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Abstract

A flower is a coin graph representation of the wheel graph. A petal of a
flower is an outer coin connected to the center coin. The results of this paper
are twofold. First we derive a parametrization of all the rational (and hence
integer) radii coins of the 3-petal flower, also known as Apollonian circles or
Soddy circles. Secondly we consider a general n-petal flower and show there
is a unique irreducible polynomial Pn in n variables over the rationals Q,
the affine variety of which contains the cosinus of the internal angles formed
by the center coin and two consecutive petals of the flower. In that process
we also derive a recursion that these irreducible polynomials satisfy.

Keywords: planar graph, coin graph, flower, polynomial ring, Galois
theory.
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1. Introduction

By a coin graph we mean a graph whose vertices can be represented as closed,
non-overlapping disks in the Euclidean plane such that two vertices are adjacent
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if and only if their corresponding disks intersect at their boundaries, i.e., they
touch. For n ∈ N the wheel graph Wn on n + 1 vertices is the simple graph
obtained by connecting an additional center vertex to all the vertices of the cycle
Cn on n vertices. A coin graph representation of a wheel graph is called a flower.
The coins of a flower connected to the center vertex are called petals, so a coin
representation of Wn has n petals and is called an n-petal flower. In Figure 1 we
see an example of a flower on the left, and a configuration of coins that does not
form a flower on the right.

Figure 1. Examples of a flower and a non-flower.

The study of flowers is central in many discrete geometrical settings, in particular
in circle packings [14] and also in the study of planar graphs in general, since
every planar graph has a coin graph representation. That a coin graph is planar
is clear, but that the converse is true is a nontrivial topological result, usually
credited to Thurston [15], but is also due to both Koebe [11] and Andreev [1].
For a brief history of this result we refer to [16, p. 118]. Numerous simply stated
but extremely hard problems involving coin graphs can be found in a recent and
excellent collection of research problems in discrete geometry [3]. Also, Brightwell
and Scheinerman [4] explored integral representations of coin graphs, where the
radii of the coins can take arbitrary positive integer values.

In Section 2 we start by considering the case of n = 3, and we obtain all
rational (and hence integer) radii of four mutually tangent circles, sometimes
called Soddy circles after Frederick Soddy, an English chemist who rediscovered
Descartes’ Circle Theorem in 1936 [2] or Apollonian circles after Apollonius of
Perga, who first studied mutually tangent circles more than two thousand years
ago. This will be obtained in elementary ways, involving only Euclidean geometry,
high school algebra and elementary number theory. Still our parametrization is
new and differs from the one obtained by Graham et al. in [5] as we will see in
in the last subsection of Section 2.
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As a first step toward the study of the general case when n ≥ 3, we will in the
remaining sections then study an algebraic relation the radii of general n-petal
flowers must satisfy, and show that for every n ≥ 3 the cosines of the central angles
of an n-petal flower are contained in the affine variety of a uniquely determined
symmetric and irreducible polynomial Pn in n variables over the rationals. We
note that the cosines are more interesting than the sines in this investigation,
for the mere reason that cosines of the angles of an integer-sided triangle are all
rational. Hence, a necessary requirement for the radii to be integers is that the
mentioned cosines are all rational. Note that, unlike for the case n = 3, the radii
are not determined by the central angles alone for n ≥ 4, where a fixed set of
central angle values can yield a wide range of radii, something we shall see in
Section 3.

The rest of the paper is organized as follows:

In Section 2 we consider the special case of a 3-petal flower and we derive our
first main result: a free parametrization of all rational radii of the outer circles
when the inner circle has radius one, in an elementary way. This will then yield
a new free parametrization of all integer radii of four mutually tangent Soddy
circles.

In Section 3 we use Galois theory to formally define the polynomials Pn(x1, . . . ,
xn), whose affine variety contain (cos θ1, . . . , cos θn) where θ1, . . . , θn are the in-
ternal angles of an n-petal flower for n ≥ 3, and prove some useful lemmas.

In Section 4 we first obtain a recursive presentation of Pn(x1, . . . , xn), and use
that to prove our second main result of this paper, that each symmetric Pn is an
irreducible polynomial over Q.

2. Rational radii of Soddy circles

Here we deal with the special case of n = 3, and we characterize all rational
solutions for 3-petal flowers, thereby obtaining all rational radii of four mutually
tangent Soddy circles. This section uses only elementary mathematics, but serves
as a motivation (or justification) for our discussion in the sections to follow.

In general, to find all integer-radii coins forming an n-petal flower in the
Euclidean plane, it is equivalent by scaling to find all rational radii coins where
the center coin is assumed to have radius one. Hence, assume we have a 3-petal
flower with a center radius of one and the outer radii r1, r2 and r3. If the internal
angle formed by the center coin and two outer coins of radii ri and ri+1 is θi,
then by the law of cosines we have

xi := cos θi =
ri + ri+1 − riri+1 + 1

ri + ri+1 + riri+1 + 1
,(1)
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and the equation relating the three angles is then θ1 + θ2 + θ3 = 2π. Clearly,
if each radius ri is rational, then so is each xi. Isolating one angle, say θ3, and
taking the cosine of both sides we obtain

x3 = x1x2 −
√

(1− x21)(1− x22).(2)

For rational x1 and x2 it is clear that x3 will be rational if and only if the term
under the radical is the square of a rational number. For i = 1, 2 let xi =

pi
qi

for
with pi, qi ∈ Z. By (2) we then obtain

x3 = x1x2 −
1

q1q2

√
(q21 − p21)(q

2
2 − p22).

Here (q21 − p21)(q
2
2 − p22) is a square if and only if q2i − p2i = s2i β and si ∈ N for

i = 1, 2 where β is a square-free integer. Here we need the following result from
elementary number theory:

Theorem 2.1. Let β be a square-free integer. The integers x, y, z form a prim-
itive solution to the Diophantine equation x2 + βy2 = z2 if and only if there are
positive integers m and n and a factorization β = bc where bm2 and cn2 are
relatively prime such that x = bm2−cn2

2 , y = mn, z = bm2+cn2

2 , where both m and
n are odd or both are even, or x = bm2−cn2, y = 2mn, z = bm2+cn2 otherwise.

For a proof of Theorem 2.1, see Appendix A.

Since xi =
pi
qi

for i = 1, 2 we have by Theorem 2.1 that

x1 =
b1m

2
1 − c1n

2
1

b1m
2
1 + c1n

2
1

, x2 =
b2m

2
2 − c2n

2
2

b2m
2
2 + c2n

2
2

,(3)

where β = b1c1 = b2c2 are two (not necessarily distinct) factorizations of the
square-free integer β, and where mi, ni can be chosen from the nonnegative inte-
gers. Note that either solution from Theorem 2.1 will yield the same form of x1
and x2 in (3).

By (1) we have

x1 =
r1 + r2 − r1r2 + 1

r1 + r2 + r1r2 + 1
, x2 =

r2 + r3 − r2r3 + 1

r2 + r3 + r2r3 + 1
, x3 =

r3 + r1 − r3r1 + 1

r3 + r1 + r3r1 + 1
.

Rewriting each equation for xi as a polynomial equation in terms of ri and ri+1

( where 4 ≡ 1 modulo 3) and then factoring in terms of ri and ri+1 we obtain
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(
r1 +

x1 − 1

x1 + 1

)(
r2 +

x1 − 1

x1 + 1

)
=

2(1 − x1)

(x1 + 1)2
,

(
r2 +

x2 − 1

x2 + 1

)(
r3 +

x2 − 1

x2 + 1

)
=

2(1 − x2)

(x2 + 1)2
,

(
r3 +

x3 − 1

x3 + 1

)(
r1 +

x3 − 1

x3 + 1

)
=

2(1 − x3)

(x3 + 1)2
.

Now we can solve the first and third equations for r2 and r3 respectively in terms
of r1, x1, x3. Substituting these into the second equation, we can then solve that
for r1 in terms of x1, x2, x3 obtaining

r1 =
−1− x1x3 + x3 + x1 ±

√
2(1− x1)(1− x2)(1 − x3)

2x2 − x1 + x1x3 − 1− x3
.(4)

Putting x1 and x2 from (3) into (2) we obtain

x3 = x1x2 −
√

(1− x21)(1− x22) =

(
b1m

2
1 − c1n

2
1

) (
b2m

2
2 − c2n

2
2

)
− 4m1m2n1n2β

(b1m2
1 + c1n2

1)(b2m
2
2 + c2n2

2)
.

