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Abstract

For an arbitrary h-ary relation ρ we are interested to express n-clone
Polnρ in terms of some subsets of the set of all n-ary operations On(A) on
a finite set A, which are in general not clones but we can obtain Polnρ from
these sets by using intersection and union. Therefore we specify the concept
a function preserves a relation and moreover, we study the properties of this
new concept and the connection between these sets and Polnρ. Particularly
we study Rn,k

a,b for arbitrary partial order relations, equivalence relations and
central relations.
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1. Introduction

Let A be an arbitrary set and let O(A) be the set of all operations on the set
A. A clone on the set A is a subset of O(A) that are closed under superposition
and contains all projections. Recall that a projection eni maps every n-tuple
(a1, . . . , a

n) ∈ An to ai. Clones have been widely studied by many authors for
instance in [1, 2, 3, 4, 5, 6] and [10]. Among these clones, there are six well-
known clones preserving six classes of relations, namely affine relations, bounded
partial order relations, nontrivial equivalence relations, central relations, prime
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permutations, and h-regularly generated relations. It is well-known that these
clones are maximal according to Rosenberg’s characterization (see [3]). We are
interested in the n-ary part of these clones which we call from now on n-clones.
Moreover, we specify the well-known concept of that ”a function preserves a
relation” and show that we get the n-ary part of the maximal clones as union
and intersection of sets of n-ary operations preserving (in our sense) a given
relation. We show that these sets have particular interesting properties for other
consideration in universal algebra.

First, we consider an arbitrary h-ary relation ρ and we want to represent
Polnρ in terms of some subsets of On(A) which in general are not clones, but from
these subsets we can obtain Polnρ by using intersection and union. For this aim,
for arbitrary b ∈ A and a = (a1, . . . , an) ∈ An, we define ρbk := {(x1, . . . , xh−1) ∈
Ah−1|(x1, . . . , xk−1, b, xk, . . . , xh−1) ∈ ρ} and ρ

a
k := {((x1,1, . . . , xh−1,1), . . . ,

(x1,n, . . . , xh−1,n)) ∈ (Ah−1)n| (x1,i, . . . , xk−1,i, ai, xk,i, . . . , xh−1,i) ∈ ρ for every
i ∈ {1, . . . , n}}. It is clear that ρ

a
k is a cartesian product of the h − 1 rela-

tions ρa1k , . . . , ρ
an
k , i.e., ρ

a
k = ρa1k × · · · × ρank . We say that f ∈ On(A) (a, b)k-

preserves ρ if and only if (f(x1,1, . . . , x1,n), . . . , f(xh−1,1, . . . , xh−1,n)) ∈ ρbk for ev-
ery ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρak. Then for every k ∈ {1, . . . , h},
we define Rn,ka,b := {f ∈ On(A)|f (a, b)k-preserves ρ}. We want to see the proper-

ties of Rn,ka,b .

For further investigation, we recall the following concept of semigroup of
n-ary operations on A. Let A be an arbitrary finite set and let On(A) be the
set of all n-ary operations on A. On On(A), we define an operation + by f +
g := f(g, . . . , g) for arbitrary f, g ∈ On(A), i.e., (f + g)(x) = f(g, . . . , g)(x) =
f(g(x), . . . , g(x)) for every x ∈ A. To simplify the notation, we use x for (x, . . . , x)
and thus we have (f + g)(x) = f(g(x)). It is easy to see that the operation + is
associative giving a semigroup (On(A); +) (see [7, 9] and [10]). It is clear that if
C is an n-clone on A, then (C; +) is a subsemigroup of (On(A); +). Moreover, for
every f ∈ An, by πf we mean the unary operation on A such that πf (x) = f(x)
for every x ∈ A. We use cny for the constant n-ary operation with value y.
Particularly for A = {0, 1}, we put Cn4 := {f ∈ On(A)|f(0) = 0, f(1) = 1},
¬Cn4 := {f ∈ On(A)|f(0) = 1, f(1) = 0}, Kn

0 := {f ∈ On(A)|f(0) = f(1) = 0}
and Kn

1 := {f ∈ On(A)|f(0) = f(1) = 1}. Clearly, Cn4 ,¬Cn4 ,Kn
0 and Kn

1 are all
disjoint and On(A) = Cn4 ∪ ¬Cn4 ∪Kn

0 ∪Kn
1 . Moreover, the operation + has the

following properties:

f + g =


g if f ∈ Cn4
¬g if f ∈ ¬Cn4
cn0 if f ∈ Kn

0

cn1 if f ∈ ¬Kn
0

(for more details see [9] and [10]).
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2. Properties of Rn,ka,b

In this section, we study some properties of Rn,ka,b for arbitrary h-ary relation ρ
on A. The following propositions hold in On(A) for every n ≥ 1.

Proposition 1. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 and
1 ≤ k ≤ h be natural numbers. Let ρ be an h-ary relation on A. Then the
following propositions are true for every a, a′ ∈ An and b, b′, y ∈ A.

(i) If Rn,ka,b 6= ∅, then ρ
a
k = ∅ or ρbk 6= ∅.

