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1. Introduction

Over a period of sixteen years differential algebra went from being an approach
that many people mistrusted or misunderstood to being a part of algebra that
enjoys almost unquestioned acceptance. This algebra has been studied by many
authors for the last 60 years and especially the relationships between derivations
and the structure of rings. The notion of the ring with derivation is quite old
and plays an important role in the integration of analysis, algebraic geometry
and algebra. In the 1940’s it was discovered that the Galois theory of algebraic
equations can be transferred to the theory of ordinary linear differential equations
(the Picard-Vessiot theory). In the 1950’s the differential algebra was initiated by
the works of J.F. Ritt and E.R. Kolchin. In 1950, Ritt [11] and in 1973, Kolchin
[9] wrote the classical books on differential algebra.

The theory of derivations plays a significant role not only in ring theory,
but also in functional analysis and linear differential equations. For instance,
the classical Noether-Skolem theorem yields the solution of the problem for finite
dimensional central simple algebras (see the well-known Herstein’s book [6]). One
of the natural questions in algebra and analysis is whether a map can be defined
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by its local properties. For example, the question whether a map which acts like a
derivation on the Lie product of some important Lie subalgebra of prime rings is
induced by an ordinary derivation was a well-known problem posed by Herstein
[5]. The first result in this direction was obtained in an unpublished work by
Kaplansky, who considered matrix algebras over a field. Herstein’s problem was
solved in full generality only after the powerful technique of functional identities
was developed, see [1]. In 1950’s, Herstein ([4, 5, 7]) started the study of the
relationship between the associative structure and the Jordan and Lie structures
of associative rings.

An additive mapping D from R to R, where R is an associative ring, is
called a Jordan derivation if D(x2) = D(x)x+ xD(x) holds for all x ∈ R. Every
derivation is obviously a Jordan derivation and the converse is in general not
true.

It is important to note that the definition of Jordan derivation presented in
the work by Herstein is not the same as the one given above. In fact, Herstein
constructed, starting from the ring R, a new ring, namely the Jordan ring R,
defining the product in this a ◦ b = ab+ ba for any a, b ∈ R. This new product is
well-defined and it can be easily verified that (R,+, ◦) is a ring. So, an additive
mapping D, from the Jordan ring into itself, is said by Herstein to be a Jordan
derivation, if D(a◦b) = D(a)◦b+a◦D(b), for any a, b ∈ R. So, in 1957, Herstein
proved a classical result: ”If R is a prime ring of a characteristic different from
2, then every Jordan derivation of R is a derivation.”

During the last few decades there has been a great deal of works concerning
derivationsDi in rings, in Lie rings, in skew polynomial rings and other structures,
which commute, i.e., DiDj = DjDi.

What do we know about derivations in semirings? Nothing, or almost nothing
except the definition in Golan’s book [3] and a few propositions.

This paper is an attempt to start a study of derivations in finite semirings.
Following Herstein’s idea of multiplication in Jordan ring, we construct deriva-
tions in the endomorphism semiring of a finite chain.

The paper is organized as follows. After the second section of preliminaries, in
Section 3 we introduce a semiring consisting of endomorphisms having an image
with two fixed elements called a string. In such a string we consider the arithmetic
and some kinds of nilpotent elements and subsemirings. In Section 4 we construct
a mapping D from the given string into itself and prove that D is a derivation
in one subsemiring of the string. Then we show that the semiring is a maximal
differential subsemiring of this string. Section 5 is devoted to the construction
of maps δα from given string into itself. They are Jordan multiplications, and
we are studying their properties. The main results are that δα are derivations
which commute and that the set of all derivations is a multiplicative semilattice
with an identity and an absorbing element. In Section 6 we generalize the notion
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of string and consider the arithmetic in such strings. In Section 7 we give some
counterexamples and show that the maps δα, where α are from the whole string,
are derivations in an ideal of this string. Finally in this section we consider a
class of maps which are the derivations in the whole string.

2. Preliminaries

An algebra R = (R,+, .) with two binary operations + and · on R, is called
semiring if:

• (R,+) is a commutative semigroup,

• (R, ·) is a semigroup,

• both distributive laws hold x · (y+z) = x ·y+x ·z and (x+y) ·z = x ·z+y ·z
for any x, y, z ∈ R.

Let R = (R,+, .) be a semiring. If a neutral element 0 of semigroup (R,+) exists
and satisfies 0 · x = x · 0 = 0 for all x ∈ R, then it is called zero. If a neutral
element 1 of semigroup (R, ·) exists, it is called one.

An element a of a semiring R is called additively (multiplicatively) idempo-
tent if a+ a = a (a ·a = a). A semiring R is called additively idempotent if each
of its elements is additively idempotent.

An element a of a semiring R is called an additively (multiplicatively) ab-
sorbing element if and only if a+ x = a (a · x = x · a = a) for any x ∈ R. The
zero of R is the unique multiplicative absorbing element; of course it does not
need to exist. Following [10], an element of a semiring R is called an infinity if it
is both additively and multiplicatively absorbing.

Facts concerning semirings, congruence relations in semirings and (right, left)
ideals of semirings can be found in [3] and [10].

An algebraM with binary operation ∨ such as

• a ∨ (b ∨ c) = (a ∨ b) ∨ c for any a, b, c ∈M;

• a ∨ b = b ∨ a for any a, b ∈M;

• a ∨ a = a for any a ∈M.

is called semilattice (join semilattice).

Another term used forM is a commutative idempotent semigroup – see [15].
For any a, b ∈ M we denote a ≤ b ⇐⇒ a ∨ b = b. In this notation, if there is a
neutral element in M, it is the least element.

For a semilattice M the set EM of the endomorphisms of M is a semiring
with respect to the addition and multiplication defined by:

• h = f + g when h(x) = f(x) ∨ g(x) for all x ∈M,
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• h = f · g when h(x) = f(g(x)) for all x ∈M.

This semiring is called the endomorphism semiring of M. It is important
to note that in this paper all semilattices are finite chains. Following [12] and
[13] we fix a finite chain Cn = ({0, 1, . . . , n− 1},∨) and denote the endomorphism
semiring of this chain with ÊCn . We do not assume that α(0) = 0 for arbitrary
α ∈ ÊCn . So, there is not a zero in endomorphism semiring ÊCn . Subsemiring
ECn = E0Cn of ÊCn consisting of all maps α with property α(0) = 0 has zero and is
considered in [12] and [15].

If α ∈ ÊCn such that f(k) = ik for any k ∈ Cn we denote α as an ordered
n–tuple o i0, i1, i2, . . . , in−1 o. Note that mappings will be composed accordingly,
although we shall usually give preference to writing mappings on the right, so
that α · β means ”first α, then β”.

For other properties of the endomorphism semiring we refer to [8, 12, 13] and
[15].

In the following sections we use some terms from book [2] having in mind that
in [14] we show that some subsemigroups of the partial transformation semigroup
are indeed endomorphism semirings.

3. Strings of type 2

By ST R{a, b} we denote subset of ÊCn consisting of endomorphisms with image
{a, b} (either {a}, or {b}) where a, b ∈ Cn. This set is called a string of type 2 .
So, for fixed a, b ∈ Cn and a < b, a string of type 2 is

ST R{a, b} = { o a, . . . , a o, o a, . . . , a, b o, . . . , o a, b, . . . , b o, o b, . . . , b o }.

