THE INERTIA OF UNICYCLIC GRAPHS AND BICYCLIC GRAPHS

Ying LiU
School of Mathematics and Information
Shanghai Lixin University of Commerce
Shanghai, 201620, China
e-mail: lymaths@126.com

Abstract

Let G be a graph with n vertices and $\nu(G)$ be the matching number of G. The inertia of a graph $G, \operatorname{In}(G)=\left(n_{+}, n_{-}, n_{0}\right)$ is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix $A(G)$, respectively. Let $\eta(G)=n_{0}$ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then $\eta(G)=n-2 \nu(G)$. Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications, 431 (2009), 1293-1301.] proved if G is a unicyclic graph, then $\eta(G)$ equals $n-2 \nu(G)-1, n-2 \nu(G)$ or $n-2 \nu(G)+2$. Barrett et al. determined the inertia sets for trees and graphs with cut vertices. In this paper, we give the nullity of bicyclic graphs \mathcal{B}_{n}^{++}. Furthermore, we determine the inertia set in unicyclic graphs and \mathcal{B}_{n}^{++}, respectively.

Keywords: matching number, inertia, nullity, unicyclic graph, bicyclic graph.
2010 Mathematics Subject Classification: 05C50.

1. Introduction

Let $G=(V(G), E(G))$ be a simple graph with vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$ and edge set $E(G)$. The inertia of a graph $G, \operatorname{In}(G)=\left(n_{+}, n_{-}, n_{0}\right)$ is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix $A(G)$, respectively. It is well known if G is a bipartite graph, then $n_{+}=$ n_{-}. Barrett, Hall, and Loewy [1] determined the inertia sets for trees and graphs with cut vertices. The nullity of G, denoted by $\eta=\eta(G)=n_{0}$, is the multiplicity
of the number zero in the spectrum of G. Then $n_{+}+n_{-}=n-r(A(G))=$ η. The nullity of graphs is of interest in chemistry since the occurrence of a zero eigenvalue of a bipartite graph (corresponding to an alternant hydrocarbon) indicates the chemical instability of the molecule which such a graph represents. The question is of interest also for non-alternant hydrocarbons (non-bipartite graph), but a direct connection with the chemical stability in these cases is not so straightforward. The nullity has been determined for trees, unicyclic graphs and bicyclic graphs, respectively [4, 5, 6]. Recently, Gutman and Borovićanin give a survey on the nullity of graphs.

A unicyclic graph is a simple connected graph with equal numbers of vertices and edges. For the sake of a convenient description, let \mathcal{U}_{n} be the set of unicyclic graphs with n vertices. A bicyclic graph is a simple connected graph in which the number of edges equals the number of vertices plus one.

Let C_{p} and C_{q} be two vertex-disjoint cycles. Suppose that $v_{1} \in C_{p}, v_{l} \in C_{q}$. Joining v_{1} and v_{l} by a path $v_{1} v_{2} \cdots v_{l}$ of length $l-1$, where $l \geq 1$ and $l=1$ means identifying v_{1} with v_{l}, resultant graph, denoted by $\infty(p, l, q)$, is called an ∞-graph. Let P_{l+1}, P_{p+1} and P_{q+1} be three vertex-disjoint paths, where $\min \{p, l, q\} \geq 1$ and at most one of them is 1 . Identifying the three initial vertices and terminal vertices of them, respectively, resultant graph, denoted by $\theta(p, l, q)$, is called a θ-graph (see Figure 1).

Figure 1

Let \mathcal{B}_{n} be the set of all bicyclic graphs of order n. \mathcal{B}_{n} consists of three types of graphs: the first type denoted by \mathcal{B}_{n}^{+}is the set of those graphs each of which is an ∞-graph with trees attached when $l>1$; the second type denoted by \mathcal{B}_{n}^{++}is the set of those graphs each of which is an ∞-graph with trees attached when $l=1$; the third type denoted by θ_{n} is the set of those graphs each of which is an θ-graph with trees attached.