Substituting this expressions for x3 and those of x1 and x2 from (3) into (4), we
get an expression for r1 in terms of b1, b2, c1, c2,m1,m2, n1, n2:

r1 =
n1(b2c

2
1m

2
2n

3
1 + 2βc1m1m2n

2
1n2 + βc2m

2
1n1n

2
2)

b1c1c2m
2
1n

2
1n

2
2 − b2c

2
1m

2
2n

4
1 + c21c2n

4
1n

2
2 − 2βc1m1m2n

3
1n2 + b21c2m

4
1n

2
2

± n1n2(b1m
2
1 + c1n

2
1)
√

c1c2(b1c2m2
1n

2
2 + 2βm1m2n1n2 + b2c1m2

2n
2
1)

b1c1c2m2
1n

2
1n

2
2 − b2c21m

2
2n

4
1 + c21c2n

4
1n

2
2 − 2βc1m1m2n3

1n2 + b21c2m
4
1n

2
2

.

Using the fact that β = b1c1 = b2c2, the expression under the square root can be
reduced to β(c2m1n2 + c1m2n1)

2. Thus, this expression for r1 will only yield a
perfect square when β = 1. Therefore, r1 is rational if and only if q2i − p2i = s2i
for i = 1, 2, or in other words when 1 − x2i is a rational square for i = 1, 2. This
means that both cos θi and sin θi are rational for i = 1, 2, 3.

Proposition 2.2. The 3-petal flower with the center coin of radius one can have
the outer coins of rational radii r1, r2, r3 if and only if the internal angles θ1, θ2, θ3
have both rational cosines and sines for i = 1, 2, 3.
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Proposition 2.2 shows a property that is very special for the n-petal flower with
rational radii when n = 3. We now can write a “nice” parametrization for the
cosines xi and the radii ri in the case when n = 3: namely,

x1 =
m2

1 − n2
1

m2
1 + n2

1

, x2 =
m2

2 − n2
2

m2
2 + n2

2

, x3 =

(
m2

1 − n2
1

) (
m2

2 − n2
2

)
− 4m1m2n1n2

(m2
1 + n2

1)(m
2
2 + n2

2)
.

for some m1, n1,m2, n2 ∈ N. Putting these into (4) and the similar equations for
r2 and r3 we obtain the rational forms for r1, r2, r3 that contain all rational radii
for the outer coins of a 3-petal flower with center coin of radius one:

r1 =
n1(m1n2 +m2n1)

−m1n1n2 −m2n2
1 + (m2

1n2 + n2
1n2)

r2 =
n1n2

−n1n2 ± (m2n1 +m1n2)

r3 =
n2(m1n2 +m2n1)

−m1n2
2 −m2n1n2 ± (n1n2

2 +m2
2n1)

.

We will now determine a range of the parameters that will yield meaningful
solutions in the above parametrization.

Observation 2.3. If θ1, θ2, θ3 are the internal angles of a 3-petal flower, then
90◦ < θi < 180◦ for each i = 1, 2, 3 and these three inequalities are all sharp.

For a proof of Observation 2.3, see Appendix B.
By Observation 2.3 we now know that for all the angles θi, we have 90◦ <

θi < 180◦, and hence −1 < cos θi < 0. Hence, in the parametrization of x1 and
x2

x1 =
m2

1 − n2
1

m2
1 + n2

1

, x2 =
m2

2 − n2
2

m2
2 + n2

2

,

we must have ni > mi. In this case x3 in (2) must satisfy
(
m2

1 − n2
1

) (
m2

2 − n2
2

)
−

4m1m2n1n2 < 0, which is equivalent to (m1n2+m2n1)
2 > (m1m2−n1n2)

2. Since
mi < ni, this is equivalent to m1n2 +m2n1 > n1n2 −m1m2, or equivalently

m1n2 +m2n1 +m1m2 > n1n2.(5)

Looking at the expression for r1,

r1 =
n1(m1n2 +m2n1)

−m1n1n2 −m2n
2
1 ± (m2

1n2 + n2
1n2)

we see that in order for r1 > 0 to hold we must have n2(m
2
1 + n2

1) > n1(m1n2 +
m2n1). Re-solving for the radii r2 and r3 using the positive term in the expression
for r1, we obtain:
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r2 =
n1n2

m2n1 +m1n2 − n1n2
, r3 =

n2(m1n2 +m2n1)

n1n2
2 +m2

2n1 −m1n2
2 −m2n1n2

,

which give us two additional constraints in order to ensure positive radii: m2n1+
m1n2 > n1n2 and n2(m1n2 +m2n1) > n1(m

2
2 + n2

2). Note that the first of these
constraints is stronger than (5). Letting ti = mi/ni for each i = 1, 2, 3, we can
express our first main theorem that characterizes all rational radii (and hence
integer radii by scaling) Soddy circles as follows.

Theorem 2.4. If a 3-petal flower has rational radii and the innermost coin has
radius of one, then the cosines x1, x2 and x3 of the angles at the innermost coin
are given by

x1 =
t21 − 1

t21 + 1
, x2 =

t22 − 1

t22 + 1
, x3 =

(t21 − 1)(t22 − 1)− 4t1t2
(t21 + 1)(t22 + 1)

and the corresponding radii by

r1 =
t1 + t2

t21 − t1 − t2 + 1
,

r2 =
1

t1 + t2 − 1
,

r3 =
t1 + t2

t22 − t1 − t2 + 1
,

for some t1, t2 ∈ Q such that 1 < t1+ t2, t1+ t2 < t21+1, t1+ t2 < t22+1. Further,
all rational 3-petal flowers have rational radii and internal cosines parametrized
as above in terms of such t1, t2 ∈ Q. This parametrization characterizes all sets
of four mutually tangent Soddy circles of rational radius in the plane.

x

y

1

1

Figure 2. The region R.
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We note that the conditions the rational parameters t1 and t2 satisfy in the above
Theorem 2.4 is simply (t1, t2) ∈ R ∩Q2 where

R = {(x, y) ∈ R2 : 1 < x+ y, y < x2 − x+ 1, x < y2 − y + 1},

is an open region symmetric about the line x = y, which looks like a “hyperbolic
triangle” with vertices (0, 1), (1, 0) and (1, 1), and where the internal angle at each
of the vertices is 0 (see Figure 2.) By the 2-dimensionality of the region R, we
note that the parametrization of the radii and the internal cosines in the above
Theorem 2.4 in terms of t1, t2 ∈ Q is free in the sense that they don’t satisfy any
equation.

Example. Consider t1 = 2/3 and t2 = 1/2. We see that (t1, t2) = (2/3, 1/2) ∈ R,
and are hence legitimate rational parameters by Theorem 2.4. Here we have
x1 = − 5

13 , x2 = −3
5 , x3 = −33

65 , and the corresponding radii r1 = 21
5 , r2 = 6,

r3 = 14. By scaling by the factor of 5 we obtain an integral flower with center
radius of r = 5 and the outer radii r1 = 21, r2 = 30 and r3 = 70. See Figure 3.

Remark. Consider a 3-flower with the center coin of radius one. Assume further
the center coin is centered at the origin of the complex plane C. The inversion z 7→
1/z of the center circle will map all the outer disks to corresponding disks inside
the center disk. This configuration has three non-overlapping disks completely
inside the center disk, and does therefore not represent a 3-flower. However, this
inversion will keep all the angles θ1, θ2 and θ3 and hence their cosines x1, x2 and x3
intact. The radii r1, r2 and r3 will however change to r′1, r

′
2 and r′3 respectively,

where (1 + ri)(1 − r′i) = 1 or r′i = ri
1+ri

for each i. By Theorem 2.4 this will
automatically yield a free parametrization of three rational radii, non-overlapping
mutually touching coins, all three touching the unit circle on its inside where
(t1, t2) ∈ R ∩Q2 as before.

2.1. Descartes’ circle theorem and another parametrization

A nice relation connecting the radii of four mutually tangent Soddy circles in the
Euclidean plane is given by Descartes’ circle theorem [2].

Theorem 2.5 (Descartes). A collection of four mutually tangent circles in the
plane, where bi = 1/ri denotes the curvatures of the circles, satisfies the relation

b21 + b22 + b23 + b24 =
1

2
(b1 + b2 + b3 + b4)

2.

Remark. Theorem 2.5 has been generalized to higher dimensions.