In the semiring ÊCn there is an order of the following way:

For any two endomorphisms α = o k0, k1, . . . , kn−1o and β = o l0, l1, . . . , ln−1o
the relation α ≤ β means that ki ≤ li for all i = 0, 1, . . . , n− 1, i.e., α+ β = β.

With regard to this order each of sets ST R{a, b} is an n+ 1 – element chain
with the least element o a, . . . , a o and the biggest element o b, . . . , b o. Hence string
ST R{a, b} is closed under the addition of semiring ÊCn . It is easy to see that
the composition of two endomorphisms with images {a, b} is an endomorphism
of such type. So, we have

Proposition 1. For any a, b ∈ Cn string ST R{a, b} is a subsemiring of semiring
ÊCn.

Note that string ST R{a, b} is not a subsemiring of semiring E(a)Cn ∩ E
(b)
Cn

(see [13]), namely o 2, 2, 3, 3 o ∈ E(3)C4 , but o 2, 2, 3, 3 o /∈ E(2)C4 .
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Let us denote the elements of semiring ST R{a, b} by αa,bk , where k = 0, . . . , n is
the number of the elements of Cn with an image equal to b, i.e.,

αa,bk = o a, . . . , a, b, . . . , b︸ ︷︷ ︸
k

o.

When a and b are fixed, we replace αa,bk by αk.

Proposition 2. Let a, b ∈ Cn and ST R{a, b} = {α0, . . . , αn}. For every
k = 0, . . . , n follows

αk · αs = α0, where 0 ≤ s ≤ n− b− 1

αk · αs = αk, where n− b ≤ s ≤ n− a− 1

αk · αs = αn, where n− a ≤ s ≤ .

Proof. Let us multiply αk · αs, where 0 ≤ s ≤ n − b − 1. This means that at
least b + 1 elements of Cn have images under endomorphism αs equal to a and
then b is not a fixed point of αs. Hence, for all i ∈ Cn follows

(αk · αs)(i) = αs(αk(i)) =

{
αs(a), if i ≤ n− k − 1

αs(b), if i ≥ n− k
= a

which means that αk · αs = α0.
Let us multiply αk · αs, where n− b ≤ s ≤ n− a− 1. Now a and b are both

fixed points of the endomorphism αs. Hence, for all i ∈ Cn follows

(αk · αs)(i) = αs(αk(i)) =

{
αs(a), if i ≤ n− k − 1

αs(b), if i ≥ n− k

=

{
a, if i ≤ n− k − 1

b, if i ≥ n− k
= αk(i) .

which means that αk · αs = αk.
Let us multiply αk ·αs, where n− a ≤ s ≤ n. This means that at least n− a

elements of Cn have images under endomorphism αs equal to b and then a is not
a fixed point of αs. Hence, for all i ∈ Cn follows

(αk · αs)(i) = αs(αk(i)) =

{
αs(a), if i ≤ n− k − 1

αs(b), if i ≥ n− k
= b

which means that αk · αs = αn.

The endomorphism α is called a–nilpotent if for some natural k follows that
αk = α0 and respectively, b–nilpotent if αk = αn. From the last proposition
follows that in both cases k = 2 and also
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Corollary 3. For any a, b ∈ Cn the set:

a. Na = {α0, . . . , αn−b−1} of all a-nilpotent elements is a subsemiring of semir-
ing ST R{a, b}.

b. Nb = {αn−a, . . . , αn} of all b-nilpotent elements is a subsemiring of semiring
ST R{a, b}.

c. Ida,b = {αn−b, . . . , αn−a−1} of all idempotent elements is a subsemiring of
semiring ST R{a, b}.

Note that all idempotent elements in semiring ÊCn do not form a semiring.
The constant endomorphisms o a, . . . , a o and o b, . . . , b o are called centers of

semirings E(a)Cn and E(b)Cn , respectively. So, we may imagine that string ST R{a, b}
”connects” the two centers o a, . . . , a o and o b, . . . , b o. Semiring Na is a subsemiring

of E(a)Cn , analogously Nb is a subsemiring of E(b)Cn and semiring Ida,b is a subsemiring

of E(a)Cn ∩ E
(b)
Cn .

Let us consider the subset Sa,b = {α0, . . . , αn−a−1} of the ST R{a, b}. Ob-
viously, the set Sa,b is closed under the addition. So, immediately from Proposi-
tion 2 follows

Corollary 4. For any a, b ∈ Cn the set Sa,b is a subsemiring of semiring ST R{a, b}.

Note that semiring Sa,b is a disjoint union of semirings Na and Ida,b.
From dual point of view we consider the subset Ta,b = {αn−b, . . . , αn} of string

ST R{a, b}. This set is also closed under the addition and from Proposition 2 we
have

Corollary 5. For any a, b ∈ Cn the set Ta,b is a subsemiring of semiring
ST R{a, b}.

Note that semiring Ta,b is a disjoint union of semirings Ida,b and Nb.

4. The derivation D

Now we consider set DSa,b = {α0, . . . , αn−b}. Clearly this set is closed under
the addition. Let αk, αl ∈ DSa,b and k, l 6= n − b. Then from Proposition 2
follows that αk · αl = α0. Also we have αn−b · αs = α0, αk · αn−b = αk and
αn−b · αn−b = αn−b. Thus we prove

Proposition 6. For any a, b ∈ Cn set DSa,b is a subsemiring of semiring Sa,b.

Note that in semiring DSa,b endomorphism α0 is the zero element and endomor-
phism αn−b is the unique right identity. Semiring DSa,b consist of all a – nilpotent
endomorphisms and the least idempotent endomorphism.
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Now we define a mapping D : ST R{a, b} → ST R{a, b} by the rules D(αk) =
αk−1 for any k = 1, . . . , n, and D(α0) = α0.

Let αk, α` ∈ ST R{a, b} and k > `. Then D(αk + α`) = D(αk) = αk−1 =
αk−1 + α`−1 = D(αk) +D(α`), that means D is a linear mapping.

Let αk, α` ∈ Na. Then from Proposition 3.2 follows that D(αkα`) = D(α0) =
α0 and also D(αk)α` = αk−1α` = α0, αkD(α`) = αkα`−1 = α0. So, we have

D(αkα`) = D(αk)α` + αkD(α`).

Since the same equalities are hold if we replace αk with αn−b, then it follows

D(αn−bα`) = D(αn−b)α` + αn−bD(α`).

For any αk ∈ Na we compute D(αkαn−b) = D(αk) = αk−1, D(αk)αn−b =
αk−1αn−b = αk−1 and αkD(αn−b) = αkαn−b−1 = α0. So, we have

D(αkαn−b) = D(αk)αn−b + αkD(αn−b).

Also we compute D(α2
n−b) = D(αn−b) = αn−b−1, D(αn−b)αn−b = αn−b−1αn−b =

αn−b−1 and αn−bD(αn−b) = αn−bαn−b−1 = α0. So, it follows

D(α2
n−b) = D(αn−b)αn−b + αn−bD(αn−b).

Thus, we prove

Proposition 7. For any a, b ∈ Cn mapping D is a derivation in semiring DSa,b.