In Section 3, we study the inertia in \mathcal{U}_{n}. In Section 4, we give the nullity and the inertia sets in \mathcal{B}_{n}^{++}, respectively.

2. Main Lemmas

A matching of G is a collection of independent edges of G. A maximum matching is a matching with the maximum possible number of independent edges. The size of a maximum matching of G, i.e., the maximum number of independent edges of G, is denoted by $\nu=\nu(G)$.

Denote by $\varphi(x)=\varphi_{G}(x)$ the characteristic polynomial of G. Let

$$
\begin{equation*}
\varphi(x)=|x I-A|=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n-1} x+a_{n} . \tag{1}
\end{equation*}
$$

Then [2]

$$
\begin{equation*}
a_{i}=\sum_{U}(-1)^{p(U)} 2^{c(U)} \quad(i=1,2, \ldots, n), \tag{2}
\end{equation*}
$$

where the sum is over all subgraphs U of G consisting of disjoint edges and cycles and having exactly i vertices (called "basic figures"). If U is such a subgraph, then $p(U)$ is the number of its components, of which $c(U)$ components are cycles.

Example 1. Let G is a bipartite graph, then G does not contain an odd cycle, so $a_{2 i+1}=0(i \geq 1)$.
Example 2. Considering equation (1) with equation (2), it is easy to obtain $a_{1}=0$ and $a_{2}=2 m(m$ is the number of edges of $G)$. In the following, we calculate a_{3} and a_{4}. The subgraphs U of G having exactly 3 vertices consist of only the cycle C_{3}. Suppose that n_{Δ} is the number of the cycles C_{3} in G, then $a_{3}=-2 n_{\Delta}$. Let n_{\square} and $\nu_{2}(G)$ be the number of the cycles C_{4}, and two mutually disjoint edges in G, respectively, then $a_{4}=\nu_{2}(G)-2 n_{\square}$.

Next, we introduce the well-known Cauchy's interlacing theorem in matrix theory.
Lemma 3 [2]. Let A be symmetric and A^{\prime} be one of its principal submatrices. Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ and $\lambda_{1}^{\prime} \geq \cdots \geq \lambda_{m}^{\prime}$ be the eigenvalues of A and A^{\prime}, respectively. Then the inequality $\lambda_{i} \geq \lambda_{i}^{\prime} \geq \lambda_{n-m+i}$ holds for all $i=1,2, \ldots, m$.
Applying the Cauchy's interlacing theorem to the adjacency matrix $A(G)$ of the graph G, we have the following corollary.

Corollary 4. Let V_{0} be the k-subset of $G=(V, E)$ with n vertices $(0 \leq k \leq n-1)$, and $G-V_{0}$ be the subgraph induced by removing the vertices V_{0} and their incident edges. Then $\lambda_{i}(G) \geq \lambda_{i}\left(G-V_{0}\right) \geq \lambda_{i+k}(G) \quad(1 \leq i \leq n-k)$.

The next lemma is useful to the proof of our main results.
Lemma 5 [2]. For a graph G containing a pendent vertex, if the induced subgraph H of G is obtained by deleting this vertex together with the vertex adjacent to it, then the relation $\eta(H)=\eta(G)$ holds.

3. The inertia of unicyclic graphs

n this section, we determine the inertia in \mathcal{U}_{n}. In order to prove our result, the following lemma is necessary.

Lemma 6 [5]. Suppose $G \in \mathcal{U}_{n}$ with the cycle C_{l}. Then
(1) $\eta(G)=n-2 \nu(G)-1$, if $\nu(G)=\frac{l-1}{2}+\nu\left(G-C_{l}\right)$;
(2) $\eta(G)=n-2 \nu(G)+2$, if G satisfies: $\nu(G)=\frac{l}{2}+\nu\left(G-C_{l}\right), l \equiv 0(\bmod 4)$ and no maximum matching contains an edge incident to C_{l};
(3) $\eta(G)=n-2 \nu(G)$, otherwise.