It is straightforward to check that our rational parametrization from Theorem 2.4
satisfies Descartes’ circle theorem. Another elegant parametrization of integer
Soddy circles are given by Graham et al. in [5] in the following theorem.
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Theorem 2.6 (Graham, Lagarias, Mallows, Wilks, Yan). The following para-
metrization characterizes the integral curvatures of a set of Soddy circles:

b1 = x, b2 = d1 − x, b3 = d2 − x, b4 = −2m+ d1 + d2 − x,

where x2 +m2 = d1d2 and 0 ≤ 2m ≤ d1 ≤ d2.

We conclude this section by briefly comparing our rational parametrization to the
one given by Theorem 2.6. Suppose we have a 3-petal flower, the coins of which
have integer radii. Further, assume the center coin is the coin with curvature b1.
By conveniently permuting indices, the remaining outer coins have radii r1, r2, r3
given by

r1 =
b1
b2
, r2 =

b1
b4
, r3 =

b1
b3
.

Using the rational parametrization of r1, r2 and r3 given by Theorem 2.4 and
replacing each bi with the integer parametrization from Theorem 2.6, we can
solve for d1/x, d2/x and m/x in terms of t1 and t2 and obtain

m

x
=

1− t1t2
t1 + t2

,
d1
x

=
t21 + 1

t1 + t2
,

d2
x

=
t22 + 1

t1 + t2
.

From this it is clear that 1 + (m/x)2 = (d1/x)(d2/x), so the quadratic equa-
tion relating the parameters in Theorem 2.6 is automatically satisfied. Secondly,
the assumption 0 ≤ 2m ≤ d1 ≤ d2 in Theorem 2.6 translates to the natural
assumption that the radii are ordered by r2 ≤ r3 ≤ r1.

Figure 3. An example Soddy circle obtained from the parametrization.
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3. The inner cosines of the general n-petal flower

In Section 2 we established a parametrization of all the outer radii of a 3-petal
flower if the inner coin was assumed to have radius one. In doing so we first
established all rational solutions of the inner cosines x1, x2 and x3 from the de-
termining relation (2). In this special case of n = 3, (where the inner radius is
assumed to be one) the radii r1, r2 and r3 are uniquely determined by the xi,
so next we expressed each ri in terms of these rational x1, x2 and x3, thereby
obtaining free parametrization of the radii r1, r2 and r3. Hence, for n ≥ 4 a nec-
essary first step in determining all the rational radii of an n-petal flower with the
inner coin of radius one is to determine all the rational inner cosines given by (1)
where now θ1, . . . , θn form the inner angles of the n-petal flower in a clockwise
order. When n ≥ 4, however, the radii ri are not uniquely determined by the
inner cosines xi = cos θi, i ∈ {1, . . . , n}.

Example. Consider the case of a 4-petal flower with innerradius one and θ1 =
θ2 = θ3 = θ4 = π/2. In this case we have by Pythagoras’s Theorem (ri+ri+1)

2 =
(ri + 1)2 + (ri+1 + 1)2 or ri+1 = (ri + 1)/(ri − 1) for each i = 1, 2, 3, 4, and so a
complete rational parametrization of the outer radii are given by

r1 = r3 = r ∈ Q, r2 = r4 =
r + 1

r − 1
.

Whether a similar game can be played for any given inner angles θ1, . . . , θn of
an n-petal flower with rational cosines xi = cos θi ∈ Q is not what we will
attempt to answer, but rather determining a “minimal” relation the rational
inner cosines must satisfy in general. This is the topic for the remainder of this
paper. We will show that for n ≥ 3, the xi lie in an affine variety of a symmetric
polynomial Pn(x1, . . . , xn) (see [10, p. 252] for more information and general
algebraic properties of symmetric polynomials.) The polynomial Pn in x1, . . . , xn
will be the minimal polynomial of cos θ1, . . . , cos θn over Q where

n∑

i=1

θi = 2π.(6)

Note that not all sets of n angles θ1, . . . , θn satisfying (6) can be internal angles
of an n-petal flower, not even when n = 3, as we saw in Observation 2.3. We
will however see, by the way we define Pn here below, that Pn is symmetric when
n ≥ 3. This will be the main task of this section. We then turn to our second
main contribution of the article: to prove that Pn is irreducible over Q. That we
will do in the following Section 4.

Remark. As we remarked after Theorem 2.4, we can assume a setup where the
center coin of radius one is centered at the origin of the complex plane C. The
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inversion z 7→ 1/z of this center circle will map all the outer disks to corresponding
non-overlapping disks inside the center coin. Again, this configuration does not
represent an n-flower, but the inversion will keep all the angles θ1, . . . , θn and
their cosines x1, . . . , xn intact. Hence, all the discussion here below about an
n-flower, and the cosines x1, . . . , xn of the internal angles, also applies to the
inverted configuration where the outer coins/disks are all contained inside the
center unit disk.

Before we continue, we must first make some conventions and set forth some
definitions: In what follows N = {1, 2, 3, . . .} is the set of natural numbers, and
for n ∈ N we let [n] = {1, . . . , n}.

Consider an n-petal flower with internal angles of θ1, . . . , θn. If xi = cos θi
for each i ∈ [n], then yi = sin θi satisfies the equation x2i + y2i = 1 and hence

yi = ±
√

1− x2i . The geometric properties of the coin graph determine that for

the interior angles θi we have 0 ≤ θi < π and so sin θi ≥ 0. Hence we have

yi =
√

1− x2i and so both cos θi and sin θi are algebraic in terms of xi. We will

initially view x1, . . . , xn on one hand and y1, . . . , yn on the other both as sets of n

independent variables respectively, related only by yi =
√

1− x2i for each i ∈ [n].

Definition 3.1. We define the algebraic expressions ECn and ESn in terms of
x1, . . . , xn, where xi = cos θi for i ∈ [n], by taking the cosine and sine of

∑n
i=1 θi

and expanding using the classical addition formulae for cosine and sine:

ECn(x1, . . . , xn) = cos

(
n∑

i=1

θi

)
, ESn(x1, . . . , xn) = sin

(
n∑

i=1

θi

)
.

Example. For n = 1 we have EC1(x1) = x1 and ES1(x1) = y1 =
√

1− x21.
For n = 2 we have EC2(x1, x2) = x1x2 −

√
1− x21

√
1− x22 and ES2(x1, x2) =

x2
√

1− x21 + x1
√

1− x22. Directly by the addition formulae for cosine and sine
we have the following recursive property of these expressions.

Lemma 3.2. For each i ∈ [n] we have

ECn(x1, . . . , xn) = xiECn−1(x̂i)− yiESn−1(x̂i),

ESn(x1, . . . , xn) = yiECn−1(x̂i) + xiESn−1(x̂i).

where yi =
√

1− x2i and (x̂i) = (x1, . . . , xi−1, xi+1, . . . , xn). In particular for

i = 1 we have

ECn(x1, . . . , xn) = x1ECn−1(x̂1)− y1ESn−1(x̂1),

ESn(x1, . . . , xn) = y1ECn−1(x̂1) + x1ESn−1(x̂1).
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Note that the algebraic expressions ECn and ESn are symmetric in x1, . . . , xn.

Recall that for the case n = 3 we have by (2) that x3 = x1x2−y1y2 and hence,
multiplying by the conjugate, we obtain

0 = (x3 − x1x2 − y1y2)(x3 − x1x2 + y1y2) = x21 + x22 + x23 − 2x1x2x3 − 1,

a symmetric polynomial equation relating the inner cosines x1, x2 and x3 of the
3-petal flower, or the Soddy circles. Our objective is to obtain such a uniquely
determined symmetric (and irreducible) polynomial Pn for the general n-petal
flower. Namely, by (6) we get by isolating θn and taking cosines of both sides
that

xn = ECn−1(x1, . . . , xn−1).(7)

This we will use to define Pn in general for n ∈ N. Before we define Pn however,
we need some preliminary definitions and results.

Definition 3.3. For n ∈ N let G∗
n be the Galois group of automorphisms on

Q(x1, . . . , xn, y1, . . . , yn) that fixes the field Q(x1, . . . , xn). Also, let Gn be the
Galois group of automorphisms on Q(x1, . . . , xn, yiyj : i < j) that fixes the field
Q(x1, . . . , xn). That is,

G∗
n = Gal(Q(x1, x2, . . . , xn, y1, . . . , yn)/Q(x1, . . . , xn)),

Gn = Gal(Q(x1, x2, . . . , xn, yiyj : i < j)/Q(x1, . . . , xn)),

where x1, . . . , xn are algebraically independent indeterminates and yi =
√
1− x2i

for each i, that is yi is one root of X2 + x2i − 1 = 0 ∈ Q(x1, . . . , xn)[X].