Now we shall prove that there are not differential semirings (under derivation D)
containing DSa,b, which are subsemirings of ST R{a, b}.

Let αk ∈ Ida,b, where k > n − b. We compute D(α2
k) = D(αk) = αk−1

and from Proposition 3.2 follows D(αk)αk = αk−1αk = αk−1 and αkD(αk) =
αkαk−1 = αk. This means that D(α2

k) 6= D(αk)αk + αkD(αk).

Let αk ∈ Nb. We compute D(α2
k) = D(αn) = αn−1, D(αk)αk = αk−1αk = αn

and αkD(αk) = αkαk−1 =

{
αn−a, if k = n− a
αn, if k > n− a . Hence D(αk)αk+αkD(αk) =

αn 6= αn−1 = D(α2
k).

Thus we prove that D is not a Jordan derivation, see [5], in any subset of
ST R{a, b}, which contains DSa,b, that means D is not a derivation. So, follows

Proposition 8. The semiring DSa,b is the maximal differential subsemiring (un-
der the derivation D) of string ST R{a, b}.
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Note that each of subsets I0 = {α0}, I1 = {α0, α1}, . . ., In−b−1 = Na is a
subsemiring of Na with trivial multiplication αkα` = α0 for any 0 ≤ k, ` ≤
n− b− 1. Since these semirings Ik, 0 ≤ k ≤ n− b− 1, are closed under derivation
D, then Ik are differential subsemirings of DSa,b. But from Proposition 2 follows
that Ik are ideals in semiring DSa,b. Hence

Proposition 9. In semiring DSa,b there is a chain of differential ideals

I0 ⊂ · · · ⊂ Ik = {α0, . . . , αk} ⊂ · · · ⊂ In−b−1 = Na.

Let R be an arbitrary differential semiring with derivation d and I is a differential
ideal of R. We consider∫

R
I = {x|x ∈ R,∃n ∈ N ∪ {0}, dn(x) ∈ I} .

Let x, y ∈
∫
R I where dm(x) ∈ I and dn(y) ∈ I. If m < n we have dn(x) =

dn−m(dm(x)) ∈ I. Then, using that d is a linear map, follows dn(x + y) =
dn(x) + dn(y) ∈ I, that is x+ y ∈

∫
R I.

On the other hand, dm+n(xy) =
∑m+n

k=0

(
m+n
k

)
dm+n−k(x)dk(y) ∈ I, which

means that xy ∈
∫
R I. It is clear that x ∈

∫
R I implies d(x) ∈

∫
R I. Thus, we

prove

Proposition 10. Let R be a differential semiring with derivation d and I is a
differential ideal of R. Then

∫
R I is a differential subsemiring of R.

Using Propositions 9 and 10 we can describe the ”differential structure” of semir-
ing DSa,b.

Corollary 11. For every differential ideal Ik of semiring DSa,b, where k =
0, . . . , n− b− 1, follows DSa,b =

∫
DSa,b

Ik.

5. Derivations in string ST R{a, b}

Now we use the well known Jordan multiplication in associative rings to define
some new derivations in strings ST R{a, b}.

Let α ∈ ST R{a, b}. We define a mapping δα : ST R{a, b} → ST R{a, b} by
the rule

δα(αk) = ααk + αkα for any k = 0, 1, . . . , n.

The main result in this section is

Theorem 12. For any a, b ∈ Cn and arbitrary α ∈ ST R{a, b} mapping δα is a
derivation in string ST R{a, b}.
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Proof. From δα(αk +α`) = α(αk +α`) + (αk +α`)α = ααk +αkα+αα`+α`α =
δα(αk) + δα(α`) where k, ` ∈ {0, . . . , n} follows that mapping δα is a linear.

Now we prove equality

(1) δα(αkα`) = δα(αk)α` + αkδα(α`).

Case 1. Let α ∈ Na.

• If αk ∈ Na, then δα(αk) = ααk + αkα = α0 + α0 = α0.

• If αk ∈ Ida,b, then δα(αk) = ααk + αkα = α+ α0 = α.

• If αk ∈ Nb, then δα(αk) = ααk + αkα = αn + α0 = αn.

1.1. Let α` ∈ Na. Then δα(αkα`) = δα(α0) = α0, δα(αk)α` = α0 and αkδα(α`) =
αkα0 = α0. So, (1) holds.

1.2. Let α` ∈ Nb. Then δα(αkα`) = δα(αn) = αn, δα(αk)α` = αn and αkδα(α`) =
αkαn = αn. So, (1) holds.

1.3. Let αk ∈ Na, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = α0, δα(αk)α` = α0α` =
α0 and αkδα(α`) = αkα0 = α0. So, (1) holds.

1.4. Let αk, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = α, δα(αk)α` = αα` = α and
αkδα(α`) = αkα = α0. So, (1) holds.

1.5. Let αk ∈ Nb, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αn, δα(αk)α` = αnα` =
αn and αkδα(α`) = αkα = α0. So, (1) holds.

Case 2. Let α ∈ Ida,b.
• If αk ∈ Na, then δα(αk) = ααk + αkα = α0 + αk = αk.

• If αk ∈ Ida,b, then δα(αk) = ααk + αkα = α+ αk.

• If αk ∈ Nb, then δα(αk) = ααk + αkα = αn + αk = αn.

2.1. Let α` ∈ Na. Then (1) holds after the same equalities like in 1.1.

2.2. Let α` ∈ Nb. Then (1) holds after the same equalities like in 1.2.

2.3. Let αk ∈ Na, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αk, δα(αk)α` = αkα` =
αk and αkδα(α`) = αk(α+ α`) = αkα+ αkα` = αk + αk = αk. So, (1) holds.

2.4. Let αk, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = α + αk, δα(αk)α` = (α +
αk)α` = α+ αk and αkδα(α`) = αk(α+ α`) = αk. So, (1) holds.

2.5. Let αk ∈ Nb, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αn, δα(αk)α` = αnα` =
αn and αkδα(α`) = αk(α+ αl) = αk. So, (1) holds.

Case 3. Let α ∈ Nb.

• If αk ∈ Na, then δα(αk) = ααk + αkα = α0 + αn = αn.

• If αk ∈ Ida,b, then δα(αk) = ααk + αkα = α+ αn = αn.

• If αk ∈ Nb, then δα(αk) = ααk + αkα = αn + αn = αn.
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3.1. Let α` ∈ Na. Then δα(αkα`) = δα(α0) = αn, δα(αk)α` = α0 and αkδα(α`) =
αkαn = αn. So, (1) holds.

3.2. Let α` ∈ Nb. Then (1) holds after the same equalities like in 1.2.

3.3. Let αk ∈ Na, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αn, δα(αk)α` = αnα` =
αn and αkδα(α`) = αkαn = αn. So, (1) holds.

3.4. Let αk, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αn, δα(αk)α` = αnα` = αn
and αkδα(α`) = αkαn = αn. So, (1) holds.

3.5. Let αk ∈ Nb, α` ∈ Ida,b. Then δα(αkα`) = δα(αk) = αn, δα(αk)α` = αnα` =
αn and αkδα(α`) = αkαn = αn. So, (1) holds and this completes the proof.