(ii) If ρbk ⊆ ρb
′
k , then Rn,ka,b ⊆ R

n,k
a,b′.

(iii) If ρ
a
k ⊆ ρ

a′

k , then Rn,ka′,b ⊆ R
n,k
a,b .

(iv) Let 1 ≤ i ≤ n. If ρ
a
k 6= ∅, then Rn,ka,b contains a projection eni if and only if

ρaik ⊆ ρ
b
k.

(v) Rn,ka,b contains a constant operation cny if and only if (y, . . . , y) ∈ ρbk.

(vi) If f ∈ Rn,k
b,b′

and g ∈ Rn,ka,b , then f + g ∈ Rn,ka,b′.

Proof. (i) Let Rn,ka,b 6= ∅ and let f ∈ Rn,ka,b . Assume that ρ
a
k 6= ∅. Then for ev-

ery ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρak, we have (f(x1,1, . . . , x1,n), . . . ,
f(xh−1,1, . . . , xh−1,n)) ∈ ρbk and thus ρbk 6= ∅.

(ii) Let ρbk ⊆ ρb
′
k and let f ∈ Rn,ka,b . Then (f(x1,1, . . . , x1,n), . . . , f(xh−1,1,

. . . , xh−1,n)) ∈ ρbk for arbitrary ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρ
a
k.

By assumption, (f(x1,1, . . . , x1,n), . . . , f(xh−1,1, . . . , xh−1,n)) ∈ ρb′k , i.e., f ∈ Rn,ka,b′
and therefore Rn,ka,b ⊆ R

n,k
a,b′ .

(iii) Let ρ
a
k ⊆ ρ

a′

k and let f ∈ Rn,ka′,b. Then for every ((x1,1, . . . , xh−1,1), . . . ,

(x1,n, . . . , xh−1,n)) ∈ ρak we have ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρa
′

k

and thus (f(x1,1, . . . , x1,n), . . . , f(xh−1,1, . . . , xh−1,n)) ∈ ρbk by assumption, i.e.,

f ∈ Rn,ka,b .

(iv) Let ρ
a
k 6= ∅. Let eni be in Rn,ka,b and let (x1,i, . . . , xh−1,i) ∈ ρaik . By

assumption, we can find (x1,j , . . . , xh−1,j) ∈ ρ
aj
k , i 6= j = 1, . . . , n. Thus, we

obtain (x1,i, . . . , xh−1,i) = (eni (x1,1, . . . , x1,n), . . . , eni (xh−1,1, . . . , xh−1,n)) ∈ ρbk and
hence ρaik ⊆ ρbk. Conversely, let ρaik ⊆ ρbk. Then for every ((x1,1, . . . , xh−1,1), . . . ,
(x1,n, . . . , xh−1,n)) ∈ ρak we have (eni (x1,1, . . . , x1,n), . . . , eni (xh−1,1, . . . , xh−1,n)) =

(x1,i, . . . , xh−1,i) ∈ ρaik ⊆ ρ
b
k and therefore eni ∈ R

n,k
a,b .
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(v) Let cny be inRn,ka,b . Then for every ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n))

∈ ρ
a
k we get (y, . . . , y) = (cny (x1,1, . . . , x1,n), . . . , cny (xh−1,1, . . . , xh−1,n)) ∈ ρbk.

Conversely, let (y, . . . , y) ∈ ρbk. Then for every ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . ,
xh−1,n)) ∈ ρak we obtain (cny (x1,1, . . . , x1,n), . . . , cny (xh−1,1, . . . , xh−1,n)) = (y, . . . , y)

∈ ρbk, i.e., cny ∈ R
n,k
a,b .

(vi) Let f ∈ Rn,k
b,b′

and g ∈ Rn,ka,b . Let ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n))

∈ ρak. Then we have (g(x1,1, . . . , x1,n), . . . , g(xh−1,1, . . . , xh−1,n)) ∈ ρbk and hence
((g(x1,1, . . . , x1,n), . . . , g(xh−1,1, . . . , xh−1,n)), . . . , (g(x1,1, . . . , x1,n), . . . , g(xh−1,1,

. . . , xh−1,n))) ∈ ρbk. Thus ((f + g)(x1,1, . . . , x1,n), . . . , (f + g)(xh−1,1, . . . , xh−1,n))

= (f(g(x1,1, . . . , x1,n)), . . . , f(g(xh−1,1, . . . , xh−1,n))) ∈ ρb′k by assumption.

Remark 2. By Proposition 1 (vi) it follows that Rn,k
b,b

forms subsemigroup of

(On(A); +) for every b ∈ A and for every 1 ≤ k ≤ h.

Recall that for every clone C, we call the n-ary part C ∩On(A) an n-clone.

Proposition 3. Let A be an arbitrary finite set and let ρ be an arbitrary h-ary
relation on A. The following assertions hold for every natural number n ≥ 1,
a ∈ An and b ∈ A.

(i) If Rn,ka,b is an n-clone, then ρ
a
k ⊆ ρ

b
k.

