Discussiones Mathematicae General Algebra and Applications 32 (2012) 101–114 doi:10.7151/dmgaa.1190

ON SETS RELATED TO MAXIMAL CLONES

Yeni Susanti

Department of Mathematics Gadjah Mada University Yogyakarta Indonesia 55281

e-mail: inielsusan@yahoo.com

AND

KLAUS DENECKE

Institute of Mathematics Potsdam University Potsdam Germany

e-mail: kdenecke@rz.uni-potsdam.de

Abstract

For an arbitrary h-ary relation ρ we are interested to express n-clone $Pol^n\rho$ in terms of some subsets of the set of all n-ary operations $O^n(A)$ on a finite set A, which are in general not clones but we can obtain $Pol^n\rho$ from these sets by using intersection and union. Therefore we specify the concept a function preserves a relation and moreover, we study the properties of this new concept and the connection between these sets and $Pol^n\rho$. Particularly we study $R_{a,b}^{n,k}$ for arbitrary partial order relations, equivalence relations and central relations.

Keywords: operations preserving relations, clones, semigroups. **2010 Mathematics Subject Classification:** 08A30, 08A40.

1. Introduction

Let A be an arbitrary set and let O(A) be the set of all operations on the set A. A clone on the set A is a subset of O(A) that are closed under superposition and contains all projections. Recall that a projection e_i^n maps every n-tuple $(a_1, \ldots, a^n) \in A^n$ to a_i . Clones have been widely studied by many authors for instance in [1, 2, 3, 4, 5, 6] and [10]. Among these clones, there are six well-known clones preserving six classes of relations, namely affine relations, bounded partial order relations, nontrivial equivalence relations, central relations, prime

permutations, and h-regularly generated relations. It is well-known that these clones are maximal according to Rosenberg's characterization (see [3]). We are interested in the n-ary part of these clones which we call from now on n-clones. Moreover, we specify the well-known concept of that "a function preserves a relation" and show that we get the n-ary part of the maximal clones as union and intersection of sets of n-ary operations preserving (in our sense) a given relation. We show that these sets have particular interesting properties for other consideration in universal algebra.

First, we consider an arbitrary h-ary relation ρ and we want to represent $Pol^n\rho$ in terms of some subsets of $O^n(A)$ which in general are not clones, but from these subsets we can obtain $Pol^n\rho$ by using intersection and union. For this aim, for arbitrary $b \in A$ and $\underline{a} = (a_1, \ldots, a_n) \in A^n$, we define $\rho_k^b := \{(x_1, \ldots, x_{h-1}) \in A^{h-1} | (x_1, \ldots, x_{k-1}, b, x_k, \ldots, x_{h-1}) \in \rho\}$ and $\rho_k^a := \{((x_{1,1}, \ldots, x_{h-1,1}), \ldots, (x_{1,n}, \ldots, x_{h-1,n})) \in (A^{h-1})^n | (x_{1,i}, \ldots, x_{k-1,i}, a_i, x_{k,i}, \ldots, x_{h-1,i}) \in \rho \text{ for every } i \in \{1, \ldots, n\}\}$. It is clear that ρ_k^a is a cartesian product of the h-1 relations $\rho_k^{a_1}, \ldots, \rho_k^{a_n}$, i.e., $\rho_k^a = \rho_k^{a_1} \times \cdots \times \rho_k^{a_n}$. We say that $f \in O^n(A)$ $(\underline{a}, b)_k$ -preserves ρ if and only if $(f(x_{1,1}, \ldots, x_{1,n}), \ldots, f(x_{h-1,1}, \ldots, x_{h-1,n})) \in \rho_k^b$ for every $((x_{1,1}, \ldots, x_{h-1,1}), \ldots, (x_{1,n}, \ldots, x_{h-1,n})) \in \rho_k^a$. Then for every $k \in \{1, \ldots, h\}$, we define $R_{\underline{a},b}^{n,k} := \{f \in O^n(A) | f(\underline{a}, b)_k$ -preserves $\rho\}$. We want to see the properties of $R_{\underline{a},b}^{n,k}$.

For further investigation, we recall the following concept of semigroup of n-ary operations on A. Let A be an arbitrary finite set and let $O^n(A)$ be the set of all n-ary operations on A. On $O^n(A)$, we define an operation + by $f+g:=f(g,\ldots,g)$ for arbitrary $f,g\in O^n(A)$, i.e., $(f+g)(\underline{x})=f(g,\ldots,g)(\underline{x})=f(g(\underline{x}),\ldots,g(\underline{x}))$ for every $\underline{x}\in A$. To simplify the notation, we use \overline{x} for (x,\ldots,x) and thus we have $(f+g)(\underline{x})=f(\overline{g(\underline{x})})$. It is easy to see that the operation + is associative giving a semigroup $(O^n(A);+)$ (see [7,9] and [10]). It is clear that if C is an n-clone on A, then (C;+) is a subsemigroup of $(O^n(A);+)$. Moreover, for every $f\in A^n$, by π_f we mean the unary operation on A such that $\pi_f(x)=f(\overline{x})$ for every $x\in A$. We use c_y^n for the constant n-ary operation with value y. Particularly for $A=\{0,1\}$, we put $C_y^n:=\{f\in O^n(A)|f(\overline{0})=0,f(\overline{1})=1\}$, $\neg C_y^n:=\{f\in O^n(A)|f(\overline{0})=1,f(\overline{1})=0\}$, $K_0^n:=\{f\in O^n(A)|f(\overline{0})=f(\overline{1})=0\}$ and $K_1^n:=\{f\in O^n(A)|f(\overline{0})=f(\overline{1})=1\}$. Clearly, $C_y^n, \neg C_y^n, K_0^n$ and K_1^n are all disjoint and $O^n(A)=C_y^n\cup C_y^n\cup K_0^n\cup K_1^n$. Moreover, the operation + has the following properties:

$$f + g = \begin{cases} g & \text{if } f \in C_4^n \\ \neg g & \text{if } f \in \neg C_4^n \\ c_0^n & \text{if } f \in K_0^n \\ c_1^n & \text{if } f \in \neg K_0^n \end{cases}$$

(for more details see [9] and [10]).

2. Properties of $R_{\underline{a},b}^{n,k}$

In this section, we study some properties of $R_{\underline{a},b}^{n,k}$ for arbitrary h-ary relation ρ on A. The following propositions hold in $O^n(A)$ for every $n \geq 1$.

Proposition 1. Let A be an arbitrary finite set and let $n \geq 1$, $h \geq 2$ and $1 \leq k \leq h$ be natural numbers. Let ρ be an h-ary relation on A. Then the following propositions are true for every $\underline{a},\underline{a'} \in A^n$ and $b,b',y \in A$.