Proposition 13. All the derivations δα, where α ∈ ST R{a, b} commutes.

Proof. Let α, β ∈ Na. For arbitrary αk ∈ Na follows δα(αk) = α0 and δβ(αk) =
α0 what implies δα · δβ = δβ · δα. For arbitrary αk ∈ Ida,b we have δα(αk) = α
and δβ(αk) = β. Then δβ(δα(αk)) = δβ(α) = α0 and δα(δβ(αk)) = δα(β) = α0

what implies δα · δβ = δβ · δα.
Let α ∈ Na, β ∈ Ida,b. For arbitrary αk ∈ Na we have δα(αk) = α0 and

δβ(αk) = αk. So, δα(δβ(αk)) = α0 = δβ(δα(αk)), i.e., δα·δβ = δβ ·δα. For arbitrary
αk ∈ Ida,b we have δα(αk) = αk and δβ(αk) = β + αk. Then δβ(δα(αk)) = β + αk
and δα(δβ(αk)) = δα(β + αk) = β + αk, that is δα · δβ = δβ · δα.

Let α, β ∈ Ida,b. For arbitrary αk ∈ Na follows δα(αk) = αk and δβ(αk) = αk
what implies δα ·δβ = δβ ·δα. For arbitrary αk ∈ Ida,b we have δα(αk) = α+αk and
δβ(αk) = β + αk. Then δβ(δα(αk)) = δβ(α+ αk) = β + α+ αk and δα(δβ(αk)) =
δα(β + αk) = α+ β + αk, that is δα · δβ = δβ · δα.

Let β ∈ Nb. For any αk follows δβ(αk) = αn. Then for any α ∈ ST R{a, b}
we have δα(δβ(αk)) = δα(αn) = αn and δβ(δα(αk) = αn, i.e., δα · δβ = δβ · δα.

When αk ∈ Nb, then δα(αk) = αn and δβ(αk) = αn for any α, β ∈ ST R{a, b}
what implies δα · δβ = δβ · δα.

Now we ask what structure has the set ∆ of all derivations δα, where α ∈
ST R{a, b}. First, we consider two examples.

Example 14. Let us fix a = 0 and examine string ST R{0, b}. Consider the set
of derivations ∆ = {δα | α ∈ Id0,b}. Here only αn is an element of semiring Nb.
For any b, 0 < b ≤ n− 1, we compute δαn−b(αk) = αk for all αk ∈ Na. It is clear
that δαn−b(αn−b) = αn−b and δαn−b(αk) = αn−bαk + αkαn−b = αn−b + αk = αk
for all αk ∈ Id0,b. Moreover, δαn−b(αn) = αn. Hence, δαn−b is an identity map.

Let `,m ∈ {n − b, . . . , n − 1}, that is α`, αm ∈ Id0,b, and ` ≤ m. Then follows
δα`(αk) = δαm(αk) = αk for all αk ∈ Na and also δα`(αn) = δαm(αn) = αn. For
arbitrary αk ∈ Id0,b we have δα`(αk) = α`, where αk ≤ α` and δα`(αk) = αk for
any k ∈ {` + 1, . . . , n− 1}. Hence, δαm(δα`(αk)) = δαm(αk) for every αk ∈ Id0,b.
Thus, δαm · δα` = δαm when ` ≤ m.
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So, we conclude that the set of derivations ∆ = {δαn−b , . . . , δαn−1} is a commu-
tative idempotent semigroup, i.e. semilattice with identity δαn−b .

Example 15. Let us fix a = n − 2 and b = n − 1. Now we compute the values
of derivations:

δα0(α0) = α0, δα0(α1) = α0, δα0(α2) = αn, . . . , δα0(αn) = αn,

δα1(α0) = α0, δα1(α1) = α1, δα1(α2) = αn, . . . , δα1(αn) = αn,

δα2(α0) = αn, δα2(α1) = αn, δα2(α2) = αn, . . . , δα2(αn) = αn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δαn(α0) = αn, δαn(α1) = αn, δαn(α2) = αn, . . . , δαn(αn) = αn.

Hence, δα2 = · · · = δαn . It is easy to verify that δ2α0
= δα0 , δα0 · δα1 = δα0 ,

δα0 · δα2 = δα2 , δ2α1
= δα1 , δα1 · δα2 = δα2 and δ2α2

= δα2 .
So, we conclude that the set of all derivations in string ST R{n− 2, n− 1} is

the commutative idempotent semigroup ∆ = {δα0 , δα1 , δα2} with multiplication
table

· δα0 δα1 δα2

δα0 δα0 δα0 δα2

δα1 δα0 δα1 δα2

δα2 δα2 δα2 δα2 .

Theorem 16. For any a, b ∈ Cn the set of derivations ∆ = { δα0 , . . . , δαn−a } in
string ST R{a, b} is a semilattice with an identity δn−b and an absorbing element
δn−a.

Proof. Using Proposition 2 and reasonings similar to those in proof of Theorem
12, we consider three cases.

Case 1. Let α` ∈ Na. It follows

• α`αk = αkα` = α0, where αk ∈ Na and then δα`(αk) = α0;

• α`αk = α` and αkα` = α0, where αk ∈ Ida,b and then δα`(αk) = α`;

• α`αk = αn and αkα` = α0, where αk ∈ Nb and then δα`(αk) = αn.

Case 2. Let α` ∈ Ida,b. It follows

• α`αk = α0 and αkα` = αk, where αk ∈ Na and then δα`(αk) = αk;

• α`αk = α` and αkα` = αk, where αk ∈ Ida,b and then δα`(αk) = α` + αk;

• α`αk = αn and αkα` = αk, where αk ∈ Nb and then δα`(αk) = αn.
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Case 3. Let α` ∈ Nb. It follows

• α`αk = α0 and αkα` = αn, where αk ∈ Na and then δα`(αk) = αn;

• α`αk = α` and αkα` = αn, where αk ∈ Ida,b and then δα`(αk) = αn;

• α`αk = αkα` = αn, where αk ∈ Nb and then δα`(αk) = αn.

From the last case we can conclude that δn−a = · · · = δn.
Using the equalities in the cases above follows

δα0(α0) = α0, . . . , δα0(αn−b−1) = α0, δα0(αn−b) = α0, . . . , δα0(αn−a−1) = α0,

δα0(αn−a) = αn, . . . , δα0(αn) = αn,

δα1(α0) = α0, . . . , δα1(αn−b−1) = α0, δα1(αn−b) = α1, . . . , δα1(αn−a−1) = α1,

δα1(αn−a) = αn, . . . , δα1(αn) = αn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δαn−b−1
(α0) = α0, . . . , δαn−b−1

(αn−b−1) = α0, δαn−b−1
(αn−b) = αn−b−1, . . . ,

δαn−b−1
(αn−a−1) = αn−b−1, δαn−b−1

(αn−a) = αn, . . . , δαn−b−1
(αn) = αn,

δαn−b(α0) = α0, δαn−b(α1) = α1, . . . , δαn−b(αn−b−1) = αn−b−1, δαn−b(αn−b) =

= αn−b, . . . , δαn−b(αn−a−1) = αn−a−1, δαn−b(αn−a) = αn, . . . , δαn−b(αn) = αn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

δαn−a−1(α0) = α0, δαn−a−1(α1) = α1, . . . , δαn−a−1(αn−b−1) = αn−b−1,

= δαn−a−1(αn−b) = αn−a−1, . . . , δαn−a−1(αn−a−1) = αn−a−1,

δαn−a−1(αn−a) = αn, . . . , δαn−a−1(αn) = αn,

δαn−a(α0) = αn, . . . , δαn−a(αn−b−1) = αn, δαn−a(αn−b) = αn, . . . ,

δαn−a(αn−a−1) = αn, δαn−a(αn−a) = αn, . . . , δαn−a(αn) = αn.