(ii) If πf ∈ R1,k
b,b for every f ∈ Rn,ka,b , then Rn,ka,b forms a subsemigroup of

(On(A); +).

(iii) For h = 2, if Rn,ka,b forms a subsemigroup of (On(A); +), then πf ∈ R1,k
b,b for

every f ∈ Rn,ka,b .

Proof. (i) If Rn,ka,b is an n-clone, then Rn,ka,b contains all projections. Therefore by

Proposition 1 (iv), ρ
a
k ⊆ ρ

b
k.

(ii) Let f, g ∈ Rn,ka,b . For every ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρak
we have (g(x1,1, . . . , x1,n), . . . , g(xh−1,1, . . . , xh−1,n)) ∈ ρbk and hence

((f + g)(x1,1, . . . , x1,n), . . . , (f + g)(xh−1,1, . . . , xh−1,n))

= (f(g(x1,1, . . . , x1,n)), . . . , f(g(xh−1,1, . . . , xh−1,n)))

= (πf (g(x1,1, . . . , x1,n)), . . . , πf (g(xh−1,1, . . . , xh−1,n))) ∈ ρbk

by assumption. Therefore f + g ∈ Rn,ka,b , i.e., Rn,ka,b forms a subsemigroup of
(On(A); +).
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(iii) Let h = 2. Let f ∈ Rn,ka,b and let y ∈ ρbk. By Proposition 1 (v), cny ∈
Rn,ka,b and hence f + cny ∈ R

n,k
a,b by assumption. Thus for every (x1, . . . , xn) ∈ ρak

we have (f + cny )(x1, . . . , xn) ∈ ρbk. Therefore πf (y) = πf (cny (x1, . . . , xn)) =

f(cny (x1, . . . , xn)) = (f + cny )(x1, . . . , xn) ∈ ρbk, i.e., πf ∈ Rn,kb,b .

Theorem 4. Let A be an arbitrary finite set and let ρ be a binary relation on A.
For arbitrary n ≥ 1, a ∈ An and b ∈ A, it follows that Rn,ka,b forms a subsemigroup

of (On(A); +) if and only if πf ∈ R1,k
b,b for every f ∈ Rn,ka,b .

Proof. is clear by Proposition 3 (ii) and Proposition 3 (iii).

Corollary 5. Let A be an arbitrary finite set and let ρ be a binary relation on A.
For arbitrary a, b ∈ A, it follows that R1,k

a,b forms a subsemigroup of (O1(A); ◦) if

and only if R1,k
a,b ⊆ R

1,k
b,b .

Proof. It is clear by Theorem 4 and the fact that f = πf for n = 1.

Proposition 6. Let A be an arbitrary finite set and let ρ be an arbitrary h-ary re-
lation on A. For every natural number n ≥ 1 it follows Polnρ ⊆⋂
a∈An

⋃
b∈A

⋂h
k=1R

n,k
a,b .

Proof. Let f ∈ Polnρ and let a ∈ An be arbitrary. We will show that f ∈⋂h
k=1R

n,k
a,b for some b ∈ A. Let ((x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n)) ∈ ρ

a
k,

i.e., (x1,i, . . . , xk−1,i, ai, xk+1,i, . . . , xh−1,1) ∈ ρ for every i ∈ {1, . . . , n}. Then
(f(x1,1, . . . , x1,n), . . . , f(xk−1,1, . . . , xk−1,n), f(a), f(xk+1,1, . . . , xk+1,n), . . . ,
f(xh−1,1, . . . , xh−1,n)) ∈ ρ by assumption and therefore (f(x1,1, . . . , x1,n), . . . ,

f(xh−1,1, . . . , xh−1,n)) ∈ ρf(a)k , i.e., f ∈ Rn,ka,f(a).

Example 7. Let A be an arbitrary finite set and let n ≥ 1 be a natural number
and let ρ be an h-ary relation on A. For every a ∈ An and b ∈ A, if ρ = {a ∈
Ah|a ∈ A}, then Rn,ka,b is an n-clone if and only if a = b if and only if Rn,ka,b
forms a subsemigroup of (On(A); +). This can be explained as follows. It is clear

that when Rn,ka,b is an n-clone, then Rn,ka,b forms a subsemigroup of (On(A); +) and

moreover, contains all projections. Since ρ = {a ∈ Ah|a ∈ A}, it follows that
ρ
a
k contains only (a1, . . . , an) ∈ ρn. Thus, ai = eni (a) = b for every i = 1, . . . , n

and hence a = b. Conversely, if a = b, then for every b ∈ A, ρbk contains only b.

Thus eni (b) = b, i.e., eni ∈ R
n,k

b,b
for every 1 ≤ i ≤ n. Now, for every f, g ∈ Rn,k

b,b
,

we have (f + g)(b) = f(b) = b that implies f + g ∈ Rn,k
b,b

. Hence, Rn,k
b,b

is an

n-clone. Furthermore, let Rn,ka,b form a subsemigroup of (On(A); +). For every

f ∈ Rn,ka,b , it follows that f(a) = b. Thus, if g1, . . . , gn ∈ Rn,ka,b , then we have

f(g1, . . . , gn)(a) = f(g1, . . . , g1)(a) = (f + g1)(a) = b and thus Rn,ka,b is an n-clone.
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3. Properties of Rn,ka,b for some particular relations

In this section, we study some properties of Rn,ka,b for some particular relations,
i.e., partial order relation, equivalence relation and central relation. Instead of
Rn,ka,b , we use Pn,ka,b for partial order relation ≤. The following propositions are
true for arbitrary partial order relation ≤ on A.