- (i) If $R_{a,b}^{n,k} \neq \emptyset$, then $\rho_k^a = \emptyset$ or $\rho_k^b \neq \emptyset$.
- (ii) If $\rho_k^b \subseteq \rho_k^{b'}$, then $R_{a,b}^{n,k} \subseteq R_{a,b'}^{n,k}$
- (iii) If $\rho_{\overline{k}}^{\underline{a}} \subseteq \rho_{\overline{k}}^{\underline{a'}}$, then $R_{\underline{a'},b}^{n,k} \subseteq R_{\underline{a},b}^{n,k}$
- (iv) Let $1 \le i \le n$. If $\rho_k^a \ne \emptyset$, then $R_{\underline{a},b}^{n,k}$ contains a projection e_i^n if and only if $\rho_k^{a_i} \subseteq \rho_k^b$.
- (v) $R_{a,b}^{n,k}$ contains a constant operation c_y^n if and only if $(y,\ldots,y)\in\rho_k^b$.
- (vi) If $f \in R^{n,k}_{\overline{b},b'}$ and $g \in R^{n,k}_{\underline{a},b}$, then $f + g \in R^{n,k}_{\underline{a},b'}$.
- **Proof.** (i) Let $R_{\underline{a},b}^{n,k} \neq \emptyset$ and let $f \in R_{\underline{a},b}^{n,k}$. Assume that $\rho_{\overline{k}}^{\underline{a}} \neq \emptyset$. Then for every $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{\underline{a}}$, we have $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{b}$ and thus $\rho_{\overline{k}}^{b} \neq \emptyset$.
- (ii) Let $\rho_k^b \subseteq \rho_k^{b'}$ and let $f \in R_{\underline{a},b}^{n,k}$. Then $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho_k^b$ for arbitrary $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n})) \in \rho_k^{\underline{a}}$. By assumption, $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho_k^{b'}$, i.e., $f \in R_{\underline{a},b'}^{n,k}$ and therefore $R_{\underline{a},b}^{n,k} \subseteq R_{\underline{a},b'}^{n,k}$.
- (iii) Let $\rho_{\overline{k}}^{\underline{a}} \subseteq \rho_{\overline{k}}^{\underline{a'}}$ and let $f \in R_{\underline{a'},b}^{n,k}$. Then for every $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{\underline{a}}$ we have $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{\underline{a'}}$ and thus $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{b}$ by assumption, i.e., $f \in R_{\underline{a},b}^{n,k}$.
- (iv) Let $\rho_k^a \neq \emptyset$. Let e_i^n be in $R_{\underline{a},b}^{n,k}$ and let $(x_{1,i},\dots,x_{h-1,i}) \in \rho_k^{a_i}$. By assumption, we can find $(x_{1,j},\dots,x_{h-1,j}) \in \rho_k^{a_j}$, $i \neq j = 1,\dots,n$. Thus, we obtain $(x_{1,i},\dots,x_{h-1,i}) = (e_i^n(x_{1,1},\dots,x_{1,n}),\dots,e_i^n(x_{h-1,1},\dots,x_{h-1,n})) \in \rho_k^b$ and hence $\rho_k^{a_i} \subseteq \rho_k^b$. Conversely, let $\rho_k^{a_i} \subseteq \rho_k^b$. Then for every $((x_{1,1},\dots,x_{h-1,1}),\dots,(x_{1,n},\dots,x_{h-1,n})) \in \rho_k^a$ we have $(e_i^n(x_{1,1},\dots,x_{1,n}),\dots,e_i^n(x_{h-1,1},\dots,x_{h-1,n})) = (x_{1,i},\dots,x_{h-1,i}) \in \rho_k^a \subseteq \rho_k^b$ and therefore $e_i^n \in R_{\underline{a},b}^{n,k}$.

- (v) Let c_y^n be in $R_{\underline{a},b}^{n,k}$. Then for every $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n}))$ $\in \rho_k^a \text{ we get } (y, \dots, y) = (c_y^n(x_{1,1}, \dots, x_{1,n}), \dots, c_y^n(x_{h-1,1}, \dots, x_{h-1,n})) \in \rho_k^b$ Conversely, let $(y, ..., y) \in \rho_k^a$. Then for every $((x_{1,1}, ..., x_{h-1,1}), ..., (x_{1,n}, ..., x_{h-1,n})) \in \rho_k^a$ we obtain $(c_y^n(x_{1,1}, ..., x_{1,n}), ..., c_y^n(x_{h-1,1}, ..., x_{h-1,n})) = (y, ..., y)$ $\in \rho_k^b$, i.e., $c_y^n \in R_{a,b}^{n,k}$.
- (vi) Let $f \in R^{n,k}_{\overline{b},b'}$ and $g \in R^{n,k}_{\underline{a},b}$. Let $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n}))$ $\in \rho_k^a$. Then we have $(g(x_{1,1},\ldots,x_{1,n}),\ldots,g(x_{h-1,1},\ldots,x_{h-1,n}))\in \rho_k^b$ and hence $((g(x_{1,1},\ldots,x_{1,n}),\ldots,g(x_{h-1,1},\ldots,x_{h-1,n})),\ldots,(g(x_{1,1},\ldots,x_{1,n}),\ldots,g(x_{h-1,1},\ldots,x_{h-1,n})),\ldots,(g(x_{h-1,1},\ldots,x_{h-1,n}),\ldots,g(x_{h-1,1},\ldots,x_{h-1,n}))$

Remark 2. By Proposition 1 (vi) it follows that $R_{\overline{b},b}^{n,k}$ forms subsemigroup of $(O^n(A); +)$ for every $b \in A$ and for every $1 \le k \le h$.

Recall that for every clone C, we call the n-ary part $C \cap O^n(A)$ an n-clone.

Proposition 3. Let A be an arbitrary finite set and let ρ be an arbitrary h-ary relation on A. The following assertions hold for every natural number $n \geq 1$, $a \in A^n$ and $b \in A$.

- (i) If $R_{a,b}^{n,k}$ is an n-clone, then $\rho_{\overline{k}}^{\underline{a}} \subseteq \rho_{\overline{k}}^{\overline{b}}$.
- (ii) If $\pi_f \in R_{b,b}^{1,k}$ for every $f \in R_{\underline{a},b}^{n,k}$, then $R_{\underline{a},b}^{n,k}$ forms a subsemigroup of $(O^n(A);+)$.
- (iii) For h=2, if $R_{\underline{a},b}^{n,k}$ forms a subsemigroup of $(O^n(A);+)$, then $\pi_f \in R_{b,b}^{1,k}$ for every $f \in R_{a,b}^{n,k}$.

Proof. (i) If $R_{a,b}^{n,k}$ is an n-clone, then $R_{\underline{a},b}^{n,k}$ contains all projections. Therefore by

Proposition 1 (iv), $\rho_{\overline{k}}^{\underline{a}} \subseteq \rho_{\overline{k}}^{\overline{b}}$. (ii) Let $f, g \in R_{\underline{a}, b}^{n, k}$. For every $((x_{1,1}, \dots, x_{h-1, 1}), \dots, (x_{1,n}, \dots, x_{h-1, n})) \in \rho_{\overline{k}}^{\underline{a}}$ we have $(g(x_{1,1},...,x_{1,n}),...,g(x_{h-1,1},...,x_{h-1,n})) \in \rho_k^b$ and hence

$$((f+g)(x_{1,1},\ldots,x_{1,n}),\ldots,(f+g)(x_{h-1,1},\ldots,x_{h-1,n}))$$

$$= (f(\overline{g(x_{1,1},\ldots,x_{1,n})}),\ldots,f(\overline{g(x_{h-1,1},\ldots,x_{h-1,n})}))$$

$$= (\pi_f(g(x_{1,1},\ldots,x_{1,n})),\ldots,\pi_f(g(x_{h-1,1},\ldots,x_{h-1,n}))) \in \rho_k^b$$

by assumption. Therefore $f+g\in R_{a,b}^{n,k},$ i.e., $R_{a,b}^{n,k}$ forms a subsemigroup of $(O^n(A); +).$