Let us consider δα` , where ` ≤ n − a − 1. Then for k ≤ n − a − 1 we compute
δα`(δα0(αk)) = δα`(α0) = α0 and for k ≥ n − a follows δα`(δ0(αk)) = δα`(αn) =
αn. Also we compute δαn−2(δα0(αk)) = αn for arbitrary αk. Thus we prove that
δα0δα` = δα0 and δα0δαn−a = δαn−a .

We find δα1(δα1(αk)) = δα1(α1) = α0 where k ≤ n−a−1 and δα1(δα1(αk)) =
δα1(αn) = αn for n− a ≤ k ≤ n. So, we prove δ2α1

= δα0 .
Now we compute for 2 ≤ ` ≤ n− b− 1 elements δα`(δα1(α0)) = δα`(α0) = α0

and δα`(δα1(α1)) = δα`(α0) = α0, and also for 2 ≤ k ≤ n − a − 1 elements
δα`(δα1(αk)) = δα`(α1) = α0. We have δα`(δα1(αk) = δα`(αn) = αn for all
k ≥ n− a. So, we prove δα1δα` = δα0 for all 2 ≤ ` ≤ n− b− 1.
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Now we compute for n − b ≤ ` ≤ n − a − 1 elements δα`(δα1(α0)) = δα`(α0) =
α0 and δα`(δα1(α1)) = δα`(α0) = α0. Also for 2 ≤ k ≤ n − a − 1 elements
δα`(δα1(αk)) = δα`(α1) = α1. Similarly, we have δα`(δα1(αk) = δα`(αn) = αn for
all k ≥ n− a. So, we prove δα1δα` = δα1 for all n− b ≤ ` ≤ n− a− 1.

For arbitrary αk we compute δαn−a(δα1(αk)) = αn, so, we prove δα1δαn−2 =
δαn−2 .

Thus, using the similar and clear reasonings, and Proposition 13, we can
construct the following table

· δα0 δα1 · · · δαn−b−1
δαn−b δαn−b+1

· · · δαn−a−1 δαn−a
δα0 δα0 δα0 · · · δα0 δα0 δα0 · · · δα0 δαn−a
δα1 δα0 δα0 · · · δα0 δα1 δα1 · · · δα1 δαn−a
...

...
... · · ·

...
...

... · · ·
...

...
δαn−b−1

δα0 δα0 · · · δα0 δαn−b−1
δαn−b−1

· · · δαn−b−1
δαn−a

δαn−b δα0 δα1 · · · δαn−b−1
δαn−b δαn−b+1

· · · δαn−a−1 δαn−a
δαn−b+1

δα0 δα1 · · · δαn−b−1
δαn−b+1

δαn−b+1
· · · δαn−a−1 δαn−a

...
...

... · · ·
...

...
... · · ·

...
...

δαn−b−1
δα0 δα1 · · · δαn−b−1

δαn−a−1 δαn−a−1 · · · δαn−a−1 δαn−a
δαn−a δαn−a δαn−a · · · δαn−a δαn−a δαn−a · · · δαn−a δαn−a

This completes the proof that set ∆ = { δα0 , . . . , δαn−a } is a semilattice with
identity δn−b absorbing element δn−a.

Let R be a differential semiring with set of derivations ∆ = {δ1, . . . , δm} and I
be a differential ideal of R that is closed under each derivation δi ∈ ∆. For any
i = 1, . . . ,m we denote∫ δi

R
I = {x|x ∈ R,∃n ∈ N ∪ {0}, δni (x) ∈ I} .

From Proposition 2 follows that the set I = {α0, αn} is an ideal in the string
ST R{a, b}. From the proof of Theorem 12 we conclude that I is closed under
each derivation δαi where αi ∈ ST R{a, b}. An easy consequence of Proposition
10 and the proof of Theorem 16 is the following

Corollary 17. For any a, b ∈ Cn subsemirings of the string R = ST R{a, b} are∫ δα0

R
I = · · · =

∫ δαn−b−1

R
I =

∫ δαn−a

R
I = R,

∫ δαn−b

R
I = · · ·

∫ δαn−a−1

R
I = I,

where δαi ∈ ∆ = { δα0 , . . . , δαn−a } and I = {α0, αn}.



90 I. Trendafilov

6. Strings of arbitrary type

For any a1, . . . , am ∈ Cn, where a1 < a2 < . . . < am, m = 2, . . . , n set

ST R{a1, . . . , am} =

m−1⋃
i=1

ST R{ai, ai+1}

is called a string of type m .

Let α ∈ ST R{ai, ai+1} and β ∈ ST R{aj , aj+1}. If i = j, then either α ≤ β,
or β ≤ α. If i < j, then

α ≤ o ai+1, . . . , ai+1 o ≤ o aj , . . . , aj o ≤ β.

Hence, string ST R{a1, . . . , am} is a (m− 1)n+ 1 – element chain with the least
element o a1, . . . , a1 o and the biggest element o am, . . . , am o, so this string is closed
under the addition of semiring ÊCn .

On the other hand, for α ∈ ST R{ai, ai+1} and β ∈ ST R{aj , aj+1}, where
i < j, it is easy to show that α · β ∈ ST R{aj , aj+1}. Thus we prove

Proposition 18. For any a1, . . . , am ∈ Cn string ST R{a1, . . . , am} is a sub-
semiring of semiring ÊCn.

Immediately follows

Corollary 19. For arbitrary subset {b1, . . . , b`} ⊆ {a1, . . . , am} string
ST R{b1, . . . , b`} is a subsemiring of string ST R{a1, . . . , am}.

The elements of semiring ST R{a1, . . . , am}, using the notations from Section 3,
are α

a`,a`+1

k , where ` = 1, . . . ,m − 1 and k = 0, . . . , n is the number of elements
of Cn with image equal to a`+1. We can simplify this notations if we replace
α
a`,a`+1

k with αk,`, where ` = 1, . . . ,m− 1. This means that αk,` is the element of
ST R{a`, a`+1} defined in the same way as in Section 3. But using these notations
we must remember that

α0,2 = αn,1, . . . , α0,`+1 = αn,`, . . . , αo,m = αn,m−1.

The next proposition is a generalization of Proposition 2.

Proposition 20. Let a1, . . . , am ∈ Cn and

ST R{a1, . . . , am} = {α0,1, . . . , αn,1, α1,2, . . . , αn,2, . . . , αn,m−1, α1,m, . . . , αn,m}.