Proposition 8. Let (A;≤) be an arbitrary finite partially ordered set and let
n ≥ 1 be a natural number. Then the following properties hold for every a, a′ ∈
An, b, b′ ∈ A and k = 1, 2.

(i) Pn,ka,b 6= ∅.

(ii) Pn,ka,b ⊆ P
n,k
a,b′ if and only if b ∈ ≤b′k .

(iii) If ≤ak ⊆ ≤
a′

k , then Pn,ka′,b ⊆ P
n,k
a,b .

(iv) Let 1 ≤ i ≤ n. Pn,ka,b contains the projection eni if and only if ai ∈ ≤bk.

(v) Pn,ka,b contains the constant operation cny if and only if y ∈ ≤bk. Moreover,

Pn,ka,b contains exactly | ≤bk | constant operations.

(vi) If g ∈ Pn,ka,b and f ∈ Pn,k
b,b′

, then f + g ∈ Pn,ka,b′ .

Proof. (i) Since b ∈ ≤bk for every b ∈ A and k = 1, 2, then by Proposition 1 (v),

cnb ∈ P
n,k
a,b .

(ii) Let Pn,ka,b ⊆ P
n,k
a,b′ . Since b ∈ ≤bk then by (i) cnb ∈ P

n,k
a,b ⊆ P

n,k
a,b′ and hence for

every (x1, . . . , xn) ∈ ≤ak we have b = cnb (x1, . . . , xn) ∈ ≤b′k . The opposite direction
is clear by Proposition 1 (ii).

(iii), (iv), (v) and (vi) are clear respectively by (iii), (iv), (v) and (vi) of
Proposition 1.

If A has the least element and the greatest element, then we have the following
properties.

Proposition 9. Let (A;≤) be an arbitrary finite partially ordered set and let
n ≥ 1 be a natural number. If A has the least and the greatest element and

∧
A

is the least element and
∨
A is the greatest element in A, then for every a ∈ An

and b ∈ A the following propositions are true.

(i) Pn,1a,b = On(A) if and only if b =
∧
A (Pn,2a,b = On(A) if and only if b =

∨
A).
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(ii) Pn,1a,b = {cnb } if and only if a =
∧
A and b =

∨
A (Pn,2a,b = {cnb } if and only if

a =
∨
A and b =

∧
A).

Proof. We prove for k = 2 and similar way for k = 1.
(i) Let Pn,2a,b = On(A). Then cny ∈ Pn,2a,b for all y ∈ A and hence for all

(x1, . . . , xn) ∈
≤a2 we obtain y = cny (x1, . . . , xn) ∈ ≤b2 for every y ∈ A, i.e., b =

∨
A. Con-

versely, let b =
∨
A and let f ∈ On(A). Then for all (x1, . . . , xn) ∈ ≤a2, we have

f(x1, . . . , xn) ∈ ≤b2, i.e., On(A) = Pn,2a,b .

(ii) Let Pn,2a,b = {cnb }. Assume a 6=
∨
A. If b =

∨
A, then by (i), Pn,2a,b = On(A),

a contradiction. If b 6=
∨
A, then consider an n-ary operation f ∈ On(A) satisfying

f(x1, . . . , xn) = b for every (x1, . . . , xn) 6=
∨
A and f(

∨
A) =

∨
A. This f is not

equal to cnb and is in Pn,2a,b . Hence Pn,2a,b 6= {c
n
b }, a contradiction. Assume now b 6=∧

A. Then by Proposition 8 (v), {cn∧
A
, cnb } ⊆ Pn,2a,b , a contradiction. Conversely,

let f ∈ Pn,2a,b = Pn,2∨
A,

∧
A

and let (x1, . . . , xn) ∈ An. Since (x1, . . . , xn) ∈ ≤
∨

A
2 , then

f(x1, . . . , xn) ∈ ≤
∧

A
2 , i.e., f(x1, . . . , xn) =

∧
A, i.e., f = cn∧

A
. Hence Pn,2a,b = {cnb }.

Theorem 10. Let (A;≤) be an arbitrary finite partially ordered set and let n ≥ 1
be a natural number. For arbitrary a ∈ An and b ∈ A the following propositions
are equivalent for k = 1, 2.

(i) Pn,ka,b is an n-clone.

(ii) Pn,ka,b = Pn,k
b,b

.

(iii) a ∈ ≤bk and Pn,ka,b ⊆ P
n,k

b,b
.