If $G \in \mathcal{U}_{n}$ is a bipartite graph, we know $n_{+}=n_{-}$and $n_{+}+n_{-}=n-\eta(G)$, then $\operatorname{In}(G)=(\nu(G)-1, \nu(G)-1, n-2 \nu(G)+2)$ or $\operatorname{In}(G)=(\nu(G), \nu(G), n-2 \nu(G))$, So we only consider those graphs $G \in \mathcal{U}_{n}$ which are non-bipartite.
Lemma 7. If $G \in \mathcal{U}_{n}$ is a non-bipartite graph, then $\operatorname{In}(G)=(\nu(G)+1, \nu(G)$, $n-2 \nu(G)-1), \operatorname{In}(G)=(\nu(G), \nu(G)+1, n-2 \nu(G)-1)$ or $\operatorname{In}(G)=(\nu(G), \nu(G)$, $n-2 \nu(G))$.
Proof. Since $G \in \mathcal{U}_{n}$ with the cycle C_{l} is a non-bipartite graph, then l is odd. Let $v_{i} \in V\left(C_{l}\right)$ and $d_{i} \geq 3$. Suppose that $T_{1}, \ldots, T_{d_{i}}$ are the components of $G-v_{i}$ where $d_{i}=d\left(v_{i}\right)$. Let $V\left(T_{j}\right)=n_{j}$ and $\nu_{j}=\nu\left(T_{j}\right)\left(j=1, \ldots, d_{i}\right)$, so we have $\sum_{j=1}^{d_{i}} n_{j}=n-1$ and $\sum_{j=1}^{d_{i}} \nu_{j}=\nu(G)$ or $\nu(G)-1$. And $\operatorname{In}\left(T_{j}\right)=\left(\nu_{j}, \nu_{j}, n_{j}-2 \nu_{j}\right)$. We discuss two cases in the following.
(1) $\nu(G)=\frac{l-1}{2}+\nu\left(G-C_{l}\right)$, then $\eta(G)=n-2 \nu(G)-1$ and $\sum_{j=1}^{d_{i}} \nu_{j}=$ $\nu(G)$. We know $\eta\left(G-v_{i}\right)=\sum_{j=1}^{d_{i}} \eta\left(T_{j}\right)=n-1-2 \sum_{j=1}^{d_{i}} \nu_{j}=n-$ $2 \nu(G)-1$. Let $\lambda_{1}^{\prime}, \ldots, \lambda_{\nu(G)}^{\prime}, \underbrace{\lambda_{\nu(G)+1}^{\prime}, \ldots, \lambda_{n-1-\nu(G)}^{\prime}}_{n-2 \nu(G)-1}, \lambda_{n-\nu(G)}^{\prime}, \ldots, \lambda_{n-1}^{\prime}$ be the eigenvalues of $G-v_{i}$ according to nondecreasing order. By Corollary 4, we have $\lambda_{n-\nu(G)+1}(G) \leq \lambda_{n-\nu(G)}^{\prime}<0$ and $\lambda_{\nu(G)}(G) \geq \lambda_{\nu(G)}^{\prime}>0$. So $\operatorname{In}(G)=(\nu(G)+1, \nu(G), n-2 \nu(G)-1)$ or $\operatorname{In}(G)=(\nu(G), \nu(G)+1$, $n-2 \nu(G)-1)$.
(2) $\nu(G) \neq \frac{l-1}{2}+\nu\left(G-C_{l}\right)$, then $\eta(G)=n-2 \nu(G)$ and $\sum_{j=1}^{d_{i}} \nu_{j}=\nu(G)-1$. We know $\eta\left(G-v_{i}\right)=\sum_{j=1}^{d_{i}} \eta\left(T_{j}\right)=n-1-2 \sum_{j=1}^{d_{i}} \nu_{j}=n-2 \nu(G)+1$. Let $\lambda_{1}^{\prime}, \ldots, \lambda_{\nu(G)}^{\prime}, \underbrace{\lambda_{\nu(G)+1}^{\prime}, \ldots, \lambda_{n-\nu(G)+1}^{\prime}}_{n-2 \nu(G)+1}, \lambda_{n-\nu(G)+2}^{\prime}, \ldots, \lambda_{n-1}^{\prime}$ be the eigenvalues of $G-v_{i}$ according to nondecreasing order. By Corollary 4, we have $\lambda_{n-\nu(G)+2}(G) \leq \lambda_{n-\nu(G)+1}^{\prime}<0$ and $\lambda_{\nu(G)}(G) \geq \lambda_{\nu(G)}^{\prime}>0$. And $\eta(G)=n-2 \nu(G)$, so $\operatorname{In}(G)=(\nu(G), \nu(G), n-2 \nu(G))$.