Lemma 3.4. For n ≥ 1 we have G∗
n
∼= Zn

2 and Gn
∼= Zn−1

2 .

Proof. For G∗
n, each yi is the root of an irreducible quadratic polynomial X2 −

(1−x2i ) from the ring Q(x1, . . . , xn, y1, . . . , yi−1)[X], which is the minimum poly-
nomial of yi for each i. Hence we have G∗

n
∼= Zn

2 .

For Gn, each yiyj with i < j is also the root of an irreducible quadratic
polynomial X2 − (1 − x2i )(1 − x2j) ∈ Q(x1, . . . , xn)[X]. However, every element
of Q(x1, x2, . . . , xn, yiyj : i < j) can be written as a rational function in terms of
only elements of the form yiyi+1 as follows:

yiyj =
(yiyi+1)(yi+1yi+2) · · · (yj−1yj)

y2i+1 · · · y2j−1

=
(yiyi+1)(yi+1yi+2) · · · (yj−1yj)

(1− x2i+1) · · · (1− x2j−1)
.
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So we have that

Q(x1, x2, . . . , xn, yiyj : i < j) = Q(x1, x2, . . . , xn, yiyi+1 : i ∈ [n− 1]).

Each term yiyi+1 is a root of an irreducible quadratic polynomial X2 − (1− x2i )
(1 − x2i+1) from the ring Q(x1, . . . , xn, y1y2, . . . , yi−1yi)[X], which is the minimal

polynomial of yiyi+1 for each i ∈ [n− 1]. Therefore we have that Gn
∼= Zn−1

2 .

Lemma 3.5. For n ∈ N, the group Gn
∼= Zn−1

2 can be presented as

Gn =
〈
σ1, . . . , σn−1 : σ

2
i = e, σiσj = σjσi

〉
,

where each σi is an automorphism fixing Q(x1, . . . xn) and

σi(yjyj+1) =

{
−yjyj+1 if i = j

yjyj+1 if i 6= j.

Proof. Since (yiyi+1)
2 = (1 − x2i )(1 − x2i+1) and the Galois group Gn is fixing

the xi, the only possible automorphisms are σ(yiyi+1) = −yiyi+1 and σ(yiyi+1) =
yiyi+1. We can then generate the group as in the statement of the theorem with
n− 1 generators σi.

Corollary 3.6. For every σ ∈ Gn, let sσ;j ∈ {−1, 1} be such that σ(yjyj+1) =
sσ;jyjyj+1. Then for every i < j we have σ(yiyj) = sσ;isσ;i+1 · · · sσ;jyiyj . In
particular, if i < n then σn−1(yiyn) = −yiyn and if i > 1 then σ1(y1yi) = −y1yi.

We can now give a precise definition of Pn for each n ∈ N.

Definition 3.7. For n ∈ N, define the polynomial Pn ∈ Q[x1, . . . , xn] by

Pn(x1, . . . , xn) :=
∏

σ∈Gn−1

(xn − σ(ECn−1)).

Remark. From Definition 3.7 it is not clear a priori that Pn is symmetric in
x1, . . . , xn.

Our first task is to prove the symmetry of Pn, which we now embark on. By Def-
inition 3.1 each of the 2n−2 terms of ESn−1 in terms of x1, . . . , xn−1, y1, . . . , yn−1

contains positive odd factors of yi for i ≤ n − 1. Hence σn−1 ∈ Gn fixes
Q(x1, . . . , xn, y1y2, . . . , yn−2yn−1) and σn−1(yn−1yn) = −yn−1yn. Noting this, we
then have by Corollary 3.6 the following:

Claim 3.8. For n ≥ 2 we have Gn = Gn−1 ∪Gn−1σn−1 = Gn−1 ∪σn−1Gn−1 and
σn−1(ynESn−1) = −ynESn−1.
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If Gn is presented as in Lemma 3.5, then σn−1 ∈ Gn fixes Q(x1, . . . , xn,
y1y2, . . . , yn−2yn−1) and σn−1(yn−1yn) = −yn−1yn.

Lemma 3.9. For n ∈ N let Gn be presented as in Lemma 3.5. Then

(ECn − 1) (σn−1 (ECn)− 1) = (xn − ECn−1)
2 .

Proof. By Claim 3.8 we have σn−1(ynESn−1) = −ynESn−1 and hence

(ECn − 1)(σn−1(ECn)− 1)

= (xnECn−1 − ynESn−1 − 1)(σn−1(xnECn−1 − ynESn−1)− 1)

= (xnECn−1 − ynESn−1 − 1)(xnECn−1 + ynESn−1 − 1)

= (xnECn−1 − 1)2 − y2nES
2
n−1

= (xnECn−1 − 1)2 − (1− x2n)(1− EC2
n−1)

= (xn − ECn−1)
2.

Corollary 3.10. For n ≥ 2 we have P 2
n = Cn where

Cn =
∏

σ∈Gn

(σ(ECn)− 1).

Remark. It is clear that Cn is symmetric in x1, . . . , xn.

Proof. By Lemma 3.9 we obtain:

Cn =
∏

σ∈Gn

(σ(ECn)− 1)

=
∏

σ∈σn−1Gn−1∪Gn−1

(σ(ECn)− 1)

=
∏

σ∈Gn−1

(σ(ECn)− 1)(σn−1σ(ECn)− 1)

=
∏

σ∈Gn−1

σ((ECn − 1)(σn−1(ECn)− 1))

=
∏

σ∈Gn−1

σ((xn − ECn−1)
2)

=
∏

σ∈Gn−1

(xn − σ(ECn−1))
2

= P 2
n .
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By exactly the same token as Claim 3.8, Lemma 3.9, and Corollary 3.10, we
obtain analogous results by reordering the variables y1, . . . , yn in the reverse order:
yn, yn−1, . . . , y1. Namely, if σi ∈ Gn is the field automorphism of Q(x1, . . . , xn,
y1y2, y2y3, . . . , yn−1yn) with σi(yiyi+1) = −yiyi+1 fixing Q(x1, . . . , xn) and each
yjyj+1 for j 6= i (as in Lemma 3.5) then we have the following:

Claim 3.11. If n ≥ 2 then Gn = G′
n−1∪σ1G′

n−1 = G′
n−1∪G′

n−1σ1 where G′
n−1 =

〈σ2, . . . , σn−1〉, a subgroup of Gn = 〈σ1, . . . , σn−1〉, and σ1(y1ESn−1(x2, . . . , xn)) =
−y1ESn−1(x2, . . . , xn).

Proof. By Definition 3.1, each of the 2n−2 terms of ESn−1(x2, . . . , xn) =

ESn−1(x2, . . . , xn, y2, . . . , yn) (by substituting yi =
√

1− x2i for each i = 2, . . . , n)

has positive odd factors of yi for i ≥ 2. Hence the claim follows by Corollary 3.6.

Similarly to Lemma 3.9 we now have the following.

Lemma 3.12. If σ1 ∈ Gn is as above then

(ECn − 1)(σ1(ECn − 1)) = (x1 − ECn−1(x2, . . . , xn))
2.

Proof. By Claim 3.11 we obtain

(ECn − 1)(σ1(ECn − 1))

= (x1ECn−1(x2, . . . , xn)− y1ESn−1(x2, . . . , xn)− 1)

·(σ1(x1ECn−1(x2, . . . , xn)− y1ESn−1(x2, . . . , xn))− 1)

= (x1ECn−1(x̂1)− y1ESn−1(x̂1)− 1)

·(x1ECn−1(x̂1) + y1ESn−1(x̂1)− 1)

= (x1ECn−1(x̂1)− 1)2 − y21ESn−1(x̂1)
2

= (x1ECn−1(x̂1)− 1)2 − (1− x21)(1− ECn−1(x̂1)
2

= (x1 − ECn−1(x̂1))
2,

where (x̂1) = (x2, . . . , xn) as above.

Corollary 3.13. For n ≥ 3 we have

Cn =
∏

σ∈G′

n−1

(x1 − σ(ECn−1(x̂1)))
2.
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Proof. By Lemma 3.12 we obtain as in the proof of Corollary 3.10

Cn =
∏

σ∈Gn

(σ(ECn)− 1)

=
∏

σ∈G′

n−1
∪σ1G

′

n−1

(σ(ECn)− 1)

=
∏

σ∈G′

n−1

(σ(ECn)− 1)(σσ1(ECn)− 1)

=
∏

σ∈G′

n−1

σ (((ECn)− 1)(σ1(ECn)− 1))

=
∏

σ∈G′

n−1

σ((x1 − ECn−1(x̂1))
2)

=
∏

σ∈G′

n−1

(x1 − σ(ECn−1(x̂1)))
2.