Proof. (i)⇒(ii) Let Pn,ka,b be an n-clone. Then by Proposition 3 (i), ≤ak ⊆
≤bk and thus by Proposition 8 (iii), Pn

b,b
⊆ Pna,b. Now, let f ∈ Pna,b and let

(y1, . . . , yn) ∈ ≤bk, i.e., yi ∈ ≤bk for every i = 1, 2, . . . , n. Then by Proposition 8

(v), cnyi ∈ P
n,k
a,b and hence f(cny1 , . . . , c

n
yn) ∈ Pn,ka,b for 1 ≤ i ≤ n. Therefore, for ev-

ery (x1, . . . , xn) ∈ ≤ak, f(cny1 , . . . , c
n
yn)(x1, . . . , xn) ∈ ≤bk and hence f(y1, . . . , yn) =

f(cny1(x1, . . . , xn), . . . , cnyn(x1, . . . , xn)) = f(cny1 , . . . , c
n
yn)(x1, . . . , xn) ∈ ≤bk, i.e.,

f ∈ Pn,k
b,b

. Thus Pn,ka,b ⊆ P
n,k

b,b
and hence Pn,ka,b = Pn,k

b,b
.

(ii)⇒(iii) By Proposition 8 (iv), Pn,k
b,b

contains all projections. Therefore

Pna,b = Pn
b,b

contains all projections and hence by Proposition 8 (iv), ai ∈ ≤bk for

every i ∈ {1, . . . , n}, i.e., a ∈ ≤bk.
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(iii)⇒(i) By assumption and Proposition 8 (iv), Pna,b contains all projections.

Moreover, let f, g1, . . . , gn be in Pna,b ⊆ Pn
b,b

. Then, gi(x1, . . . , xn) ∈ ≤bk for every

(x1, . . . , xn) ∈ ≤ak and i = 1, 2, . . . , n. Thus, (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)) ∈
≤bk. Hence for every (x1, . . . , xn) ∈ ≤ak, f(g1, . . . , gn)(x1, . . . , xn) = f(g1(x1, . . . ,

xn), . . . , gn(x1, . . . , xn)) ∈ ≤bk. Therefore, f(g1, . . . , gn) ∈ Pn,ka,b and hence Pn,ka,b is
an n-clone.

Theorem 11. Let (A;≤) be an arbitrary finite partially ordered set and let
n ≥ 1 be a natural number. For every a ∈ An, b ∈ A it follows that Poln ≤
=

⋂
a∈An

⋃
b∈A(Pn,1a,b ∩ P

n,2
a,b ).

Proof. (⊆) is clear by Proposition 6.
(⊇) Let f ∈

⋂
a∈An

⋃
b∈A(Pn,1a,b ∩ P

n,2
a,b ). Let (ui, vi) ∈ ≤, i = 1, 2, . . . , n. Now,

take a = u. By assumption, for this a ∈ An, we can find b ∈ A such that
f ∈ Pn,1a,b ∩ P

n,2
a,b . Therefore f(u) ∈ ≤b2 and f(v) ∈ ≤b1, i.e., (f(u), f(v)) ∈ ≤.

Hence f ∈ PolnρA.

Example 12. Let A = {0, 1}. By Proposition 9, Pn,2
1,0

= {cn0} and Pn,1
0,1

=

{cn1}. Moreover, Pn,1a,0 = On({0, 1}) = Pn,2a,1 . Therefore Pn,1a,0 ∩ P
n,2
a,0 = Pn,2a,0 and

Pn,1a,1 ∩P
n,2
a,1 = Pn,1a,1 and hence

⋃
b∈A(Pn,1a,b ∩P

n,2
a,b ) = Pn,1a,1 ∪P

n,2
a,0 and we get Poln ≤

=
⋂
a∈An

⋃
b∈A(Pn,1a,b ∩P

n,2
a,b ) =

⋂
a∈An(Pn,1a,1 ∪P

n,2
a,0 ) by Theorem 11. Now consider

all operations on O2({0, 1}) as follows

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16
(0, 0) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(0, 1) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
(1, 0) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
(1, 1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1.

Remark 13. From above example, we have f1 = c20, f16 = c21 and we obtain
K2

0 = {c20, f2, f3, f4}, C2
4 = {f5, f6, f7, f8}, ¬C2

4 = {f9, f10, f11, f12} and K2
1 =

{f13, f14, f15, c21}. By Proposition 9, P 2,2
(1,1),0 = {c20} and P 2,1

(0,0),1 = {c21}. Moreover,
it is easy to see that

P 2,1
(0,1),1 = {f7, f8, f15, c21} P 2,2

(0,0),0 = Kn
0 ∪ C2

4

P 2,1
(1,0),1 = {f6, f8, f14, cn1} P 2,2

(0,1),0 = {c20, f2, f5, f6}

P 2,1
(1,1),1 = C2

4 ∪K2
1 P 2,2

(1,0),0 = {c20, f3, f5, f7}

and hence we obtain Pol2 ≤= C2
4 ∪ {c20, c21}.
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Generally, for A = {0 ≤ 1} and for every n ≥ 1, by applying Proposition 8, we
have some properties on Pn,1a,b and Pn,2a,b as follows

(i) cn1 ∈ P
n,1
a,b and cn0 ∈ P

n,2
a,b since 1 ∈ ≤b1 and 0 ∈ ≤b2.