(iii) Let h=2. Let $f\in R^{n,k}_{\underline{a},b}$ and let $y\in \rho^b_k$. By Proposition 1 (v), $c^n_y\in R^{n,k}_{\underline{a},b}$ and hence $f+c^n_y\in R^{n,k}_{\underline{a},b}$ by assumption. Thus for every $(x_1,\ldots,x_n)\in \rho^{\underline{a}}_k$ we have $(f+c^n_y)(x_1,\ldots,x_n)\in \rho^b_k$. Therefore $\pi_f(y)=\pi_f(c^n_y(x_1,\ldots,x_n))=f(\overline{c^n_y(x_1,\ldots,x_n)})=(f+c^n_y)(x_1,\ldots,x_n)\in \rho^b_k$, i.e., $\pi_f\in R^{n,k}_{b,b}$.

Theorem 4. Let A be an arbitrary finite set and let ρ be a binary relation on A. For arbitrary $n \geq 1$, $\underline{a} \in A^n$ and $b \in A$, it follows that $R_{\underline{a},b}^{n,k}$ forms a subsemigroup of $(O^n(A); +)$ if and only if $\pi_f \in R_{b,b}^{1,k}$ for every $f \in R_{\underline{a},b}^{n,k}$.

Proof. is clear by Proposition 3 (ii) and Proposition 3 (iii).

Corollary 5. Let A be an arbitrary finite set and let ρ be a binary relation on A. For arbitrary $a, b \in A$, it follows that $R_{a,b}^{1,k}$ forms a subsemigroup of $(O^1(A); \circ)$ if and only if $R_{a,b}^{1,k} \subseteq R_{b,b}^{1,k}$.

Proof. It is clear by Theorem 4 and the fact that $f = \pi_f$ for n = 1.

Proposition 6. Let A be an arbitrary finite set and let ρ be an arbitrary h-ary relation on A. For every natural number $n \geq 1$ it follows $Pol^n \rho \subseteq \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} \bigcap_{k=1}^h R^{n,k}_{\underline{a},b}$.

Proof. Let $f \in Pol^n \rho$ and let $\underline{a} \in A^n$ be arbitrary. We will show that $f \in \bigcap_{k=1}^h R_{\underline{a},b}^{n,k}$ for some $b \in A$. Let $((x_{1,1},\ldots,x_{h-1,1}),\ldots,(x_{1,n},\ldots,x_{h-1,n})) \in \rho_{\overline{k}}^{\underline{a}}$, i.e., $(x_{1,i},\ldots,x_{k-1,i},a_i,x_{k+1,i},\ldots,x_{h-1,1}) \in \rho$ for every $i \in \{1,\ldots,n\}$. Then $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{k-1,1},\ldots,x_{k-1,n}),f(\underline{a}),f(x_{k+1,1},\ldots,x_{k+1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho$ by assumption and therefore $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n})) \in \rho_k^{f(\underline{a})}$, i.e., $f \in R_{\underline{a},f(\underline{a})}^{n,k}$.

Example 7. Let A be an arbitrary finite set and let $n \geq 1$ be a natural number and let ρ be an h-ary relation on A. For every $\underline{a} \in A^n$ and $b \in A$, if $\rho = \{\overline{a} \in A^h | a \in A\}$, then $R_{\underline{a},b}^{n,k}$ is an n-clone if and only if $\underline{a} = \overline{b}$ if and only if $R_{\underline{a},b}^{n,k}$ forms a subsemigroup of $(O^n(A); +)$. This can be explained as follows. It is clear that when $R_{\underline{a},b}^{n,k}$ is an n-clone, then $R_{\underline{a},b}^{n,k}$ forms a subsemigroup of $(O^n(A); +)$ and moreover, contains all projections. Since $\rho = \{\overline{a} \in A^h | a \in A\}$, it follows that $\rho_{\overline{k}}^a$ contains only $(\overline{a_1}, \ldots, \overline{a_n}) \in \rho^n$. Thus, $a_i = e_i^n(\underline{a}) = b$ for every $i = 1, \ldots, n$ and hence $\underline{a} = \overline{b}$. Conversely, if $\underline{a} = \overline{b}$, then for every $b \in A$, ρ_k^b contains only \overline{b} . Thus $e_i^n(\overline{b}) = b$, i.e., $e_i^n \in R_{\overline{b},b}^{n,k}$ for every $1 \leq i \leq n$. Now, for every $f, g \in R_{\overline{b},b}^{n,k}$, we have $(f+g)(\overline{b}) = f(\overline{b}) = b$ that implies $f+g \in R_{\overline{b},b}^{n,k}$. Hence, $R_{\overline{b},b}^{n,k}$ is an n-clone. Furthermore, let $R_{\underline{a},b}^{n,k}$ form a subsemigroup of $(O^n(A); +)$. For every $f \in R_{\underline{a},b}^{n,k}$, it follows that $f(\underline{a}) = b$. Thus, if $g_1, \ldots, g_n \in R_{\underline{a},b}^{n,k}$, then we have $f(g_1, \ldots, g_n)(\underline{a}) = f(g_1, \ldots, g_1)(\underline{a}) = (f+g_1)(\underline{a}) = b$ and thus $R_{\underline{a},b}^{n,k}$ is an n-clone.

3. Properties of $R_{a,b}^{n,k}$ for some particular relations

In this section, we study some properties of $R^{n,k}_{\underline{a},b}$ for some particular relations, i.e., partial order relation, equivalence relation and central relation. Instead of $R^{n,k}_{\underline{a},b}$, we use $P^{n,k}_{\underline{a},b}$ for partial order relation \leq . The following propositions are true for arbitrary partial order relation \leq on A.

Proposition 8. Let $(A; \leq)$ be an arbitrary finite partially ordered set and let $n \geq 1$ be a natural number. Then the following properties hold for every $\underline{a}, \underline{a}' \in A^n$, $b, b' \in A$ and k = 1, 2.

- (i) $P_{a,b}^{n,k} \neq \emptyset$.
- (ii) $P_{\underline{a},b}^{n,k} \subseteq P_{\underline{a},b'}^{n,k}$ if and only if $b \in \leq_k^{b'}$.
- (iii) If $\leq \frac{a}{k} \subseteq \leq \frac{a'}{k}$, then $P_{a',b}^{n,k} \subseteq P_{a,b}^{n,k}$.
- (iv) Let $1 \leq i \leq n$. $P_{a,b}^{n,k}$ contains the projection e_i^n if and only if $a_i \in \leq_k^b$.
- (v) $P_{\underline{a},b}^{n,k}$ contains the constant operation c_y^n if and only if $y \in \leq_k^b$. Moreover, $P_{\underline{a},b}^{n,k}$ contains exactly $|\leq_k^b|$ constant operations.
- $(\text{vi)} \ \textit{ If } g \in P^{n,k}_{\underline{a},b} \ \textit{ and } f \in P^{n,k}_{\overline{b},b'}, \textit{ then } f+g \in P^{n,k}_{\underline{a},b'}.$

Proof. (i) Since $b \in \leq_k^b$ for every $b \in A$ and k = 1, 2, then by Proposition 1 (v), $c_b^n \in P_{a,b}^{n,k}$.