Remark. For n = 1, 2 we have from (7) and definition of Cn in Corollary 3.10
that P1 = C1 = x1 − 1 and P2 = x2 − x1. However, the latter is a matter of
taste, since we could have set P2 = x1−x2. The case n = 2 is the only one where
C2(x1, x2) is symmetric while P2 is not.

By Corollary 3.13 we obtain Cn = Q2
n where

Qn =
∏

σ∈G′

n−1

(x1 − σ(ECn−1(x̂1))) ∈ Q[x1, . . . , xn].

Since P 2
n = Cn = Q2

n, then as elements in a polynomial ring over a field, an
integral domain, we get 0 = P 2

n −Q2
n = (Pn −Qn)(Pn +Qn) and hence for each

n ≥ 2 we have Qn = Pn or Qn = −Pn.
For n = 2 we obtain P2 = x2 − x1 and Q2 = x1 − x2 so Q2 = −P2.
For n ≥ 3 we first note that by evaluating ECn−1(x̂n) and ECn−1(x̂1) at x2 =

· · · = xn−1 = 1 yields ECn−1(x̂n)|x2=···=xn−1=1 = x1 and ECn−1(x̂1)|x2=···=xn−1=1

= xn and hence we obtain

Pn(x1, 1, . . . , 1, xn) =
∏

σ∈Gn−1

(xn − x1) = (xn − x1)
2n−2

Qn(x1, 1, . . . , 1, xn) =
∏

σ∈G′

n−1

(x1 − xn) = (x1 − xn)
2n−2

.

As n ≥ 3, we have 2n−2 is even and so (xn − x1)
2n−2

= (x1 − xn)
2n−2

and hence
Pn(x1, 1, . . . , 1, xn) = Qn(x1, 1, . . . , 1, xn). Therefore we obtain the following:
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Corollary 3.14. For n ≥ 3 we have Qn = Pn, and hence

Pn =
∏

σ∈Gn−1

(x1 − σ(ECn−1(x̂1))).

We now show that for n ≥ 3 the polynomial Pn is symmetric. Let n ≥ 3. If
π ∈ Sn is a permutation on {1, . . . , n} then π acts naturally on (x1, . . . , xn) by
π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)). By definition of Pn in Corollary 3.10 we have

(Pn ◦ π)(x1, . . . , xn) = Pn(xπ(1), . . . , xπ(n)) = Pn(x1, . . . , xn)

or Pn ◦ π = Pnπ = Pn for all π ∈ Sn with π(n) = n. Likewise by Corollary 3.14
we have Pnπ = Pn for all π ∈ Sn with π(1) = 1.

Let τ ∈ Sn be an arbitrary transposition τ = (i, j). If {i, j} ⊆ {1, . . . , n − 1}
or {i, j} ⊆ {2, . . . , n} then by the above, Pnτ = Pn. Otherwise if τ = (1, n) then
since n ≥ 3 there is an l ∈ {2, . . . , n − 1} such that we can write τ = (1, n) =
(1, l)(l, n)(1, l) where {1, l} ⊆ {2, . . . , n}. From the above, we therefore have

Pnτ = Pn(1, n) = Pn(1, l)(l, n)(1, l) = Pn(l, n)(1, l) = Pn(1, l) = Pn.

Since each permutation π ∈ Sn is a composition of transpositions then we have
Pnπ = Pn for each π ∈ Sn.

Theorem 3.15. For n ≥ 3 the polynomial Pn = Pn(x1, . . . , xn) is symmetric.

Corollary 3.16. For n ≥ 3 and i ∈ [n] we have for G′′
n−1 = 〈σ1, . . . , σ̂i, . . . , σn〉,

Pn =
∏

σ∈G′′

n−1

(xi − σ(ECn−1(x̂i))).

In particular, as a polynomial in xi, then Pn is monic of degree 2n−2 in each xi.

By Corollary 3.16 and definition of Cn−1 we obtain by letting xi = 1 the following:

Observation 3.17. For n ≥ 3 then

Pn(x1, . . . , xi−1, 1, xi+1, . . . , xn)

=
∏

σ∈G′′

n−1

(1− σ(ECn−1(x̂i))) = Cn−1(x̂i) = Pn−1(x̂i)
2.

Other more general equations and formulae hold as well. Let n ∈ N and n1 +
· · · + nk = n. If

∑n
i=1 θi = 2π and xi = cos θi for each i ∈ {1, . . . , n}, then for
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each l ∈ {1, . . . , k} let φl = θn1+···+nl−1+1 + · · · + θn1+···+nl
. Then

∑k
l=1 φl = 2π

and hence if τl = cos(φl) then by Corollary 3.16 we get

0 = Pk(τ1, . . . , τl) = Pk(ECn1
, . . . ,ECnk

),

where for each l ∈ {1, . . . , k} we have ECnl
= ECnl

(xn1+···+nl−1+1, . . . , xn1+···+nl
).

In particular for k = n − 1 and n1 = · · · = nn−2 = 1 and nn−1 = 2, we have
Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)) = 0, something we can use to compute Pn

recursively, as we will see in the next section.

4. The polynomial of the general flower and its irreducibility

In this section we deduce our second main result of this article: Pn is irreducible
over Q. We first show that Pn can be presented by a recursion, which we will
then use to prove its irreducibility.

Recall that by Claim 3.8 we have for n− 1 ≥ 2 that

Gn−1 = Gn−2 ∪ σn−2Gn−2 = Gn−2 ∪Gn−2σn−2

and σn−2(yn−1ESn−2) = −yn−1ESn−2.

Lemma 4.1. For n ≥ 3 we have

(xn − ECn−1)(xn − σn−2(ECn−1)) = x2n−1 + x2n − 1− 2xn−1xnEC
2
n−2 + EC2

n−2.

Proof. Since ECn−1 = xn−1ECn−2 − yn−1ESn−2, we obtain by above

(xn − ECn−1)(xn − σn−2(ECn−1))

= (xn − xn−1ECn−2 + yn−1ESn−2)

·(xn − xn−1ECn−2 − yn−1ESn−2)

= (xn − xn−1ECn−2)
2 − y2n−1ES

2
n−2

= (xn − xn−1ECn−2)
2 − (1− x2n−1)(1− EC2

n−2)

= x2n−1 + x2n − 1− 2xn−1xnEC
2
n−2 + EC2

n−2.

Let EC2(xi, xi+1) = xixi+1 + yiyi+1 be the conjugate of EC2(xi, xi+1). By direct
computation and the definition of Pn−1 we get
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Pn−1(x1, . . . , xn−2,EC2(xn−1xn))Pn−1(x1, . . . , xn−2,EC2(xn−1xn))

=
∏

σ∈Gn−2

(EC2(xn−1, xn)− σ(ECn−2))
∏

σ∈Gn−2

(EC2(xn−1, xn)− σ(ECn−2))

=
∏

σ∈Gn−2

(xn−1xn − yn−1yn − σ(ECn−2))
∏

σ∈Gn−2

(xn−1xn + yn−1yn − σ(ECn−2))

=
∏

σ∈Gn−2

(
(xn−1xn − σ(ECn−2))

2 − y2n−1y
2
n

)

=
∏

σ∈Gn−2

(
(xn−1xn − σ(ECn−2))

2 − (1− x2n−1)(1 − x2n)
)

=
∏

σ∈Gn−2

(
x2n−1 + x2n − 1− 2xn−1xnσ(EC

2
n−2) + σ(EC2

n−2)
)

=
∏

σ∈Gn−2

σ
(
x2n−1 + x2n − 1− 2xn−1xnEC

2
n−2 + EC2

n−2

)
.

From this we can prove the following:

Theorem 4.2. The polynomials Pn are completely determined by the following
recursion: P1 = x1 − 1, P2 = x2 − x1 and for n ≥ 3

Pn = Pn−1(x1, . . . , xn−2,EC2(xn−1, xn))Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)).

Proof. By Lemma 4.1 and the preceding paragraph we get

Pn =
∏

σ∈Gn−1

(xn − σ(ECn−1))

=
∏

σ∈Gn−2∪σn−2Gn−2

(xn − σ(ECn−1))

=
∏

σ∈Gn−2

(xn − σ(ECn−1))(xn − σσn−2(ECn−1))

=
∏

σ∈Gn−2

σ ((xn − (ECn−1))(xn − σn−2(ECn−1)))

=
∏

σ∈Gn−2

σ
(
x2n−1 + x2n − 1− 2xn−1xnEC

2
n−2 + EC2

n−2

)

= Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)) · Pn−1(x1, . . . , xn−2,EC2(xn−1, xn)).
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Example. With the help of MAPLE [12] the first 5 polynomials Pn can now be
computed quickly and efficiently by the recursion in Theorem 4.2:

P1 = x1 − 1.