Basing on the above detailed account, we obtain the next theorem.
Theorem 8. If $G \in \mathcal{U}_{n}$, then $\operatorname{In}(G)=(\nu(G)-1, \nu(G)-1, n-2 \nu(G)+2)$, $(\nu(G), \nu(G), n-2 \nu(G)),(\nu(G)+1, \nu(G), n-2 \nu(G)-1)$ or $(\nu(G), \nu(G)+1$, $n-2 \nu(G)-1)$.

4. The inertia of bicyclic graphs

In this section, we only consider \mathcal{B}_{n}^{++}. For $G \in \mathcal{B}_{n}^{++}$, we give the nullity of G and determine the inertia of G according to $\nu(G)$, respectively.

Lemma 9. The graph $\infty(p, 1, q)$ is defined as above, then
(1) $\eta(\infty(4 s, 1,4 t+2))=1(s, t \geq 1)$;
(2) $\eta(\infty(4 s, 1,4 t))=3(s, t \geq 1)$.

Proof. Let $\varphi_{1}(x)=|x I-A|=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{4 s+4 t} x+a_{4 s+4 t+1}$ and $\varphi_{2}(x)=|x I-B|=x^{n}+b_{1} x^{n-1}+b_{2} x^{n-2}+\cdots+b_{4 s+4 t-2} x+b_{4 s+4 t-1}$ be the polynomials of $\infty(4 s, 1,4 t+2)$ and $\infty(4 s, 1,4 t)$, respectively. Since $\infty(4 s, 1,4 t+2)$ and $\infty(4 s, 1,4 t)$ are bipartite graph, so by the equation (2), we have $a_{2 i+1}=0$ and $b_{2 i+1}=0$ for $i \geq 1$. First of all, we consider $a_{4 s+4 t}$ using the equation (2), then $a_{4 s+4 t}=2 m_{1}(-1)^{2 t+1}+2 m_{2}(-1)^{2 s}+\left(2 m_{1}+2 m_{2}\right) \neq 0$, where m_{1} is the number of methods picking up $2 t$ disjoint edges from $P_{4 t+1}$ and m_{2} is the number of methods picking up $2 s-1$ disjoint edges from $P_{4 s-1}$. So $\eta(\infty(4 s, 1,4 t+2))=1$.

Next, we prove $b_{4 s+4 t-2}=0$ and $b_{4 s+4 t-4} \neq 0$. Using the similar method as above, we have $b_{4 s+4 t-2}=2 m_{1}(-1)^{2 t}+2 m_{2}(-1)^{2 s}-\left(2 m_{1}+2 m_{2}\right)=0$, where m_{1} is the number of methods picking up $2 t-1$ disjoint edges from $P_{4 t-1}$ and m_{2} is the number of methods picking up $2 s-1$ disjoint edges from $P_{4 s-1}$. And $b_{4 s+4 t-4} \geq m_{3}>0$ where m_{3} is the number of methods picking up $2 t-1$ disjoint edges from $P_{4 t}$ and picking up $2 s-1$ disjoint edges from $P_{4 s-1}$. So we complete the proof.