- (ii) Let $P_{\underline{a},b}^{n,k} \subseteq P_{\underline{a},b'}^{n,k}$. Since $b \in \leq_k^b$ then by (i) $c_b^n \in P_{\underline{a},b}^{n,k} \subseteq P_{\underline{a},b'}^{n,k}$ and hence for every $(x_1,\ldots,x_n) \in \leq_k^{\underline{a}}$ we have $b = c_b^n(x_1,\ldots,x_n) \in \leq_k^{\underline{b'}}$. The opposite direction is clear by Proposition 1 (ii).
- (iii), (iv), (v) and (vi) are clear respectively by (iii), (iv), (v) and (vi) of Proposition 1. \blacksquare

If A has the least element and the greatest element, then we have the following properties.

Proposition 9. Let $(A; \leq)$ be an arbitrary finite partially ordered set and let $n \geq 1$ be a natural number. If A has the least and the greatest element and \bigwedge_A is the least element and \bigvee_A is the greatest element in A, then for every $\underline{a} \in A^n$ and $b \in A$ the following propositions are true.

(i)
$$P_{a,b}^{n,1} = O^n(A)$$
 if and only if $b = \bigwedge_A (P_{a,b}^{n,2} = O^n(A)$ if and only if $b = \bigvee_A (P_{a,b}^{n,2} = O^n(A))$.

(ii) $P_{\underline{a},b}^{n,1} = \{c_b^n\}$ if and only if $\underline{a} = \overline{\bigwedge}_A$ and $b = \bigvee_A (P_{\underline{a},b}^{n,2} = \{c_b^n\})$ if and only if $\underline{a} = \overline{\bigvee}_A$ and $b = \bigwedge_A$.

Proof. We prove for k=2 and similar way for k=1.

- (i) Let $P_{\underline{a},b}^{n,2} = O^n(A)$. Then $c_y^n \in P_{\underline{a},b}^{n,2}$ for all $y \in A$ and hence for all $(x_1,\ldots,x_n) \in \underline{\leq_2^a}$ we obtain $y = c_y^n(x_1,\ldots,x_n) \in \underline{\leq_2^b}$ for every $y \in A$, i.e., $b = \bigvee_A$. Conversely, let $b = \bigvee_A$ and let $f \in O^n(A)$. Then for all $(x_1,\ldots,x_n) \in \underline{\leq_2^a}$, we have $f(x_1,\ldots,x_n) \in \underline{\leq_2^b}$, i.e., $O^n(A) = P_{\underline{a},b}^{n,2}$.
- (ii) Let $P_{\underline{a},b}^{n,2} = \{c_b^n\}$. Assume $\underline{a} \neq \overline{\bigvee}_A$. If $b = \bigvee_A$, then by (i), $P_{\underline{a},b}^{n,2} = O^n(A)$, a contradiction. If $b \neq \bigvee_A$, then consider an n-ary operation $f \in O^n(A)$ satisfying $f(x_1,\ldots,x_n) = b$ for every $(x_1,\ldots,x_n) \neq \overline{\bigvee}_A$ and $f(\overline{\bigvee}_A) = \bigvee_A$. This f is not equal to c_b^n and is in $P_{\underline{a},b}^{n,2}$. Hence $P_{\underline{a},b}^{n,2} \neq \{c_b^n\}$, a contradiction. Assume now $b \neq \bigwedge_A$. Then by Proposition 8 (v), $\{c_{\bigwedge_A}^n, c_b^n\} \subseteq P_{\underline{a},b}^{n,2}$, a contradiction. Conversely, let $f \in P_{\underline{a},b}^{n,2} = P_{\overline{\bigvee}_A,\bigwedge_A}^{n,2}$ and let $(x_1,\ldots,x_n) \in A^n$. Since $(x_1,\ldots,x_n) \in \leq_2^{\overline{\bigvee}_A}$, then $f(x_1,\ldots,x_n) \in \leq_2^{\bigwedge_A}$, i.e., $f(x_1,\ldots,x_n) = \bigwedge_A$, i.e., $f = c_{\bigwedge_A}^n$. Hence $P_{\underline{a},b}^{n,2} = \{c_b^n\}$.

Theorem 10. Let $(A; \leq)$ be an arbitrary finite partially ordered set and let $n \geq 1$ be a natural number. For arbitrary $\underline{a} \in A^n$ and $b \in A$ the following propositions are equivalent for k = 1, 2.

- (i) $P_{a,b}^{n,k}$ is an n-clone.
- (ii) $P_{a,b}^{n,k} = P_{\bar{b},b}^{n,k}$.
- (iii) $\underline{a} \in \leq_{\overline{b}}^{\overline{b}} \text{ and } P_{\underline{a},b}^{n,k} \subseteq P_{\overline{b},b}^{n,k}.$

Proof. (i) \Rightarrow (ii) Let $P_{\underline{a},b}^{n,k}$ be an n-clone. Then by Proposition 3 (i), $\leq \frac{a}{k} \subseteq \leq \frac{\bar{b}}{k}$ and thus by Proposition 8 (iii), $P_{\bar{b},b}^n \subseteq P_{\underline{a},b}^n$. Now, let $f \in P_{\underline{a},b}^n$ and let $(y_1,\ldots,y_n) \in \leq \frac{\bar{b}}{k}$, i.e., $y_i \in \leq \frac{b}{k}$ for every $i=1,2,\ldots,n$. Then by Proposition 8 (v), $c_{y_i}^n \in P_{\underline{a},b}^{n,k}$ and hence $f(c_{y_1}^n,\ldots,c_{y_n}^n) \in P_{\underline{a},b}^{n,k}$ for $1 \leq i \leq n$. Therefore, for every $(x_1,\ldots,x_n) \in \leq \frac{a}{k}$, $f(c_{y_1}^n,\ldots,c_{y_n}^n)(x_1,\ldots,x_n) \in \leq \frac{b}{k}$ and hence $f(y_1,\ldots,y_n) = f(c_{y_1}^n(x_1,\ldots,x_n),\ldots,c_{y_n}^n(x_1,\ldots,x_n)) = f(c_{y_1}^n,\ldots,c_{y_n}^n)(x_1,\ldots,x_n) \in \leq \frac{b}{k}$, i.e., $f \in P_{\bar{b},b}^{n,k}$. Thus $P_{\underline{a},b}^{n,k} \subseteq P_{\bar{b},b}^{n,k}$ and hence $P_{\underline{a},b}^{n,k} = P_{\bar{b},b}^{n,k}$.

(ii) \Rightarrow (iii) By Proposition 8 (iv), $P_{\overline{b},b}^{n,k}$ contains all projections. Therefore $P_{\underline{a},b}^n = P_{\overline{b},b}^n$ contains all projections and hence by Proposition 8 (iv), $a_i \in \leq_k^b$ for every $i \in \{1,\ldots,n\}$, i.e., $\underline{a} \in \leq_k^{\overline{b}}$.