P2 = x2 − x1.

P3 = P2(x1,EC2(x2, x3))P2(x1,EC2(x2, x3))

= (x2x3 − y2y3 − x1)(x2x3 + y2y3 − x1)

= x21 + x22 + x23 − 2x1x2x3 − 1.

P4 = P3(x1, x2,EC2(x3, x4))P3(x1, x2,EC2(x3, x4))

= (x21 + x22 + (x3x4 − y3y4)
2 − 2x1x2(x3x4 − y3y4)− 1)

· (x21 + x22 + (x3x4 + y3y4)
2 − 2x1x2(x3x4 + y3y4)− 1)

= x41 + x42 + x43 + x44 − 2(x21x
2
2 + x22x

2
3 + x23x

2
4 + x21x

2
4 + x21x

2
3 + x22x

2
4)

+ 4(x21x
2
2x

2
3 + x22x

2
3x

2
4 + x21x

2
3x

2
4 + x21x

2
2x

2
4)

+ 4x1x2x3x4(2− x21 − x22 − x23 − x24).

P5 = a display of terms on two letter size pages, see Appendix C.

The recursion given in Theorem 4.2, although fundamental for computation, is a
special case of a more general recursion that Pn satisfies:

Claim 4.3. Let n, k ≥ 2 and n1 + · · · + nk = n. By the right interpretation of
σi for each i ∈ [k] (and with some abuse of notation) then Pn = Pn(x1, . . . , xn)
satisfies the following general recursion

Pn(x1, . . . , xn) =
∏

σi∈Gni−1

i∈[k]

Pk (σ1(ECn1
(x1, . . . , xn1

)), σ2(ECn2
(xn1+1, . . . , xn1+n2

)),

. . . , σk(ECnk
(xn−nk+1, . . . , xn))) .

This more general recursion of Claim 4.3, whose proof will be omitted, will not
be used to obtain our main result Theorem 4.5 here below. A proof of Claim 4.3
can be obtained by using induction and Theorem 4.2 as a stepping stone.

Example. We demonstrate how Claim 4.3 works by using it to compute P5 here
below:
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P5(x1, . . . , x5)

=
∏

σ′

3
∈G3=〈σ3〉, σ′

1
∈G1=〈σ1〉, σ′

2
∈G2={e}

P3(σ
′
1(EC2(x1, x2)), σ

′
2(EC1(x3)), σ

′
3(EC2(x4, x5)))

=
∏

σ′

3
∈G3=〈σ3〉, σ′

1
∈G1=〈σ1〉, σ′

2
∈G2={e}

P3(σ
′
1(x1x2 − y1y2), σ

′
2(x3), σ

′
3(x4x5 − y4y5))

= P3(x1x2 − y1y2, x3, x4x5 − y4y5) · P3(x1x2 + y1y2, x3, x4x5 − y4y5)

·P3(x1x2 − y1y2, x3, x4x5 + y4y5) · P3(x1x2 + y1y2, x3, x4x5 + y4y5)

= ((x1x2 − y1y2)
2 + x23 + (x4x5 − y4y5)

2 − 2(x1x2 − y1y2)x3(x4x5 − y4y5)− 1)

· ((x1x2 + y1y2)
2 + x23 + (x4x5 − y4y5)

2 − 2(x1x2 + y1y2)x3(x4x5 − y4y5)− 1)

· ((x1x2 − y1y2)
2 + x23 + (x4x5 + y4y5)

2 − 2(x1x2 − y1y2)x3(x4x5 + y4y5)− 1)

· ((x1x2 + y1y2)
2 + x23 + (x4x5 + y4y5)

2 − 2(x1x2 + y1y2)x3(x4x5 + y4y5)− 1).

Expanded, this last product yields the same expression for P5 as given in Ap-
pendix C.

Our final goal in this section, and our second main result of the paper, is to
prove the irreducibility of Pn. To illuminate our approach we state and prove the
following simplest case, that P3 = P3(x1, x2, x3) is irreducible.

Suppose P3 = fg with f, g ∈ Q[x1, x2, x3]. Since P3 is monic in x3, both f
and g contain the variable x3, and hence both f and g are of degree 1 in x3
(unless f or g = P3.) Since P3 factors in Q(x1, x2, y1y2)[x3] as P3 = (x3 − x1x2 −
y1y2)(x3 − x1x2 + y1y2) by definition of P3, then since Q(x1, x2, y1y2)[x3] is a
unique factorization domain (UFD) we must have

{f, g} = {x3 − x1x2 − y1y2, x3 − x1x2 + y1y2}

which contradicts the assumption that f, g ∈ Q[x1, x2, x3]. Hence we have the
following observation:

Observation 4.4. The polynomial P3(x1, x2, x3) is irreducible over Q.

Note that the same argument holds if Q is replaced with the complex field C in
the above.

We now use this same approach to prove the following:
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Theorem 4.5. For each n ≥ 3 the polynomial Pn(x1, . . . , xn) is irreducible
over Q.

We will prove Theorem 4.5 by induction on n, assuming that Pn−1 is irreducible
over Q. But before we can delve into that, we need to prove the following:

Lemma 4.6. Let n ≥ 3. If Pn−1 is irreducible over Q then Pn−1(EC2(x1, x2),
x3, . . . , xn) = Pn−1(x1x2 − y1y2, x3, . . . , xn) and Pn−1(EC2(x1, x2), x3, . . . , xn) =
Pn−1(x1x2 + y1y2, x3, . . . , xn) are irreducible in Q(x1, x2, y1y2)[x3, . . . , xn].

Proof. Let P ∗
n−1 := Pn−1(x1x2−y1y2, x3, . . . , xn) and assume it factors as P ∗

n−1 =
h∗k∗ in the ring Q(x1, x2, y1y2)[x3, . . . , xn], where both h∗ and k∗ involve xn.
Since Pn−1 =

∏
σ∈Gn−2

(xn − σ(ECn−2)), we see that

P ∗
n−1 =

∏

σ∈Gn−2

(xn − σ(ECn−2(x1x2 − y1y2, x3, . . . , xn))),

and hence both h∗ and k∗ must be products of these linear factors. In particular,
we can evaluate P ∗

n−1 = h∗k∗ at x1 = 1 and obtain

Pn−1(x2, . . . , xn) =
(
P ∗
n−1

)
|x1=1 = (h∗|x1−1) (k

∗|x1−1) = hk

in Q(x2)[x3, . . . , xn], which is a UFD. By assumption Pn−1(x2, . . . , xn) is irre-
ducible in the ring Q[x2, . . . , xn] = Q[x2][x3, . . . , xn] and hence also in
Q(x2)[x3, . . . , xn] (as a monic polynomial in xn [10, Lemma 6.13 p. 163]). There-
fore either h or k equals Pn−1(x2, . . . , xn), which contradicts the fact that both
h∗ and k∗ involve xn. Hence P ∗

n−1 is irreducible. In the same way we obtain that
Pn−1(x1x2 + y1y2, x3, . . . , xn) is irreducible.

Proof of Theorem 4.5. Let n ≥ 3 and assume that Pn−1 is irreducible over
Q. Assume Pn = fg with f, g ∈ Q[x1, . . . , xn]. We may assume f is irreducible.
Let φi : Q[x1, . . . , xn] −→ Q[x̂i] be the evaluation at xi = 1, that is φi(F ) =
F (x1, . . . , xi−1, 1, xi+1, . . . , xn). Since φi is a Q-algebra homomorphism for each
i ∈ [n] we have for i = 1 that

φ1(Pn) = φ1(fg) = φ1(f)φ1(g) ∈ Q[x2, . . . , xn].

But φ1(Pn) = Pn−1(x2, . . . , xn)
2 ∈ Q[x2, . . . , xn], which is a UFD. By the induc-

tive hypothesis, Pn−1 is irreducible in Q[x2, . . . , xn]. Therefore, φ1(f) = Pn−1 =
φ1(g) (unless f = Pn, in which case we are done since f is irreducible).