(ii) If a 6= 0, then Pn,1a,b ∩ C
n
4 6= ∅. This fact holds since 1 ∈ ≤b1 which implies

eni ∈ Cn4 is contained in Pn,1a,b by Proposition 8 (iv) for some i such that

ai 6= 0. Similarly, if a 6= 1, then Pn,2a,b ∩ C
n
4 6= ∅.

(iii) If b = 1, then Pn,1a,b ∩ (Kn
0 ∪ ¬Cn4 ) = ∅. It is clear that 1 ∈ ≤a1. But for all

f ∈ Kn
0 ∪ ¬Cn4 , we have f(1) = 0 6∈ ≤1

1 and hence f 6∈ Pn,1a,b . Similarly if

b = 0, then Pn,2a,b ∩ (Kn
1 ∪ ¬Cn4 ) = ∅.

(iv) Poln ≤= C ∪ {cn0 , cn1} for some C ⊆ Cn4 .

Now, we come to the properties of Rn,ka,b for an arbitrary equivalence relation θ on

A. By symmetry property of θ, it follows that θb1 = θb2 and θ
a
1 = θ

a
2 for every b ∈ A

and a ∈ An and these imply Rn,1a,b = Rn,2a,b . Therefore, we can omit the number k.

Moreover, since θb1 = θb2 is actually an equivalence class that contains b, then we

use [b]θ instead θb and we use En,θa,b instead of Rn,ka,b since we might have various

equivalence relations on A. Thus, by f ∈ En,θa,b we mean an n-ary operation such
that (f(x1, . . . , xn), b) ∈ θ for every (x1, . . . , xn) satisfying (xi, ai) ∈ θ for every
i = 1, . . . , n.

Proposition 14. Let A be an arbitrary finite set and n ≥ 1 be an arbitrary
natural number. For an arbitrary equivalence relation θA 6= A × A on A, the
following properties are true for arbitrary a, a′ ∈ An and b, b′ ∈ A.

(i) En,θa,b 6= ∅.

(ii) [b]θ = [b′]θ if and only if En,θa,b ∩ E
n,θ
a,b′ 6= ∅ if and only if En,θa,b = En,θa,b′.

(iii) [a]θn = [a′]θn if and only if En,θa,b = En,θa′,b.

(iv) If [a]θn 6= [a′]θn, then En,θa,b ∩ E
n,θ
a′,b′ 6= ∅.

(v) Let 1 ≤ i ≤ n. En,θa,b contains a projection eni if and only if [b]θ = [ai]θ.

(vi) En,θa,b contains a constant operation cny if and only if y ∈ [b]θ. Moreover,

En,θa,b contains precisely |[b]θ| constant operations.
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(vii) If f ∈ En,θ
b,b′

and g ∈ En,θa,b , then f + g ∈ En,θa,b′.

Proof. (i) By reflexivity of θ and Proposition 1 (v), cnb ∈ E
n,θ
a,b , i.e., En,θa,b 6= ∅.

(ii) By Proposition 1 (ii), if [b]θ = [b′]θ, then En,θa,b = En,θa,b′ . Thus if [b]θ = [b′]θ,

then En,θa,b ∩ E
n,θ
a,b′ 6= ∅ since En,θa,b 6= ∅ by (i). Conversely, let En,θa,b ∩ E

n,θ
a,b′ 6= ∅ and

let f ∈ En,θa,b ∩ E
n,θ
a,b′ . Then for every (x1, . . . , xn) ∈ [a]θn we have f(x1, . . . , xn) ∈

[b]θ ∩ [b′]θ and hence [b]θ = [b′]θ.

(iii) By Proposition 1 (iii), if [a]θn = [a′]θn , then En,θa,b = En,θa′,b. Conversely,

let En,θa,b = En,θa′,b. Assume that [a]θn 6= [a′]θn , i.e., a 6∈ [a′]θn and a′ 6∈ [a]θn . Since

θA 6= A × A, then there is b′ ∈ A such that [b]θ 6= [b′]θ. Now consider an n-ary
operation f on A such that f(x1, . . . , xn) = b for all (x1, . . . , xn) ∈ [a]θn and

f(a′) = b′. Then it is clear that f ∈ En,θa,b but f 6∈ En,θa′,b and hence En,θa,b 6= En,θa′,b, a
contradiction.

(iv) Let [a]θn 6= [a′]θn . Consider an f ∈ On(A) such that f(x1, . . . , xn) = b for
every (x1, . . . , xn) ∈ [a]θn and f(x1, . . . , xn) = b′ for every (x1, . . . , xn) ∈ [a′]θn .

It is clear that f ∈ En,θa,b ∩ E
n,θ
a′,b and hence En,θa,b ∩ E

n,θ
a′,b′ 6= ∅.

(v), (vi) and (vii) are clear by Proposition 1 (iv), (v) and (vi).