For k = 0, . . . , n for the endomorphisms αk,` ∈ ST R{a`, a`+1} and αs,r ∈
ST R{ar, ar+1} follows
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αk,` · αs,r = α0,r, where 0 ≤ s ≤ n− a`+1 − 1

αk,` · αs,r = αk,r, where n− a`+1 ≤ s ≤ n− a` − 1

αk,` · αs,r = αn,r, where n− a` ≤ s ≤ n .

Proof. Let 0 ≤ s ≤ n− a`+1 − 1. For arbitrary i ∈ Cn follows

(αk,`, ·αs,r)(i) = αs,r(αk,`(i)) =

{
αs,r(a`), if i ≤ n− k − 1

αs,r(a`+1), if i ≥ n− k

=

{
ar, if i ≤ n− k − 1
ar, if i ≥ n− k], .

= α0,r(i)

So, αk,` · αs,r = α0,r.

Let n− a`+1 ≤ s ≤ n− a` − 1. For all i ∈ Cn follows

(αk,`, ·αs,r)(i) = αs,r(αk,`(i)) =

{
αs,r(a`), if i ≤ n− k − 1

αs,r(a`+1), if i ≥ n− k

=

{
ar, if i ≤ n− k − 1
ar+1, if i ≥ n− k . = αk,r(i)

So, αk,` · αs,r = αk,r.

Let n− a` ≤ s ≤ n. For all i ∈ Cn follows

(αk`, ·αs,r)(i) = αs,r(αk,`(i)) =

{
αs,r(a`), if i ≤ n− k − 1
αs,r(a`+1), if i ≥ n− k

=

{
ar+1, if i ≤ n− k − 1
ar+1, if i ≥ n− k . = αn,r(i)

So, αk,` · αs,r = αn,r and this completes the proof.

Endomorphisms α0,` where ` = 1, . . . ,m and αn,m are called constant endomor-
phisms in [8]. According to [13], we denote the set of all constant endomorphisms
of ST R{a1, . . . , am} by CO(ST R{a1, . . . , am}). From Proposition 3.1 of [13]
follows

Corollary 21. Set CO(ST R{a1, . . . , am}) is an ideal of semiring
ST R{a1, . . . , am}.
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7. Derivations in strings of arbitrary type

We now proceed with the construction of derivations in strings ST R{a1, . . . , am}.
Suppose that there was ` = 1, . . . ,m − 1 such as a`+1 − a` ≥ 2. For this `

the set of endomorphisms αs,`, where n − a`+1 ≤ s ≤ n − a` − 1 has 2 or more
elements. So, if we put p = n− a`+1, then αp and αp+1 are from the semiring of
the idempotent endomorphism in string ST R{a`, a`+1}. Now, using Proposition
20 we compute

αp+1,` · αp,` = αp+1,`, αp,` · αp+1,` = αp,`.

For r ≥ `+ 1 we compute

αp,` · αp,r = αp,r, αp,` · αp+1,r = αp,r, αp+1,` · αp,r = αp+1,r.

To find composition αp,r · αp,` we consider two possibilities:

1. If n− ar+1 ≤ p ≤ n− ar − 1, then follows αp,r · αp,` = αp,`.

2. If n− ar ≤ p ≤ n, then αp,r · αp,` = αn,`.

For composition αp+1,r · αp,` there are two similar possibilities, so we have either
αp+1,r · αp,` = αp+1,`, or αp+1,r · αp,` = αn,`.

Consider a mapping δα : ST R{a1, . . . , am} → ST R{a1, . . . , am} defined by the
rule

(2) δα(αk,`) = ααk,` + αk,`α,

where α and αk,` are arbitrary elements of the string ST R{a1, . . . , am}.
Then we find δαp,`(αp+1,`) = αp+1,`.
Now we compute δαp,`(αp,r) = αp,` · αp,r + αp,r · αp,` = αp,r + αp,r · αp,`. But

αp,r > αn,` ≥ αp,`, hence δαp,`(αp,r) = αp,r.
In such a way δαp,`(αp+1,r) = αp,` ·αp+1,r +αp+1,r ·αp,` = αp,r +αp+1,r ·αp,`.

Using the inequalities αp,r > αn,` ≥ αp+1,` follows δαp,`(αp+1,r) = αp,r.
So, we have δαp,`(αp+1,` · αp,r) = δαp,`(αp+1,r) = αp,r.
On the other hand, follows δαp,`(αp+1,`) ·αp,r = αp+1,` ·αp,r = αp+1,r and also

αp+1,` · δαp,`(αp,r) = αp+1,` · αp,r = αp+1,r. Hence

δαp,`(αp+1,`) · αp,r + αp+1,` · δαp,`(αp,r) = αp+1,r 6= αp,r = δαp,`(αp+1,` · αp,r).

Thus, we show that mapping δα defined by (2), where α ∈ ST R{a1, . . . , am}, in
the general case, is not a derivation.

Note that there is not a counterexample when r = ` because

δαp,`(αp+1,` ·αp,`) = δαp,`(αp+1,`) = αp+1,` = δαp,`(αp+1,`) ·αp,`+αp+1,` ·δαp,`(αp,`).
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So, the last arguments do not contradict the proof of Theorem 12.

To avoid possibility a`+1 − a` ≥ 2 we fix m = n and a1 = 0, a2 = 1, . . . , an =
n− 1. Now we denote ST R{0, 1, . . . , n− 1} = ST R(ÊCn).

Example 22. In string ST R(ÊC4) we consider endomorphisms α0,2 = o 2, 2, 2, 2 o,
α2,1 = o 0, 0, 1, 1 o and α2,3 = o 2, 2, 3, 3 o. Since α2,1 · α2,3 = α0,2 it follows that
δα0,2(α2,1 · α2,3) = δα0,2(α0,2) = α0,2. Now we compute δα0,2(α2,1) = o 2, 2, 2, 2 o · o
0, 0, 1, 1 o+o 0, 0, 1, 1 o·o 2, 2, 2, 2 o = α0,2. Then δα0,2(α2,1)·α2,3 = α0,2 ·α2,3 = α0,3.
Hence

δα0,2(α2,1 · α2,3) 6= δα0,2(α2,1) · α2,3 + α2,1 · δα0,2(α2,3).

Thus, we showed that, even in the simplest case, in the string of type m, where
m > 2, the mappings defined by (2) in general are not derivations.

Now we consider the ideal of constant endomorphisms. It is clear that
CO(ST R(ÊCn)) = CO(ÊCn). So, CO(ÊCn) = {κ0, . . . , κn−1} where κi = o i, . . . , i o
for i = 0, . . . , n− 1.

Since κi · κj = κj it follows that δκi(κj) =

{
κi, if i ≥ j
κj , if i < j

.

More generally, for arbitrary αs,r ∈ ST R{r−1, r}, where r = 1, . . . , n−1 follows
that

(3) κi · αs,r =

{
κr−1, if i ≤ n− s− 1

κr, if i ≥ n− s
.

Obviously αs,r · κi = κi.

Hence, there are three cases:

1. If i ≥ r, then δαs,r(κi) = κi.

2. If i ≤ r − 1 and i ≤ n− s− 1, then δαs,r(κi) = κr−1.

3. If i ≤ r − 1 and i ≥ n− s, then δαs,r(κi) = κr.

We can now establish a result concerning the semiring CO(ÊCn) using Corollary
21.