Viewing f, g ∈ Q[x1, . . . , xn−1][xn], then since Pn and Pn−1 are monic in every
variable xi (and hence also in xn,) we have

degxn
(f) = degxn

(g) =
degxn

(Pn)

2
= 2n−3.
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By symmetry of Pn for n ≥ 3 from Theorem 3.15, and by Theorem 4.2 we have

Pn = Pn−1(EC2(x1, x2), x3, . . . , xn)Pn−1(EC2(x1, x2), x3, . . . , xn)

in Q(x1, x2, y1y2)[x3, . . . , xn], which is a UFD. By assumption we have Pn = fg
where f ∈ Q[x1, . . . , xn] is irreducible, and f |x1=1 = φ1(f) = Pn−1(x2, . . . , xn)
which also by assumption is irreducible over Q. That f is also irreducible in
Q(x1, x2, y1y2)[x3, . . . , xn] can now be seen in the same way as in the proof
of Lemma 4.6: namely, by evaluating at x1 = 1 and obtain a factorization of
Pn−1(x2, . . . , xn).

So we have

Pn = fg = Pn−1(EC2, x3, . . . , xn)Pn−1(EC2, x3, . . . , xn)

in Q(x1, x2, y1y2)[x3, . . . , xn], which is a UFD. Therefore we have

f ∈ {Pn−1(EC2, x3, . . . , xn), Pn−1(EC2, x3, . . . , xn)},

By repeated application of Observation 3.17 we obtain

Pn−1(EC2, 1, . . . , 1) = P1(EC2)
2n−2

= (EC2 − 1)2
n−2

which is not contained in Q[x1, . . . , xn]. Similarly Pn−1(EC2, x3, . . . , xn) 6∈
Q[x1, . . . , xn] and hence we have a contradiction, since f ∈ Q[x1, . . . , xn].

Remark. Replacing Q with C in the previous proofs will yield the same result.

As a corollary we obtain the following, which in fact equivalent to Theorem
4.5:

Corollary 4.7. For n ∈ N we have [Q(x1, . . . , xn,ECn) : Q(x1, . . . , xn)] = 2n−1.
In fact, for any m ≤ n we have [Q(x1, . . . , xn,ECm) : Q(x1, . . . , xn)] = 2m−1.

We conclude this section with a summarizing result:

Corollary 4.8. For 1 ≤ m ≤ n we have

• Q(x1, . . . , xn,ECm) = Q(x1, . . . , xn, y1y2, . . . , ym−1ym)

• Gal(Q(x1, . . . , xn,ECm)/Q(x1, . . . , xn))
= Gal(Q(x1, . . . , xn, y1y2, . . . , ym−1ym)/Q(x1, . . . , xn))
∼= Zm−1

2 .

• Pm+1(x1, . . . , xm,X) ∈ Q(x1, . . . , xm)[X] is the minimal polynomial of
ECm = ECm(x1, . . . , xm) over Q(x1, . . . , xm).
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5. Conclusion

Four mutually tangent circles, also known as Apollonian circles or Soddy circles,
have been studied for over two thousand years, starting with Apollonius of Perga
and continuing through Descartes, whose Theorem 2.5 is a formula relating the
curvatures of four mutually tangent circles in the Euclidean plane. In any such
Soddy circle configuration in the plane, where the disks are non-overlapping,
there is always a center circle, or an innermost circle. Needless to say, using
an appropriate inversion, which corresponds to a Möbius transformation of the
complex plane, one can always make any of the disks the inner circle. Of great
interest in number theory, as demonstrated in [5], are such Soddy circles where
each curvature is an integer. Any inversion of Soddy circles with rational curva-
tures, and hence rational radii, yields Soddy circles with rational curvature/radii.
Since Soddy circles with rational radii also yield, by scaling, Soddy circles with
integer radii, the case studied in Section 2 covers all integer radii and integer cur-
vature Soddy circles. In particular, by scaling one can obtain all integer radii and
integer curvature Soddy circles from the parametrization in Theorem 2.4. What
is new about this given parametrization is that the rational parameters t1 and t2
are free, as long as (t1, t2) is contained within the region R in Figure 2. The im-
portance of integer curvature Soddy circles has further been demonstrated by the
comprehensive sequence of articles [6, 7], and [8] in which the Möbius transforma-
tions yielding integral curvatures are studied from a group theoretic perspective.
Integral curvature Soddy circles, and hence integral radii Soddy circles, are an
active area of research and most is still unknown, as demonstrated in [9] in which
heuristic data is used to back up various conjectures on Soddy circles of prime
curvature less than a given number.

Since any Soddy configuration of non-overlapping disks does have a center
circle and three outer circles tangent to it, it is quite natural to consider a gen-
eralization of this, namely a configuration of a center disk, which by scaling can
be assumed to have radius one, and then n ≥ 3 disks tangentially touching the
center disk in a cyclic fashion. Hence a flower, or a coin graph representation of
the wheel graph Wn, is a natural generalization of a Soddy configuration. Further
knowledge about such general disk configurations would be valuable for studying
general planar circle packings where each circle is tangent to an arbitrary number
of other circles instead of only three, and in particular those with integral curva-
ture. To the best of the our knowledge, this article is the first to address the case
of rational/integer radii, and hence rational/integer curvature circles for n ≥ 4.
As we saw in Section 3, an immediate difficulty is encountered when n ≥ 4: the
mere fact that the outer radii r1, . . . , rn are not uniquely determined by the inner
cosines xi = cos θi for i = 1, . . . , n. It is, however, clear that all the xi are rational
if the ri are rational.
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To determine all possible rational xi one must determine all rational points in the
affine variety of the polynomial Pn(x1, . . . , xn) from Definition 3.7. This is easy
enough for Soddy circles when n = 3, but for n ≥ 4 this becomes progressively
more difficult as Pn is by Theorem 4.5 irreducible, and by Corollary 3.16 monic
of degree 2n−2 in each variable xi. For n = 4, we have 2n−2 = 4, and so we think
finding all rational points in the variety of P4 is within reach, especially having
the recursion from Theorem 4.2 in mind.

Problem 5.1. What does a free parametrization (x1, x2, x3, x4) of all rational
points in the affine variety of P4(x1, x2, x3, x4) look like?

We expect, and conjecture below, that each xi will have the form xi = p(t1, t2, t3)/
q(t1, t2, t3) where p and q are rational polynomials with integer coefficients and
t1, t2, t3 are free rational variables contained in a bounded open region. In general
we would like to see the following conjecture solved:

Conjecture 5.2. The free parametrization (xi, . . . , xn) of all rational points in
the affine variety of Pn has the form

xi =
p(t1, . . . , tn−1)

q(t1, . . . , tn−1)
,

where p and q are rational polynomials with integer coefficients, and (t1, . . . , tn−1)
∈ R ∩ Qn−1 where R is some open and bounded (n − 1)-dimensional region in
Rn−1.

Given a fixed rational point (ρ1, ρ2, ρ3, ρ4) satisfying P4(ρ1, ρ2, ρ3, ρ4) = 0, one
can then attempt to determine all the rational radii ri with cos θi = ρi for each i.

Problem 5.3. For each fixed rational point (ρ1, ρ2, ρ3, ρ4) in the affine variety
of P4, what are the corresponding rational radii r1, r2, r3, r4 yielding the rational
cos θi = ρi?

And more generally we would like an answer to the following general version:

Problem 5.4. For each fixed rational point (ρ1, . . . , ρn) in the affine variety
of Pn, what are the corresponding rational radii r1, . . . , rn yielding the rational
cos θi = ρi?

With Theorems 4.2 and 4.5 in mind, a casual conclusion of the paper can per-
haps be summed up as follows: the “difficulty”, measured by the degree of the
irreducible polynomial Pn in each of the variables xi, in determining all the ra-
tional radii, and hence integer curvature, of a coin graph representation of the
wheel graph Wn for n ≥ 4, grows “exponentially” as n tends to infinity. Although
determining all the rational cosines x1, . . . , xn satisfying Pn is hard, it certainly



192 G. Agnarsson and J.B. Dunham

seems easier than determining all the rational radii r1, . . . , rn, especially since we
have (1) for each i ∈ {1, . . . , n}.

