefore, IM(IM)′ = M . As R is an integrally closed domain, we get
I(IM)′ = R. Thus I is an invertible ideal of R.

(ii)⇒(iii) Since M is a Prüfer module, by Lemma 4, M ∼= I for some finitely
generated ideal I of R. Since R is a Prüfer domain, I is invertible, whence I is a
multiplication R-module. Thus M is a multiplication module.

(iii)⇒(iv) Follows from Proposition 2(ii).

(iv)⇒(i) Since M is a duo module, O(M) = R by Proposition 2(iii). Thus by
Theorem 6, R is an integrally closed domain.

(iii)⇔(vi) By Lemma 4, M ∼= I. For an ideal I of a commutative domain R,
I is projective if and only if I is multiplication. Hence M a is a multiplication
module if and only if it is a projective module.



Some remarks on Prüfer modules 127

(vi)⇒(ii) Let I be any nonzero finitely generated proper ideal of R. Then

(IM)′ = {q ∈ K : qIM ⊆M} = {q ∈ K : qI ⊆ R} = I−1.

Therefore I−1IM = M . Since M is a cancellation module, I−1I = R; thus R is
a Prüfer domain.

(iii)⇒(vi) Since M is a finitely generated multiplication module, it has can-
cellation property by [3, Theorem 3.1].

In the following, we characterize the endomorphism ring of a Prüfer module M
over an integral domainR and necessary and sufficient conditions for anR-module
M to be a Prüfer module are given.

Theorem 13. If M is a finitely generated torsion free R-module, then the fol-
lowing are equivalent:

(i) M is a Prüfer R-module;

(ii) O(M) is a Prüfer domain and M is a uniform module as an R-module;

(iii) O(M) is a Prüfer domain and EndR(M) ∼= O(M);

(iv) O(M) is a Prüfer domain and M is a duo O(M)-module.

Proof. (i)⇒(ii) Follows from Proposition 5 and Lemma 9.
(ii)⇒(iii) Since M is uniform, End(RM) ∼= O(M) by Proposition 2(iv).
(iii)⇒(i) Since M is finitely generated torsion free module, M is a projective

O(M)-module (see [12, Theorem 4.32]). It is clear that End(RM) = End(O(M)M);
hence End(O(M)M) is a commutative domain. By Proposition 2(ii), M is a
multiplication O(M)- module. It follows that M is a Prüfer O(M)-module. Thus
by Lemma 4, M ∼= I for some finitely generated ideal I of O(M). Therefore by
Lemma 9, M is a Prüfer R-module.

(iii)⇒(iv) Since O(M) is a Prüfer domain, and M is a finitely generated tor-
sion free module, M is a projective O(M)-module by [12, Theorem 4.32]. As
End(O(M)M) is commutative, by Proposition 2(ii), every submodule of O(M)M
is fully invariant. Therefore M is a duo module.

(iv)⇒(iii) By an argument like that ((iii)⇒(iv)), M is a projective O(M)-
module. Since every submodule of M is fully invariant, M is a multiplication
O(M)-module by Proposition 2(ii). Thus by [10, Corollary 3.3], End(RM) =
End(O(M)M) ∼= O(M).

Acknowledgment

The authors express their gratitude to Professor Marco Fontana for a number of
helpful suggestions and thank the referee for several useful comments on the first
draft of the manuscript.



128 S.E. Atani, S.D. Pishhesari and M. Khoramdel

References
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