Using the similar method of proof in Lemma 9 and the equation (2), we obtain the following lemma.

Lemma 10. The graph $\infty(p, 1, q)$ is defined as above, then
(1) $\eta(\infty(2 s+1,1,4 t))=\eta(\infty(4 s+1,1,4 t+3))=1$;
(2) $\eta(\infty(2 s+1,1,4 t+2))=\eta(\infty(4 s+1,1,4 t+1))=0$.

Lemma 11 [3]. If a bipartite graph G with $n \geq 1$ vertices does not contain any cycle of length $4 s(s \geq 1)$, then $\eta(G)=n-2 \nu(G)$.

In accordance with Lemma 11, it is easy to know for $G \in \mathcal{B}_{n}^{++}$is a bipartite graph with not containing cycle $C_{4 s}(s \geq 1)$, then $\eta(G)=n-2 \nu(G)$, so $\operatorname{In}(G)=$ ($\nu(G), \nu(G), n-2 \nu(G))$. Hence in the following, we discuss the case $G \in \mathcal{B}_{n}^{++}$is a bipartite graph with containing cycles $C_{4 s}(s \geq 1)$.

Lemma 12. If $G \in \mathcal{B}_{n}^{++}$is a bipartite graph with containing cycle $C_{4 s}(s \geq 1)$, then $\eta(G)=n-2 \nu(G)$ or $\eta(G)=n-2 \nu(G)+2$.

Proof. Putting to use the Lemma 5 a times, we can obtain the following cases:
(1) $T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices. Then $\eta(G)=\sum_{i=1}^{s} \eta\left(T_{i}\right)=\sum_{i=1}^{s}\left(n_{i}-2 \nu\left(T_{i}\right)\right)=n-a-2(\nu(G)-$ $a)=n-2 \nu(G)$.
(2) $U_{0}, T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices and U_{0} is a unicyclic graph with n_{0} vertices. By Lemma 6, we know $\eta\left(U_{0}\right)=n_{0}-2 \nu\left(U_{0}\right)$ or $n_{0}-2 \nu\left(U_{0}\right)+2$, so $\eta(G)=\eta\left(U_{0}\right)+\sum_{i=1}^{s} \eta\left(T_{i}\right)=$ $n-2 \nu(G)$ or $n-2 \nu(G)+2$.
(3) $\infty(p, 1, q), T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices and $\infty(p, 1, q)$ is a bicyclic graph with n_{0} vertices. By Lemma 9 , we have $\eta(\infty(4 s, 1,4 t+2))=1$ or $\eta(\infty(4 s, 1,4 t))=3$. Then $\eta(G)=\eta(\infty(p, 1, q))+\sum_{i=1}^{s} \eta\left(T_{i}\right)=n-2 \nu(G)$ or $n-2 \nu(G)+2$.

Combining Lemmas 10 and 12, we obtain the following theorem.
Theorem 13. If $G \in \mathcal{B}_{n}^{++}$is a bipartite graph, then $\eta(G)=n-2 \nu(G)$ or $\eta(G)=n-2 \nu(G)+2$.

Lemma 14. If $G \in \mathcal{B}_{n}^{++}$is a non-bipartite graph, then $\eta(G)=n-2 \nu(G)-$ $1, n-2 \nu(G), n-2 \nu(G)+1$ or $\eta(G)=n-2 \nu(G)+2$.