Remarks. (i) It is evident that this paper has dealt exclusively with Soddy
disks in the Euclidean plane. It is, however, natural to ask whether this can be
generalized to higher dimension, in particular to three dimensions, and consider
arrangements of touching spheres in R3. After all, Descartes’ Theorem 2.5 does
have a natural generalization, namely the Soddy-Gosset Theorem:

n+2∑

i=1

b2i =
1

n

(
n+2∑

i=1

bi

)2

,

where bi = 1/ri are the oriented curvatures of n + 2 mutually tangent spheres
in Rn for every n ≥ 2. However, the mere case n = 3 has been shown to be
notoriously difficult; even the kissing number for n = 3, the maximum number
of non-overlapping radius one spheres that can touch a given radius one sphere,
was proved to be equal to 12, but not until 1953 [3, p. 93]. But unlike dimensions
n = 1, 2 there is quite a bit of “wiggle room” when attaching 12 radius one spheres
to a given radius one sphere for n = 3. Hence it seems difficult at best to obtain
algebraic conditions for a set of general radii spheres all touching a given sphere
of radius one, if they are all mutually touching. To the best of our knowledge,
no one has yet ventured into an investigation of algebraic relations of the radii
of more than four non-overlapping spheres all touching a given sphere, let alone
rational radii spheres in R3.

(ii) Finally, Soddy circles in the Euclidean plane yield a 3-petal flower, a
coin representation of the wheel graph W3. In such a coin graph, all the disks
are non-overlapping and hence no disk properly contains another. This setting
corresponds to all curvatures being oriented with the same sign, which we can
assume to be positive. However, embedding the n-flower into the complex plane
C in such a way that the center unit disk is given by |z| ≤ 1, then the inversion
z 7→ 1/z of the unit circle yields a configuration where we have n circles touching
the unit disk on the inside of it. This corresponds to the curvature of the unit
disk having a different sign from the curvatures of the other disks inside it. By an
appropriate Möbius transformation, we can choose any of the disks of an n-flower
to have a curvature of different sign from the others. However, we have for the
sake of consistency focused our attention on n-flowers, for which the disks are
non-overlapping and hence all the curvatures oriented with the same sign.
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A. Generalizations of the Pythagorean Triples

In the following, a primitive solution is a solution where x, y, and z are pairwise
relatively prime. To prove Theorem 2.1, we need the following:

Claim A.1. If r,s,t are positive integers such that r and s are relatively prime
and rs = t2 then there are relatively prime integers m and n such that r = m2

and s = n2.

Proof of Theorem 2.1. Note that gcd(b, c) = 1. This proof follows and extends
the exposition in [13].

Assume x, y, z form a primitive solution. In this case, x and y cannot both be
even.

Case 1. x, y are both odd. Then x2 ≡ 1 (mod 4) and y2 ≡ 1 (mod 4),
giving z2 ≡ 1 + β (mod 4). Since z2 ≡ 0, 1 (mod 4), then β ≡ 0 or β ≡
3 (mod 4) must hold. However, β ≡ 0 (mod 4) implies that 4 divides β,
contradicting the assumption that β is square-free. So the only case to consider
here is the case where z is even and β ≡ 3 (mod 4).

βy2 = z2 − x2 = (z + x)(z − x).(8)

Letting gcd(z + x, z − x) = d we get that d divides both z + x+ z − x = 2z and
z + x− (z − x) = 2x. Since x and z are relatively prime, d = 1 or 2. Since both
z + x and z − x are odd, then d = 1 must hold. Since now gcd(z + x, z − x) = 1
we have from (8) that for some factorization β = bc then r = z + x is divisible
by b and s = z − x is divisible by c. Since gcd

(
r
b
, s
c

)
= 1, we have by Claim

A.1 that m2 = r
b
and n2 = s

c
, and hence y = mn, x = r−s

2 = bm2−cn2

2 , and

z = r+s
2 = bm2+cn2

2 .

Case 2. x is even and y is odd. Then x2 ≡ 0 (mod 4) and y2 ≡ 1 (mod 4),
giving z2 ≡ β (mod 4). Therefore β ≡ 0 or β ≡ 1 (mod 4). However, β ≡ 0
(mod 4) implies that 4 divides β, again contradicting the assumption that β is
square-free. So the only case to consider here is the case where z is odd and β ≡ 1
(mod 4), which proceeds exactly as in case 1.

Case 3. x is odd and y is even. Then x2 ≡ 1 (mod 4) and y2 ≡ 0 (mod 4),
giving z2 ≡ 1 (mod 4), and so z is odd.

Unlike cases 1 and 2, z+x and z−x are both even. Letting gcd
(
z+x
2 , z−x

2

)
= d

we get that d divides z+x+z−x
2 = z and z+x−(z−x)

2 = x. Since x and z are relatively

prime, d = 1. Now we have βy2

4 = rs where r = z+x
2 and s = z−x

2 . Hence
b divides r and c divides s for some appropriate factorization β = bc. Since
gcd

(
r
b
, s
c

)
= 1, so we have by Claim A.1 that m2 = r

b
and n2 = s

c
and hence

y = 2mn, x = r − s = bm2 − cn2, and z = r + s = bm2 + cn2.
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For the other direction, first we show that x, y, z as given in Cases 1 and 2 do
form a solution:

x2 + βy2 =

(
bm2 − cn2

2

)2

+ β(mn)2

=
(bm2)2 − 2bm2cn2 + (cn2)2

4
+ β(mn)2

=
(bm2)2 + 2βm2n2 + (cn2)2

4

=

(
bm2 + cn2

2

)2

.

Also for case 3 we get:

x2 + βy2 =
(
bm2 − cn2

)2
+ β(2mn)2

= (bm2)2 − 2bm2cn2 + (cn2)2 + β(2mn)2

= (bm2)2 + 2βm2n2 + (cn2)2

=
(
bm2 + cn2

)2
.

To show that the triple is primitive for Cases 1 and 2, assume on the contrary
that gcd(x, y, z) = d > 1. Then there is a prime p that divides d. This p divides

x and z and also their sum and difference: x+ z = bm2−cn2

2 + bm2+cn2

2 = bm2 and

x− z = bm2−cn2

2 − bm2+cn2

2 = cn2. This contradicts the assumption that bm2 and
cn2 are relatively prime.

For Case 3, again assume on the contrary that (x, y, z) = d > 1. Then there
is an odd prime p that divides d. p 6= 2 because x and z are both odd. This p
divides x and z and also their sum and difference: x+z = 2bm2 and x−z = 2cn2.
Again, this contradicts the assumption that bm2 and cn2 are relatively prime.

B. Proof of Observation 2.3

Proof. As each θi is an angle in a triangle formed by the three mutually tangent
coins, we have that θi < 180◦. On the other hand, keeping the radius of the
center coin fixed (say, at r = 1) and letting ri = ri+1 → ∞, we see that θi → 180◦

from below. We also see from this scenario that the other two angles tend to 90◦

from below.
What remains to show is that θi > 90◦ for each i. It suffices to show this for

i = 1. By keeping the radii r1 and r2 fixed and letting r3 → ∞, the radius r
of the central coin will increase and θ1, the angle between the first and second
coins, will decrease. Figure 4 illustrates this situation.
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Figure 4. A 3-petal flower where the radius of one petal is increased to infinity.

It suffices to show that θ1 > 90◦ for this case. If we start with Figure 4 and draw a
line parallel to the infinite circle that goes through the center of the central coin,
we have 2 right triangles with side lengths ri − r, ri + r and, by the Pythagorean
theorem, 2

√
rir for each i = 1, 2. Therefore, the length of the segment forming

the bottom of the rhombus, formed by the center of the two outer circles and
their touching points to the infinite circle, is 2

(√
r1r +

√
r2r
)
. We can now draw

a segment parallel to this segment and passing through the center of the coin
with the smaller radius. Without loss of generality we may assume r1 ≤ r2. Now
we have a right triangle with side lengths 2

(√
r1r +

√
r2r
)
, r2 − r1 and r1 + r2

and hence by the Pythagorean theorem we have 4
(√

r1r +
√
r2r
)2

+(r2 − r1)
2 =

(r1 + r2)
2, which can be solved for r, obtaining

r =
r1r2(√

r1 +
√
r2
)2 .

With this expression for r, it suffices to show that

(r1 + r2)
2 > (r + r1)

2 + (r + r2)
2,(9)

which implies θ1 > 90◦. Letting X = (
√
r1 +

√
r2)

2, we get by algebraic ma-
nipulation that (9) is equivalent to X2 − (r1 + r2)X − r1r2 > 0, and since
X2 − (r1 + r2)X = 2

√
r1r2, this is equivalent to 2(r1 + r2) + 3

√
r1r2 > 0, which

clearly holds. Hence, θ1 > 90◦.
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C. The polynomial P5

P5 = P4(x1, x2, x3,EC2(x4, x5)) · P4(x1, x2, x3,EC2(x4, x5))
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