(iii) \Rightarrow (i) By assumption and Proposition 8 (iv), $P_{a,b}^n$ contains all projections. Moreover, let f, g_1, \ldots, g_n be in $P_{\underline{a}, b}^n \subseteq P_{\overline{b}, b}^n$. Then, $g_i(x_1, \ldots, x_n) \in \leq_k^b$ for every $(x_1, \ldots, x_n) \in \leq \frac{a}{k}$ and $i = 1, 2, \ldots, n$. Thus, $(g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n)) \in$ $\leq_k^{\overline{b}}$. Hence for every $(x_1,\ldots,x_n)\in\leq_k^{\underline{a}}$, $f(g_1,\ldots,g_n)(x_1,\ldots,x_n)=f(g_1(x_1,\ldots,x_n),\ldots,g_n(x_1,\ldots,x_n))\in\leq_k^{\underline{b}}$. Therefore, $f(g_1,\ldots,g_n)\in P_{\underline{a},\underline{b}}^{n,k}$ and hence $P_{\underline{a},\underline{b}}^{n,k}$ is an n-clone.

Theorem 11. Let $(A; \leq)$ be an arbitrary finite partially ordered set and let $n \geq 1$ be a natural number. For every $\underline{a} \in A^n$, $b \in A$ it follows that $Pol^n \leq A$ $= \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} (P_{\underline{a},b}^{n,1} \cap P_{\underline{a},b}^{n,2}).$

Proof. (\subseteq) is clear by Proposition 6.

(2) Let $f \in \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} (P_{\underline{a},b}^{n,1} \cap P_{\underline{a},b}^{n,2})$. Let $(u_i, v_i) \in \leq$, i = 1, 2, ..., n. Now, take $\underline{a} = \underline{u}$. By assumption, for this $\underline{a} \in A^n$, we can find $b \in A$ such that $f \in P_{\underline{a},b}^{n,1} \cap P_{\underline{a},b}^{n,2}$. Therefore $f(\underline{u}) \in \leq_2^b$ and $f(\underline{v}) \in \leq_1^b$, i.e., $(f(\underline{u}), f(\underline{v})) \in \leq$. Hence $f \in Pol^n \rho_A$.

Example 12. Let $A = \{0,1\}$. By Proposition 9, $P_{\overline{1},0}^{n,2} = \{c_0^n\}$ and $P_{\overline{0},1}^{n,1} = \{c_1^n\}$. Moreover, $P_{\underline{a},0}^{n,1} = O^n(\{0,1\}) = P_{\underline{a},1}^{n,2}$. Therefore $P_{\underline{a},0}^{n,1} \cap P_{\underline{a},0}^{n,2} = P_{\underline{a},0}^{n,2}$ and $P_{\underline{a},1}^{n,1} \cap P_{\underline{a},1}^{n,2} = P_{\underline{a},1}^{n,1}$ and hence $\bigcup_{b \in A} (P_{\underline{a},b}^{n,1} \cap P_{\underline{a},b}^{n,2}) = P_{\underline{a},1}^{n,1} \cup P_{\underline{a},0}^{n,2}$ and we get $Pol^n \leq P_{\underline{a},0}^{n,1} \cap P_{\underline{a},0}^{n,2} = P_{\underline{a},0}^{n,1} \cap P_{\underline{a},0}^{n,2}$ $= \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} (P_{\underline{a},b}^{n,1} \cap P_{\underline{a},b}^{n,2}) = \bigcap_{\underline{a} \in A^n} (P_{\underline{a},1}^{n,1} \cup P_{\underline{a},0}^{n,2}) \text{ by Theorem 11. Now consider all operations on } O^2(\{0,1\}) \text{ as follows}$

Remark 13. From above example, we have $f_1 = c_0^2$, $f_{16} = c_1^2$ and we obtain $K_0^2 = \{c_0^2, f_2, f_3, f_4\}$, $C_4^2 = \{f_5, f_6, f_7, f_8\}$, $\neg C_4^2 = \{f_9, f_{10}, f_{11}, f_{12}\}$ and $K_1^2 = \{f_{13}, f_{14}, f_{15}, c_1^2\}$. By Proposition 9, $P_{(1,1),0}^{2,2} = \{c_0^2\}$ and $P_{(0,0),1}^{2,1} = \{c_1^2\}$. Moreover, it is easy to see that

$$\begin{split} P_{(0,1),1}^{2,1} &= \{f_7,f_8,f_{15},c_1^2\} &\quad P_{(0,0),0}^{2,2} &= K_0^n \cup C_4^2 \\ P_{(1,0),1}^{2,1} &= \{f_6,f_8,f_{14},c_1^n\} &\quad P_{(0,1),0}^{2,2} &= \{c_0^2,f_2,f_5,f_6\} \\ P_{(1,1),1}^{2,1} &= C_4^2 \cup K_1^2 &\quad P_{(1,0),0}^{2,2} &= \{c_0^2,f_3,f_5,f_7\} \end{split}$$

and hence we obtain $Pol^2 \le = C_4^2 \cup \{c_0^2, c_1^2\}.$

Generally, for $A=\{0\leq 1\}$ and for every $n\geq 1$, by applying Proposition 8, we have some properties on $P_{\underline{a},b}^{n,1}$ and $P_{\underline{a},b}^{n,2}$ as follows

- (i) $c_1^n \in P_{\underline{a},b}^{n,1}$ and $c_0^n \in P_{\underline{a},b}^{n,2}$ since $1 \in \leq_1^b$ and $0 \in \leq_2^b$.
- (ii) If $\underline{a} \neq \overline{0}$, then $P_{\underline{a},b}^{n,1} \cap C_4^n \neq \emptyset$. This fact holds since $1 \in \leq_1^b$ which implies $e_i^n \in C_4^n$ is contained in $P_{\underline{a},b}^{n,1}$ by Proposition 8 (iv) for some i such that $a_i \neq 0$. Similarly, if $\underline{a} \neq \overline{1}$, then $P_{\underline{a},b}^{n,2} \cap C_4^n \neq \emptyset$.
- (iii) If b=1, then $P_{\underline{a},b}^{n,1}\cap (K_0^n\cup \neg C_4^n)=\emptyset$. It is clear that $\overline{1}\in \leq \frac{a}{1}$. But for all $f\in K_0^n\cup \neg C_4^n$, we have $f(\overline{1})=0\not\in \leq \frac{1}{1}$ and hence $f\not\in P_{\underline{a},b}^{n,1}$. Similarly if b=0, then $P_{\underline{a},b}^{n,2}\cap (K_1^n\cup \neg C_4^n)=\emptyset$.
- (iv) $Pol^n \leq = C \cup \{c_0^n, c_1^n\}$ for some $C \subseteq C_4^n$.

Now, we come to the properties of $R_{\underline{a},b}^{n,k}$ for an arbitrary equivalence relation θ on A. By symmetry property of θ , it follows that $\theta_1^b = \theta_2^b$ and $\theta_1^a = \theta_2^a$ for every $b \in A$ and $\underline{a} \in A^n$ and these imply $R_{\underline{a},b}^{n,1} = R_{\underline{a},b}^{n,2}$. Therefore, we can omit the number k. Moreover, since $\theta_1^b = \theta_2^b$ is actually an equivalence class that contains b, then we use $[b]_{\theta}$ instead θ^b and we use $E_{\underline{a},b}^{n,\theta}$ instead of $R_{\underline{a},b}^{n,k}$ since we might have various equivalence relations on A. Thus, by $f \in E_{\underline{a},b}^{n,\theta}$ we mean an n-ary operation such that $(f(x_1,\ldots,x_n),b) \in \theta$ for every (x_1,\ldots,x_n) satisfying $(x_i,a_i) \in \theta$ for every $i=1,\ldots,n$.