Theorem 15. Let A be an arbitrary finite set and n ≥ 1 be an arbitrary natural
number and let θ 6= A × A be an arbitrary equivalence relation on A. Then for
arbitrary a ∈ An and b ∈ A it follows that En,θa,b is an n-clone if and only if

[a]θn = [b]θn.

Proof. If En,θa,b is an n-clone, then by Proposition 3 (i), a ∈ [b]θn , i.e., [a]θn =

[b]θn . Conversely, let [a]θn = [b]θn . By Proposition 1 (iv), En,θa,b contains all

projections. Now, let f, g1, . . . , gn ∈ En,θa,b and (x1, . . . , xn) ∈ [a]θn be arbitrary.
Then g1(x1, . . . , xn), . . . , gn(x1, . . . , xn) ∈ [b]θ and therefore (g1(x1, . . . , xn), . . . ,
gn(x1, . . . , xn)) ∈ [b]θn = [a]θn . Thus, f(g1, . . . , gn)(x1, . . . , xn) = f(g1(x1, . . . ,

xn), . . . , gn(x1, . . . , xn)) ∈ [b]θ, i.e., f(g1, . . . , gn) ∈ En,θa,b .

Now, if we define En,θa := {f ∈ On(A)|f(x1, . . . , xn) ∈ [f(a)]θ for every (x1,
. . . , xn) ∈ [a]θn}, then we have the following proposition.

Proposition 16. Let A be an arbitrary finite set and n ≥ 1 be an arbitrary
natural number. For an arbitrary equivalence relation θ 6= A × A on A and an
arbitrary a ∈ An it follows that En,θa =

⋃
b∈AE

n,θ
a,b .

Proof. (⊆) It is clear by definition.

(⊇) Let f ∈
⋃
b∈AE

n,θ
a,b . Then, we can find b ∈ A such that f ∈ En,θa,b

and thus for every (x1, . . . , xn) ∈ [a]θn , we have f(x1, . . . , xn), f(a) ∈ [b]θ, i.e.,
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f(x1, . . . , xn) ∈ [f(a)]θ, i.e., f ∈ En,θa . Hence
⋃
b∈AE

n,θ
a,b ⊆ En,θa and therefore

En,θa =
⋃
b∈AE

n,θ
a,b .

Theorem 17. Let A be an arbitrary finite set and n ≥ 1 be an arbitrary natural
number. For an arbitrary equivalence relation θ 6= A × A on A, it follows that
Polnθ =

⋂
a∈An

⋃
b∈AE

n,θ
a,b =

⋂
a∈An E

n,θ
a .

Proof. (⊆) is clear by Proposition 6 and by Proposition 16.

(⊇) Let f ∈
⋂
a∈An E

n,θ
a . For every (xi, yi) ∈ θ, i = 1, . . . , n we have

(x1, . . . , xn) ∈ [(y1, . . . , yn)]θn . By assumption, we know that f ∈ En,θ(y1,...,yn)
.

Therefore f(x1, . . . , xn) ∈ [f(y1, . . . , yn)]θ and thus (f(x1, . . . , xn), f(y1, . . . , yn))
∈ θ, i.e., f ∈ Polnθ.

Recall that an h-ary relation ζ on A is called a central relation if ζ satisfies these
three properties: (i) totally symmetric, i.e., if (a1, . . . , ah) ∈ ζ, then (aσ(1), . . . ,

aσ(h)) ∈ ζ for all permutations σ on {1, . . . , h} (ii) totally reflexive, i.e., κhA ⊆ ζ

for κhA := {(a1 . . . , ah)|∃ i ∃j (i 6= j ∧ ai = aj)} and (iii) there exists ∅ 6= C ⊆ A
such that (c, a2, . . . , ah) ∈ ζ for every c ∈ C and for all a2, . . . , ah ∈ A. We
call the set C as the central of ζ. Now, we consider an arbitrary h-ary central
relation ζ, h ≥ 2. We use h ≤ |A| since otherwise we would have ζ = Ah

and the center of ζ would be trivial. Moreover, by totally symmetry property
of ζ, we have ζbk = ζbl and ζ

a
k = ζ

a
l for every a ∈ An, b ∈ A and k 6= l ∈

{1, . . . , h}. Therefore, we can again omit the number k and since we might

have many central relation on A, we then use Cn,ζa,b instead of Rn,ka,b . Without

lost of generality, we use implicitly k = h, i.e., by f ∈ Cn,ζa,b we mean n-ary
operation satisfying (f(x1,1, . . . , x1,n), . . . , f(xh−1,1, . . . , xh−1,n), b) ∈ ζ for every
(x1,i, . . . , xh−1,i, ai) ∈ ζ, i = 1, . . . , n. By the third property of ζ, i.e., for every
(x1, . . . , xh−1) ∈ Ah−1 and for all c ∈ C, it follows (x1, . . . , xh−1, c) ∈ ζ and we
have the following simple properties.

Proposition 18. Let ζ be an h-ary relation on A with central C. For every
b ∈ A and a ∈ An we have the following properties.

(i) ζb ⊆ ζc for every c ∈ C.

(ii) ζa ⊆ ζc for every c ∈ Cn.