Proposition 23. Let δαs,r : CO(ÊCn) → CO(ÊCn), where αs,r ∈ ST R(ÊCn), be a

mapping defined by δαs,r(κi) = αs,rκi + κiαs,r for arbitrary κi ∈ CO(ÊCn). Then

for any κi, κj ∈ CO(ÊCn) follows

(4) δαs,r(κi · κj) = δαs,r(κi) · κj + κi · δαs,r(κj).
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Proof. From equality κi · κj = κj follows that δαs,r(κi · κj) = δαs,r(κj), κi ·
δαs,r(κj) = δαs,r(κj) and δαs,r(κi) · κj = κj . So (4) is equivalent to equality
δαs,r(κj) = δαs,r(κj) + κj . If j ≥ r from 1 follows δαs,r(κj) = κj , so, (4) holds.
If j ≤ r − 1 and j ≤ n − s − 1, then from 2 follows δαs,r(κj) = κr−1 and from
κr−1 = κr−1 + κj equality (4) holds. When j ≤ r − 1 and j ≥ n − s, from 3
follows δαs,r(κi) = κr which implies κr = κr + κj , so, (4) holds.

Is there a semiring which contain semiring CO(ÊCn) and is invariant under all
mappings δαs,r , where αs,r ∈ ST R(ÊCn), so that equality (3) holds for all elements
of this semiring?

Studying this question, we consider the set S = CO(ÊCn)∪ST R{n−2, n−1}.

Proposition 24. Set S is a subsemiring of semiring ST R(ÊCn) and is invariant
under all mappings δαk,`, where αk,` ∈ ST R(ÊCn).

Proof. Let x, y ∈ S. If either x, y ∈ CO(ÊCn), or x, y ∈ ST R{n− 2, n− 1}, then
from Corollary 21 and Proposition 1 follows that x + y and x · y are from the
same semiring.

Let x = αs,n−1 ∈ ST R{n − 2, n − 1} and y = κi ∈ CO(ÊCn), where s, i =
0, . . . , n − 1. Then αs,n−1 + κi = αs,n−1 if i ≤ n − 2 and αs,n−1 + κi = κi if

i = n − 1. Since αs,n−1 · κi = κi and κi · αs,n−1 =

{
κn−2, if i ≤ n− s− 1
κn−1, if i ≥ n− s

follows that x · y, y · x ∈ S. So, we prove that S is a subsemiring of ST R(ÊCn).

Let αk,` ∈ ST R(ÊCn). For any κi ∈ CO(ÊCn) from 1, 2 and 3, just before

Proposition 23, follows that δαk,`(κi) ∈ CO(ÊCn).

Let αs,n−1 ∈ ST R{n−2, n−1}. From Proposition 6.3 follows αk,` ·αs,n−1 =
κn−2 if 0 ≤ s ≤ n− `− 2, αk,` ·αs,n−1 = αk,n−1 if s = n− `− 1 and αk,` ·αs,n−1 =
κn−1 if n − ` ≤ s ≤ n − 1. Since αs,n−1 · αk,` is equal to κ`−1, αs,` and κ` in
similar cases we can conclude that when ` ≤ n− 2 follows

(5) δαk,`(αs,n−1) =


κn−2, if 0 ≤ s ≤ n− `− 2

αk,n−1, if s = n− `− 1

κn−1, if n− ` ≤ s ≤ n− 1 .

If ` = n−1 obviously δαk,n−1
(αs,n−1) ∈ S. So, S is invariant under arbitrary δαk,`

and this completes the proof.

The following counterexample shows that, in general, map δαk,` is not a deriva-
tion.

Example 25. In string ST R(ÊC4) we consider endomorphisms α3,2 = o 1, 2, 2, 2 o,
κ1 = o 1, 1, 1, 1 o ∈ CO(ÊC4) and α2,3 = o 2, 2, 3, 3 o ∈ ST R{2, 3}.
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Since κ1 · α2,3 = κ2 follows that δα3,2(κ1 · α2,3) = δα3,2(κ2) =

= o 1, 2, 2, 2 o · o 2, 2, 2, 2 o+ o 2, 2, 2, 2 o · o 1, 2, 2, 2 o = o 2, 2, 2, 2 o = κ2.

Now we compute δα3,2(κ1) = o 1, 2, 2, 2 o · o 1, 1, 1, 1 o+ o 1, 1, 1, 1 o · o 1, 2, 2, 2 o = κ2.
Then δα3,2(κ1) · α2,3 = o 2, 2, 2, 2 o · o 2, 2, 3, 3 o = o 3, 3, 3, 3 o = κ3. Hence

δα3,2(κ1 · α2,3) 6= δα3,2(κ1) · α2,3 + κ1 · δα3,2(α2,3).

Now we present a class of maps of type δα which are derivations in the whole
semiring ST R(ÊCn). We need some preliminary lemmas.

Using that δα(β) = δβ(α) and formulas (5) we obtain

Lemma 26. For any ` = 1, . . . , n− 2 and k, s = 0, . . . , n follows

δαs,n−1(αk,`) =


κn−2, if 0 ≤ s ≤ n− `− 1

αk,n−1, if s = n− `
κn−1, if n− `+ 1 ≤ s ≤ n .

Let us make one necessary observation.

Lemma 27. For any q = 1, . . . , n− 2, k, p, s = 0, . . . , n and arbitrary ` follows

δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) = αk,` · δαs,n−1(αp,q).

Proof. Let ` ≤ n − 2. Using Lemma 26 follows δαs,n−1(αk,`) ≤ κn−1. Then
δαs,n−1(αk,`) · αp,q ≤ κn−1 · αp,q = κq. The last equality follows from (3).

Let ` = n− 1. Then
(6)

δαs,n−1(αk,n−1) =


κn−2, if k = s = 0, k = 0 and s = 1, k = 1 and s = 0

α1,n−1, if k = s = 1

κn−1, if k ≥ 2 or s ≥ 2 .

Analogously, we have δαs,n−1(αk,n−1) · αp,q ≤ κn−1 · αp,q = κq.

On the other hand, from Lemma 26 we have δαs,n−1(αp,q) ≥ κn−2. Then for
arbitrary ` follows that αk,` · δαs,n−1(αp,q) ≥ αk,` · κn−2 = κn−2. So, we have

δαs,n−1(αk,`) · αp,q ≤ κq ≤ κn−2 ≤ αk,` · δαs,n−1(αp,q).

Now we shall prove the main result of this section.
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Theorem 28. For any s ≥ 2 the map δαs,n−1 : ST R(ÊCn) → ST R(ÊCn) defined
by equality

δαs,n−1(α) = αs,n−1 · α+ α · αs,n−1,

where α, αs,n−1 ∈ ST R(ÊCn) is a derivation of ST R(ÊCn).

Proof. A. First, we shall consider endomorphisms αk,` and αp,q so that `, q =
1, . . . , n− 2.

For k, p = 0, . . . , n we verify that

(7) δαs,n−1(αk,` · αp,q) = δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q).

From Proposition 20 follows

(8)

αk,` · αp,q = κq−1, if 0 ≤ p ≤ n− `− 1

αk,` · αp,q = αk,q, if p = n− `
αk,` · αp,q = κq, if n− `+ 1 ≤ p ≤ n .