Proposition 14. Let A be an arbitrary finite set and $n \geq 1$ be an arbitrary natural number. For an arbitrary equivalence relation $\theta_A \neq A \times A$ on A, the following properties are true for arbitrary $\underline{a}, \underline{a}' \in A^n$ and $b, b' \in A$.

- (i) $E_{ab}^{n,\theta} \neq \emptyset$.
- (ii) $[b]_{\theta} = [b']_{\theta}$ if and only if $E_{a,b}^{n,\theta} \cap E_{a,b'}^{n,\theta} \neq \emptyset$ if and only if $E_{a,b}^{n,\theta} = E_{a,b'}^{n,\theta}$.
- (iii) $[\underline{a}]_{\theta^n} = [\underline{a'}]_{\theta^n}$ if and only if $E_{a,b}^{n,\theta} = E_{a',b}^{n,\theta}$
- (iv) If $[\underline{a}]_{\theta^n} \neq [\underline{a'}]_{\theta^n}$, then $E_{a,b}^{n,\theta} \cap E_{a',b'}^{n,\theta} \neq \emptyset$.
- (v) Let $1 \leq i \leq n$. $E_{\underline{a},b}^{n,\theta}$ contains a projection e_i^n if and only if $[b]_{\theta} = [a_i]_{\theta}$.
- (vi) $E_{\underline{a},b}^{n,\theta}$ contains a constant operation c_y^n if and only if $y \in [b]_{\theta}$. Moreover, $E_{a,b}^{n,\theta}$ contains precisely $|[b]_{\theta}|$ constant operations.

- (vii) If $f \in E_{\overline{b},b'}^{n,\theta}$ and $g \in E_{\underline{a},b}^{n,\theta}$, then $f + g \in E_{\underline{a},b'}^{n,\theta}$.
- **Proof.** (i) By reflexivity of θ and Proposition 1 (v), $c_b^n \in E_{\underline{a},b}^{n,\theta}$, i.e., $E_{\underline{a},b}^{n,\theta} \neq \emptyset$. (ii) By Proposition 1 (ii), if $[b]_{\theta} = [b']_{\theta}$, then $E_{\underline{a},b}^{n,\theta} = E_{\underline{a},b'}^{n,\theta}$. Thus if $[b]_{\theta} = [b']_{\theta}$, then $E_{\underline{a},b}^{n,\theta} \cap E_{\underline{a},b'}^{n,\theta} \neq \emptyset$ since $E_{\underline{a},b}^{n,\theta} \neq \emptyset$ by (i). Conversely, let $E_{\underline{a},b}^{n,\theta} \cap E_{\underline{a},b'}^{n,\theta} \neq \emptyset$ and let $f \in E_{\underline{a},b}^{n,\theta} \cap E_{\underline{a},b'}^{n,\theta}$. Then for every $(x_1,\ldots,x_n) \in [\underline{a}]_{\theta^n}$ we have $f(x_1,\ldots,x_n) \in [\underline{a}]_{\theta^n}$ $[b]_{\theta} \cap [b']_{\theta}$ and hence $[b]_{\theta} = [b']_{\theta}$.
- (iii) By Proposition 1 (iii), if $[\underline{a}]_{\theta^n} = [\underline{a'}]_{\theta^n}$, then $E_{\underline{a},b}^{n,\theta} = E_{a',b}^{n,\theta}$. Conversely, let $E_{\underline{a},b}^{n,\theta} = E_{\underline{a'},b}^{n,\theta}$. Assume that $[\underline{a}]_{\theta^n} \neq [\underline{a'}]_{\theta^n}$, i.e., $\underline{a} \notin [\underline{a'}]_{\theta^n}$ and $\underline{a'} \notin [\underline{a}]_{\theta^n}$. Since $\theta_A \neq A \times A$, then there is $b' \in A$ such that $[b]_{\theta} \neq [b']_{\theta}$. Now consider an n-ary operation f on A such that $f(x_1, \ldots, x_n) = b$ for all $(x_1, \ldots, x_n) \in [\underline{a}]_{\theta^n}$ and $f(\underline{a'}) = b'$. Then it is clear that $f \in E_{\underline{a},b}^{n,\theta}$ but $f \notin E_{\underline{a'},b}^{n,\theta}$ and hence $E_{\underline{a},b}^{n,\theta} \neq E_{\underline{a'},b}^{n,\theta}$, a
- (iv) Let $[\underline{a}]_{\theta^n} \neq [\underline{a}']_{\theta^n}$. Consider an $f \in O^n(A)$ such that $f(x_1, \ldots, x_n) = b$ for every $(x_1, \ldots, x_n) \in [\underline{a}]_{\theta^n}$ and $f(x_1, \ldots, x_n) = b'$ for every $(x_1, \ldots, x_n) \in [\underline{a'}]_{\theta^n}$. It is clear that $f \in E_{\underline{a}, b}^{n, \theta} \cap E_{\underline{a'}, b}^{n, \theta}$ and hence $E_{\underline{a}, b}^{n, \theta} \cap E_{\underline{a'}, b'}^{n, \theta} \neq \emptyset$.
 - (v), (vi) and (vii) are clear by Proposition 1 (iv), (v) and (vi).

Theorem 15. Let A be an arbitrary finite set and $n \ge 1$ be an arbitrary natural number and let $\theta \neq A \times A$ be an arbitrary equivalence relation on A. Then for arbitrary $\underline{a} \in A^n$ and $b \in A$ it follows that $E_{a,b}^{n,\theta}$ is an n-clone if and only if $[\underline{a}]_{\theta^n} = [\overline{b}]_{\theta^n}$.

Proof. If $E_{\underline{a},b}^{n,\theta}$ is an *n*-clone, then by Proposition 3 (i), $\underline{a} \in [\overline{b}]_{\theta^n}$, i.e., $[\underline{a}]_{\theta^n} =$ $[\bar{b}]_{\theta^n}$. Conversely, let $[\underline{a}]_{\theta^n} = [\bar{b}]_{\theta^n}$. By Proposition 1 (iv), $E_{a,b}^{n,\theta}$ contains all projections. Now, let $f, g_1, \ldots, g_n \in E_{\underline{a}, b}^{n, \theta}$ and $(x_1, \ldots, x_n) \in [\underline{a}]_{\theta^n}$ be arbitrary. Then $g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n) \in [b]_{\theta}$ and therefore $(g_1(x_1, \ldots, x_n), \ldots, g_n(x_1, \ldots, x_n), \ldots, g_n(x_n, \ldots, x_n))$ $g_n(x_1,\ldots,x_n) \in [\overline{b}]_{\theta^n} = [\underline{a}]_{\theta^n}$. Thus, $f(g_1,\ldots,g_n)(x_1,\ldots,x_n) = f(g_1(x_1,\ldots,x_n))$ $(x_n), \ldots, (g_n(x_1, \ldots, x_n)) \in [b]_{\theta}, \text{ i.e., } f(g_1, \ldots, g_n) \in E_{a,b}^{n,\theta}$

Now, if we define $E_{\underline{a}}^{n,\theta} := \{ f \in O^n(A) | f(x_1,\ldots,x_n) \in [f(\underline{a})]_{\theta} \text{ for every } (x_1,\ldots,x_n) \in [f(\underline{a})]_{\theta} \}$ $\ldots, x_n \in [\underline{a}]_{\theta^n}$, then we have the following proposition.