Proof. Putting to use the Lemma $5 b$ times, we can obtain the following cases:
(1) $T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices. Then $\eta(G)=\sum_{i=1}^{s} \eta\left(T_{i}\right)=n-2 \nu(G)$.
(2) $U_{0}, T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices and U_{0} is a unicyclic graph with n_{0} vertices. By Lemma 6 , we know $\eta\left(U_{0}\right)=n_{0}-2 \nu\left(U_{0}\right), n_{0}-2 \nu\left(U_{0}\right)+2$ or $n_{0}-2 \nu\left(U_{0}\right)-1$, so $\eta(G)=\eta\left(U_{0}\right)+\sum_{i=1}^{s} \eta\left(T_{i}\right)=n-2 \nu(G), n-2 \nu(G)+2$ or $n-2 \nu(G)-1$.
(3) $\infty(p, 1, q), T_{i}(1 \leq i \leq s)$ are the components where $T_{i}(1 \leq i \leq s)$ are trees with n_{i} vertices and $\infty(p, 1, q)$ is a bicyclic graph with n_{0} vertices. By Lemma 10 , we have $\eta(\infty(2 t+1,1,4 s))=1, \eta(\infty(2 t+1,1,4 s+2))=0$, $\eta(\infty(4 s+1,1,4 t+1))=0$ or $\eta(\infty(4 s+1,1,4 t+3))=1$. Then $\eta(G)=$ $\eta(\infty(p, 1, q))+\sum_{i=1}^{s} \eta\left(T_{i}\right)=n-2 \nu(G)+1, n-2 \nu(G)$ or $n-2 \nu(G)-1$.

Using the similar method of Lemma 7 and Lemma 14, we have the next lemma.
Lemma 15. If $G \in \mathcal{B}_{n}^{++}$is a non-bipartite graph, then $\operatorname{In}(G)=(\nu(G), \nu(G)+$ $1, n-2 \nu(G)-1),(\nu(G)+1, \nu(G), n-2 \nu(G)-1),(\nu(G), \nu(G), n-2 \nu(G)),(\nu(G)$, $\nu(G)-1, n-2 \nu(G)+1),(\nu(G)+1, \nu(G)-2, n-2 \nu(G)+1),(\nu(G), \nu(G)-2$, $n-2 \nu(G)+2)$.

So we obtain our main result.
Theorem 16. If $G \in \mathcal{B}_{n}^{++}$, then $\operatorname{In}(G)=(\nu(G), \nu(G)+1, n-2 \nu(G)-1),(\nu(G)+$ $1, \nu(G), n-2 \nu(G)-1),(\nu(G), \nu(G), n-2 \nu(G)),(\nu(G), \nu(G)-1, n-2 \nu(G)+1)$, $(\nu(G)+1, \nu(G)-2, n-2 \nu(G)+1),(\nu(G), \nu(G)-2, n-2 \nu(G)+2)$.

Remark 17. The paper is supported by the National Natural Science Foundation 205 for Young Scholar of China (11101284), China Scholarship Council (201208310422) and Shanghai Municipal Natural Science Foundation (11ZR1425100).

References

[1] W. Barrett, H. Tracy Hall and R. Loewy, The inverse inertia problem for graphs: Cut vertices, trees, and a counterexample, Linear Algebra and its Applications 431 (2009) 1147-1191. doi:10.1016/j.laa.2009.04.007
[2] D. Cvetkocić, M. Doob and H. Sachs, Spectra of Graphs - Theory and Application (Academic Press, New York, 1980).
[3] D. Cvetkocić, I. Gutman and N. Trinajstić, Graph theory and molecular orbitals II, Croat.Chem. Acta 44 (1972) 365-374.
[4] S. Fiorini, I. Gutman and I. Sciriha, Trees with maximum nullity, Linear Algebra and its Applications 397 (2005) 245-252. doi:10.1016/j.laa.2004.10.024
[5] Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh, On the nullity and the matching number of unicyclic graphs, Linear Algebra and its Applications 431 (2009) 1293-1301. doi:10.1016/j.laa.2009.04.026
[6] Shengbiao Hu, Tan Xuezhong and Bolian Liu, On the nullity of bicyclic graphs, Linear Algebra and its Applications 429 (2008) 1387-1391. doi:10.1016/j.laa.2007.12.007