Case 1. Let 0 ≤ s ≤ n−q−1. Then, using Lemma 26, for arbitrary p follows

δαs,n−1(αk,` · αp,q) = κn−2.

Now from Lemma 26 and Lemma 27 we find

δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) = αk,`κn−2 = κn−2.

So, equality (7) holds.

Case 2. Let s = n− q.

2.1. If 0 ≤ p ≤ n− `− 1, then from (8) follows αk,` · αp,q = κq−1. Hence

δαs,n−1(αk,` · αp,q) = δαs,n−1(κq−1) = κn−2.

Using Lemma 27 first and then Lemma 26 we have

δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) = αk,`αp,n−1 = κn−2.

So, again, equality (7) holds.

2.2. If p = n− `, then from (6) follows αk,` · αp,q = αk,q. Thus follows

δαs,n−1(αk,` · αp,q) = δαs,n−1(αk,q) = αk,n−1.
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Now Lemma 26 and Lemma 27 yields δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) =
αk,`αp,n−1 = αk,n−1. So, equality (7) holds.

2.3. If n− `+ 1 ≤ p ≤ n, then from (8) follows αk,` · αp,q = κq. So, we have

δαs,n−1(αk,` · αp,q) = δαs,n−1(κq) = κn−1.

Now Lemma 26 and Lemma 27 imply δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) =
αk,`κn−1 = κn−1. So, equality (7) holds.

Case 3. Let n− q+1 ≤ s ≤ n. Then, from Lemma 26, for arbitrary p follows

δαs,n−1(αk,` · αp,q) = κn−1.

From Lemma 26 and Lemma 27 we obtain

δαs,n−1(αk,`) · αp,q + αk,` · δαs,n−1(αp,q) = αk,`κn−1 = κn−1.

So, finally equality (7) holds.

B. The second possibility is when αk,n−1, αp,n−1 ∈ ST R{n−2, n−1}. Now from
Theorem 12 follows that δαs,n−1 satisfies the Leibnitz’s rule.

C. Another possibility is to calculate δαs,n−1(αk,` ·αp,n−1), where ` ≤ n− 2. Now
equalities (8) for q = n− 1 are

(9)

αk,` · αp,n−1 = κn−2, if 0 ≤ p ≤ n− `− 1

αk,` · αp,n−1 = αk,n−1, if p = n− `
αk,` · αp,n−1 = κn−1, if n− `+ 1 ≤ p ≤ n .

Hence, using that s ≥ 2, for arbitrary p we obtain δαs,n−1(αk,` · αp,n−1) ≥
δαs,n−1(κn−2) = κn−1. The last equality follows from (6).

From (6) and (9) we have αk,` · δαs,n−1(αp,n−1) = αk,` · κn−1 = κn−1. Thus
we prove that

δαs,n−1(αk,` · αp,n−1) = δαs,n−1(αk,`) · αp,n−1 + αk,` · δαs,n−1(αp,n−1).

D. The last possibility is the same as in C., but we shall prove equality

(10) δαs,n−1(αp,n−1 · αk,`) = δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`),

where ` ≤ n− 2.
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Now from equalities (8) we obtain

(11)

αp,n−1 · αk,` = κ`−1, if k = 0

αp,n−1 · αk,` = αp,`, if k = 1

αp,n−1 · αk,` = κ`, if 2 ≤ k ≤ n .

Case 1. Let 0 ≤ s ≤ n − ` − 1. Then, using Lemma 7.5, for arbitrary k
follows

δαs,n−1(αp,n−1 · αk,`) = κn−2.

Now Lemma 26 and Lemma 27 imply

δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`) = αp,n−1κn−2 = κn−2.

So, equality (10) holds.

Case 2. Let s = n− `.

2.1. Let k = 0. Now from (11) follows αp,n−1 · αk,` = κ`−1. Therefore, from
Lemma 7.5, follows

δαs,n−1(αp,n−1 · αk,`) = δαs,n−1(κ`−1) = κn−2.

Using Lemma 27 first and then Lemma 26 we have

δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`) = αp,n−1κn−2 = κn−2.

So, equality (10) holds.

2.2. Let k = 1. Now from (11) follows αp,n−1 · αk,` = αp,`. Thus

δαs,n−1(αp,n−1 · αk,`) = δαs,n−1(αp,`) = αp,n−1.

Now from Lemma 26 and 27 7.6 we obtain

δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`) = αp,n−1αk,n−1 = αp,n−1.

So, equality (10) holds.

2.3. Let 2 ≤ k ≤ n. From (11) follows αp,n−1 · αk,` = κ`. Hence

δαs,n−1(αp,n−1 · αk,`) = δαs,n−1(κ`) = κn−1.
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Now Lemma 26 and Lemma 27 imply

δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`) = αp,n−1αk,n−1 = κn−1.

The last equality follows from the condition k ≥ 2. So, equality (10) holds.

Case 3. Let n − ` + 1 ≤ s ≤ n. Then, using Lemma 7.5, for arbitrary k
follows

δαs,n−1(αp,n−1 · αk,`) = κn−1.

From Lemma 26 and Lemma 27 we find

δαs,n−1(αp,n−1) · αk,` + αp,n−1 · δαs,n−1(αk,`) = αp,n−1κn−1 = κn−1.

So, equality (10) holds and this completes the proof.

After Theorem 16 we consider set
∫ δi
R I, where R is a differential semiring with

a set of derivations ∆ = {δ1, . . . , δm}, δi ∈ ∆, and I is a differential ideal of

R, closed under each derivation δi. From Proposition 10 follows that
∫ δi
R I is

a subsemiring of R. In Theorem 28 we prove that string R = ST R(ÊCn) is a
differential semiring with set of derivations

∆ = {δαs,n−1 |αs,n−1 ∈ ST R{n− 2, n− 1}, 2 ≤ s ≤ n}.

From Proposition 23 we know that I = CO(ÊCn) is a differential ideal of R, closed
under all derivations of ∆.

Now from Lemma 26 and equalities (6) easily follows

Proposition 29. If δαs,n−1 ∈ ∆ then
∫ δαs,n−1

R I = R.

References

[1] K.I. Beidar, W.S. Martindale III and A.V. Mikhalev, Rings with generalized iden-
tities (Marcel Dekker, 1996).

[2] O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups: An
Introduction (Springer-Verlag London Limited, 2009).
doi:10.1007/978-1-84800-281-4

[3] J. Golan, Semirings and Their Applications (Kluwer, Dordrecht, 1999).

[4] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957)
1104–1110. doi:10.1090/S0002-9939-1957-0095864-2

http://dx.doi.org/10.1007/978-1-84800-281-4
http://dx.doi.org/10.1090/S0002-9939-1957-0095864-2


100 I. Trendafilov

[5] I.N. Herstein, Lie and Jordan structures in simple, associative rings, Bull. Amer.
Math. Soc. 67 (1961) 517–531. doi:10.1090/S0002-9904-1961-10666-6

[6] I.N. Herstein, Noncommutative Rings (Carus Mathematical Monographs, 1968).

[7] I.N. Herstein, On the Lie structure of an associative ring , J. Algebra 14 (1970)
561–571. doi:10.1016/0021-8693(70)90103-1
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