Proposition 16. Let A be an arbitrary finite set and $n \geq 1$ be an arbitrary natural number. For an arbitrary equivalence relation $\theta \neq A \times A$ on A and an arbitrary $\underline{a} \in A^n$ it follows that $E_{\underline{a}}^{n,\theta} = \bigcup_{b \in A} E_{\underline{a},b}^{n,\theta}$.

Proof. (\subseteq) It is clear by definition.

(\supseteq) Let $f \in \bigcup_{b \in A} E_{\underline{a},b}^{n,\theta}$. Then, we can find $b \in A$ such that $f \in E_{\underline{a},b}^{n,\theta}$ and thus for every $(x_1,\ldots,x_n) \in [\underline{a}]_{\theta^n}$, we have $f(x_1,\ldots,x_n), f(\underline{a}) \in [b]_{\theta}$, i.e.,

 $f(x_1,\ldots,x_n)\in [f(\underline{a})]_{\theta}$, i.e., $f\in E^{n,\theta}_{\underline{a}}$. Hence $\bigcup_{b\in A}E^{n,\theta}_{\underline{a},b}\subseteq E^{n,\theta}_{\underline{a}}$ and therefore $E^{n,\theta}_{\underline{a}}=\bigcup_{b\in A}E^{n,\theta}_{\underline{a},b}$.

Theorem 17. Let A be an arbitrary finite set and $n \ge 1$ be an arbitrary natural number. For an arbitrary equivalence relation $\theta \ne A \times A$ on A, it follows that $Pol^n\theta = \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} E^{n,\theta}_{\underline{a},b} = \bigcap_{\underline{a} \in A^n} E^{n,\theta}_{\underline{a}}$.

Proof. (\subseteq) is clear by Proposition 6 and by Proposition 16.

 (\supseteq) Let $f \in \bigcap_{\underline{a} \in A^n} E_{\underline{a}}^{n,\theta}$. For every $(x_i, y_i) \in \theta$, i = 1, ..., n we have $(x_1, ..., x_n) \in [(y_1, ..., y_n)]_{\theta^n}$. By assumption, we know that $f \in E_{(y_1, ..., y_n)}^{n,\theta}$. Therefore $f(x_1, ..., x_n) \in [f(y_1, ..., y_n)]_{\theta}$ and thus $(f(x_1, ..., x_n), f(y_1, ..., y_n)) \in \theta$, i.e., $f \in Pol^n\theta$.

Recall that an h-ary relation ζ on A is called a central relation if ζ satisfies these three properties: (i) totally symmetric, i.e., if $(a_1,\ldots,a_h)\in\zeta$, then $(a_{\sigma(1)},\ldots,a_{\sigma(h)})\in\zeta$ for all permutations σ on $\{1,\ldots,h\}$ (ii) totally reflexive, i.e., $\kappa_A^h\subseteq\zeta$ for $\kappa_A^h:=\{(a_1\ldots,a_h)|\exists\, i\,\exists j\, (i\neq j\wedge a_i=a_j)\}$ and (iii) there exists $\emptyset\neq C\subseteq A$ such that $(c,a_2,\ldots,a_h)\in\zeta$ for every $c\in C$ and for all $a_2,\ldots,a_h\in A$. We call the set C as the central of ζ . Now, we consider an arbitrary h-ary central relation $\zeta,\ h\geq 2$. We use $h\leq |A|$ since otherwise we would have $\zeta=A^h$ and the center of ζ would be trivial. Moreover, by totally symmetry property of ζ , we have $\zeta_k^b=\zeta_k^b$ and $\zeta_k^a=\zeta_k^a$ for every $\underline{a}\in A^n,\ b\in A$ and $k\neq l\in\{1,\ldots,h\}$. Therefore, we can again omit the number k and since we might have many central relation on A, we then use $C_{\underline{a},b}^{n,\zeta}$ instead of $R_{\underline{a},b}^{n,k}$. Without lost of generality, we use implicitly k=h, i.e., by $f\in C_{\underline{a},b}^{n,\zeta}$ we mean n-ary operation satisfying $(f(x_{1,1},\ldots,x_{1,n}),\ldots,f(x_{h-1,1},\ldots,x_{h-1,n}),b)\in\zeta$ for every $(x_{1,i},\ldots,x_{h-1,i},a_i)\in\zeta$, $i=1,\ldots,n$. By the third property of ζ , i.e., for every $(x_1,\ldots,x_{h-1})\in A^{h-1}$ and for all $c\in C$, it follows $(x_1,\ldots,x_{h-1},c)\in\zeta$ and we have the following simple properties.

Proposition 18. Let ζ be an h-ary relation on A with central C. For every $b \in A$ and $\underline{a} \in A^n$ we have the following properties.

- (i) $\zeta^b \subseteq \zeta^c$ for every $c \in C$.
- (ii) $\zeta^{\underline{a}} \subseteq \zeta^{\underline{c}}$ for every $\underline{c} \in C^n$.

By Proposition 1, we have the following properties for an arbitrary h-ary central relation ζ on A.

Proposition 19. Let A be an arbitrary finite set and let $n \ge 1$, $h \ge 2$ be natural numbers. Let ζ be an h-ary central relation on A with C as the central. Then the following propositions are true for every $\underline{a},\underline{a'} \in A^n$ and $b,b',y \in A$.

- (i) $C_{a,b}^{n,\zeta} \neq \emptyset$.
- (ii) If $\zeta^b \subseteq \zeta^{b'}$, then $C_{a,b}^{n,\zeta} \subseteq C_{a,b'}^{n,\zeta}$.
- (iii) If $\zeta^{\underline{a}} \subseteq \zeta^{\underline{a'}}$, then $C^{n,\zeta}_{a',b} \subseteq C^{n,\zeta}_{a,b}$.
- (iv) Let $1 \leq i \leq n$. $C_{a,b}^{n,\zeta}$ contains a projection e_i^n if and only if $\zeta^{a_i} \subseteq \zeta^b$.
- (v) $C_{a,b}^{n,\zeta}$ contains the constant operation c_y^n if and only if $(y,\ldots,y) \in \zeta^b$.
- (vi) If $f \in C^{n,\zeta}_{\overline{b},b'}$ and $g \in C^{n,\zeta}_{a,b}$, then $f + g \in C^{n,\zeta}_{a,b'}$.

As a consequence of Proposition 18 and Proposition 19, we have

Proposition 20. Let A be an arbitrary finite set and let $n \ge 1$, $h \ge 2$ be natural numbers. Let ζ be an h-ary central relation on A with C as the central. Then the following propositions are true for every $a \in A^n$ and $b \in A$.