By Proposition 1, we have the following properties for an arbitrary h-ary central
relation ζ on A.

Proposition 19. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 be natural
numbers. Let ζ be an h-ary central relation on A with C as the central. Then the
following propositions are true for every a, a′ ∈ An and b, b′, y ∈ A.
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(i) Cn,ζa,b 6= ∅.

(ii) If ζb ⊆ ζb′, then Cn,ζa,b ⊆ C
n,ζ
a,b′.

(iii) If ζa ⊆ ζa′, then Cn,ζa′,b ⊆ C
n,ζ
a,b .

(iv) Let 1 ≤ i ≤ n. Cn,ζa,b contains a projection eni if and only if ζai ⊆ ζb.

(v) Cn,ζa,b contains the constant operation cny if and only if (y, . . . , y) ∈ ζb.

(vi) If f ∈ Cn,ζ
b,b′

and g ∈ Cn,ζa,b , then f + g ∈ Cn,ζa,b′.

As a consequence of Proposition 18 and Proposition 19, we have

Proposition 20. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 be natural
numbers. Let ζ be an h-ary central relation on A with C as the central. Then the
following propositions are true for every a ∈ An and b ∈ A.

(i) Cn,ζa,b ⊆ C
n,ζ
a,c for every c ∈ C.

(ii) Cn,ζc,b ⊆ C
n,ζ
a,b for every c ∈ Cn.

(iii) If b ∈ C, then Cn,ζa,b contains all projections, contains all constant operations
and moreover is an n-clone.

(iv) If Cn,ζa′,b contains all projections for all a′ ∈ An, then b ∈ C.

(v) If h = 2 and Cn,ζa,b contains all constant operations, then b ∈ C.

(vi) If h ≥ 3, then Cn,ζa,b contains all constant operations.

Proof. (i) By Proposition 18 (i) and Proposition 19 (ii).
(ii) By Proposition 18 (ii) and Proposition 19 (iii).
(iii) By Proposition 18 (i), Proposition 19 (iv) and Proposition 19 (v). More-

over, since for every x1, . . . , xh−1 ∈ A it follows that (x1, . . . , xh−1) ∈ ζb, then for
every (x1,1, . . . , xh−1,1), . . . , (x1,n, . . . , xh−1,n) ∈ ζa and for every f, g1, . . . , gn ∈
Cn,ζa,b , we have (f(g1, . . . , gn)(x1,1, . . . , x1,n), . . . , f(g1, . . . , gn)(xh−1,1, . . . , xh−1,n))

∈ ζb, i.e., f(g1, . . . , gn) ∈ Cn,ζa,b . Thus Cn,ζa,b is an n-clone.

(iv) Let (x1, . . . , xh−1) ∈ Ah−1 be arbitrary. Then (x1, . . . , xh−1, xh−1) ∈ ζ.

By assumption, for every a′ ∈ An such that ai
′ = xh−1, we have that Cn,ζa′,b

contains all projections and hence by Proposition 19 (iv), ζai
′ ⊆ ζb. Therefore,

(x1, . . . , xh−1) ∈ ζxh−1 = ζai
′ ⊆ ζb. Thus (x1, . . . , xh−1, b) ∈ ζ and hence b ∈ C

since (x1, . . . , xh−1) is arbitrary.
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(v) Let h = 2 and let y ∈ A. By assumption, Cn,ζa,b contains cny . Therefore,

by Proposition 19 (v), y ∈ ζb, i.e., (y, b) ∈ ζ. Since y is arbitrary we have b ∈ C.

(vi) By totally reflexive property of ζ it follows that for every (y, . . . , y) ∈
Ah−1, h ≥ 3 we have (y, . . . , y, b) ∈ ζ, i.e., cny ∈ C

n,ζ
a,b by Proposition 19 (v).

Proposition 21. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 be natural
numbers. Let ζ be an h-ary central relation on A with C as the central. Then
for every a ∈ An and b ∈ A, Cn,ζa,b contains all constant operations if and only if
b ∈ C or h ≥ 3.

Proof. If Cn,ζa,b contains all constant operations and h < 3, i.e., h = 2, then
b ∈ C by Proposition 20 (v). The converse is clear by Proposition 20 (iii) and
Proposition 20 (vi).

Proposition 22. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 be natural
numbers. Let ζ be an h-ary central relation on A with C as the central. For
b ∈ A, the following propositions are equivalent.

(i) Cn,ζa,b contains all projections for all a ∈ An.

(ii) Cn,ζa,b is an n-clone for all a ∈ An.

(iii) b ∈ C.

Proof. (i)⇒(iii) is clear by Proposition 20 (iv).

(iii)⇒(ii) is clear by Proposition 20 (iii).

(ii)⇒(i) is obvious by definition.

The following property is clear by Proposition 6.

Proposition 23. Let A be an arbitrary finite set and let n ≥ 1, h ≥ 2 be natural
numbers. Let ζ be an h-ary central relation on A with C as the central. Then
Polnζ ⊆

⋂
a∈An

⋃
b∈AC

n,ζ
a,b .
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