- (i) $C_{a,b}^{n,\zeta} \subseteq C_{\underline{a},c}^{n,\zeta}$ for every $c \in C$.
- (ii) $C_{c,b}^{n,\zeta} \subseteq C_{a,b}^{n,\zeta}$ for every $\underline{c} \in C^n$.
- (iii) If $b \in C$, then $C_{\underline{a},b}^{n,\zeta}$ contains all projections, contains all constant operations and moreover is an n-clone.
- (iv) If $C_{\underline{a'},b}^{n,\zeta}$ contains all projections for all $\underline{a'} \in A^n$, then $b \in C$.
- (v) If h = 2 and $C_{a,b}^{n,\zeta}$ contains all constant operations, then $b \in C$.
- (vi) If $h \geq 3$, then $C_{\underline{a},b}^{n,\zeta}$ contains all constant operations.

Proof. (i) By Proposition 18 (i) and Proposition 19 (ii).

- (ii) By Proposition 18 (ii) and Proposition 19 (iii).
- (iii) By Proposition 18 (i), Proposition 19 (iv) and Proposition 19 (v). Moreover, since for every $x_1, \ldots, x_{h-1} \in A$ it follows that $(x_1, \ldots, x_{h-1}) \in \zeta^b$, then for every $(x_{1,1}, \ldots, x_{h-1,1}), \ldots, (x_{1,n}, \ldots, x_{h-1,n}) \in \zeta^{\underline{a}}$ and for every $f, g_1, \ldots, g_n \in C_{\underline{a},b}^{n,\zeta}$, we have $(f(g_1, \ldots, g_n)(x_{1,1}, \ldots, x_{1,n}), \ldots, f(g_1, \ldots, g_n)(x_{h-1,1}, \ldots, x_{h-1,n})) \in \zeta^b$, i.e., $f(g_1, \ldots, g_n) \in C_{\underline{a},b}^{n,\zeta}$. Thus $C_{\underline{a},b}^{n,\zeta}$ is an n-clone.

 (iv) Let $(x_1, \ldots, x_{h-1}) \in A^{h-1}$ be arbitrary. Then $(x_1, \ldots, x_{h-1}, x_{h-1}) \in \zeta$.
- (iv) Let $(x_1, \ldots, x_{h-1}) \in A^{h-1}$ be arbitrary. Then $(x_1, \ldots, x_{h-1}, x_{h-1}) \in \zeta$. By assumption, for every $\underline{a'} \in A^n$ such that $a_i' = x_{h-1}$, we have that $C_{\underline{a'},b}^{n,\zeta}$ contains all projections and hence by Proposition 19 (iv), $\zeta^{a_i'} \subseteq \zeta^b$. Therefore, $(x_1, \ldots, x_{h-1}) \in \zeta^{x_{h-1}} = \zeta^{a_i'} \subseteq \zeta^b$. Thus $(x_1, \ldots, x_{h-1}, b) \in \zeta$ and hence $b \in C$ since (x_1, \ldots, x_{h-1}) is arbitrary.

- (v) Let h=2 and let $y\in A$. By assumption, $C_{\underline{a},b}^{n,\zeta}$ contains c_y^n . Therefore, by Proposition 19 (v), $y\in\zeta^b$, i.e., $(y,b)\in\zeta$. Since y is arbitrary we have $b\in C$. (vi) By totally reflexive property of ζ it follows that for every $(y,\ldots,y)\in C_y^n$
- $A^{h-1}, h \geq 3$ we have $(y, \ldots, y, b) \in \zeta$, i.e., $c_y^n \in C_{a,b}^{n,\zeta}$ by Proposition 19 (v).

Proposition 21. Let A be an arbitrary finite set and let $n \ge 1$, $h \ge 2$ be natural numbers. Let ζ be an h-ary central relation on A with C as the central. Then for every $\underline{a} \in A^n$ and $b \in A$, $C_{a,b}^{n,\zeta}$ contains all constant operations if and only if $b \in C \ or \ h \geq 3.$

Proof. If $C_{a,b}^{n,\zeta}$ contains all constant operations and h < 3, i.e., h = 2, then $b \in C$ by Proposition 20 (v). The converse is clear by Proposition 20 (iii) and Proposition 20 (vi).

Proposition 22. Let A be an arbitrary finite set and let $n \ge 1$, $h \ge 2$ be natural numbers. Let ζ be an h-ary central relation on A with C as the central. For $b \in A$, the following propositions are equivalent.

- (i) $C_{a,b}^{n,\zeta}$ contains all projections for all $\underline{a} \in A^n$.
- (ii) $C_{a,b}^{n,\zeta}$ is an n-clone for all $\underline{a} \in A^n$.
- (iii) $b \in C$.

Proof. (i) \Rightarrow (iii) is clear by Proposition 20 (iv).

- (iii)⇒(ii) is clear by Proposition 20 (iii).
- $(ii) \Rightarrow (i)$ is obvious by definition.

The following property is clear by Proposition 6.

Proposition 23. Let A be an arbitrary finite set and let $n \ge 1$, $h \ge 2$ be natural numbers. Let ζ be an h-ary central relation on A with C as the central. Then $Pol^n \zeta \subseteq \bigcap_{\underline{a} \in A^n} \bigcup_{b \in A} C_{\underline{a},b}^{n,\zeta}.$

References

- [1] A. Fearnley, Clones on Three Elements Preserving a Binary Relation, Algebra Universalis **56** (2007) 165–177. doi:10.1007/s00012-007-1985-5
- [2] Á. Szendrei, Clones in Universal Algebra (Les Presses de L' Université de Montréal, 1986).
- [3] I.G. Rosenberg, Über die Funktionale Vollständigkeit in den Mehrwertigen Logiken, Rozpravy Ćeskoslovenské Akad. véd, Ser. Math. Nat. Sci. 80 (1970) 3–93.

- [4] K. Denecke, D. Lau, R. Pöschel and D. Schweigert, *Hyperidentities, Hyperequational Classes and Clone Congruences*, Contributions to General Algebra 7, Verlag Hölder-Pichler-Tempsky, Wien (1991) 97–118.
- [5] K. Denecke and S.L. Wismath, Hyperidentities and Clones (Gordon and Breach Science Publisher, 2000).
- [6] K. Denecke and S.L. Wismath, Universal Algebra and Applications in Theoretical Computer Science (Chapman and Hall, 2002).
- [7] K. Denecke and Y. Susanti, Semigroups of n-ary Operations on Finite Sets, in: Proceedings of International Conference on Algebra on Algebra 2010 Advances in Algebraic Structures, W. Hemakul, S. Wahyuni and P.W. Sy (Ed(s)), (World Scientific, 2012) 157–176. doi:10.1142/9789814366311\$_-\$0011
- [8] K. Denecke and Y. Susanti, On Sets Related to Clones of Quasilinear Operations, in: Proceedings of the 6th SEAMS-GMU International Conference on Mathematics and Its Application 2011, S. Wahyuni, I.E. Wijayanti and D. Rosadi (Ed(s)), (University of Gadjah Mada, 2012) 145–158.
- [9] R. Butkote and K. Denecke, Semigroup Properties of Boolean Operations, Asian-Eur. J. Math. 1 (2008) 157–176.
- [10] R. Butkote, Universal-algebraic and Semigroup-theoretical Properties of Boolean Operations (Dissertation Universität Potsdam, 2009).

Received 22 November 2012 Revised 29 November 2012