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Abstract

For an arbitrary h-ary relation p we are interested to express n-clone
Pol™p in terms of some subsets of the set of all n-ary operations O"(A) on
a finite set A, which are in general not clones but we can obtain Pol"p from
these sets by using intersection and union. Therefore we specify the concept
a function preserves a relation and moreover, we study the properties of this
new concept and the connection between these sets and Pol"p. Particularly
we study RZ: for arbitrary partial order relations, equivalence relations and
central relations.
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1. INTRODUCTION

Let A be an arbitrary set and let O(A) be the set of all operations on the set
A. A clone on the set A is a subset of O(A) that are closed under superposition
and contains all projections. Recall that a projection e} maps every n-tuple
(ai,...,a") € A™ to a;. Clones have been widely studied by many authors for
instance in [1, 2, 3, 4, 5, 6] and [10]. Among these clones, there are six well-
known clones preserving six classes of relations, namely affine relations, bounded
partial order relations, nontrivial equivalence relations, central relations, prime
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permutations, and h-regularly generated relations. It is well-known that these
clones are maximal according to Rosenberg’s characterization (see [3]). We are
interested in the n-ary part of these clones which we call from now on n-clones.
Moreover, we specify the well-known concept of that ”a function preserves a
relation” and show that we get the n-ary part of the maximal clones as union
and intersection of sets of n-ary operations preserving (in our sense) a given
relation. We show that these sets have particular interesting properties for other
consideration in universal algebra.

First, we consider an arbitrary h-ary relation p and we want to represent
Pol™p in terms of some subsets of O™ (A) which in general are not clones, but from
these subsets we can obtain Pol"p by using intersection and union. For this aim,

for arbitrary b € A and a = (a1,...,a,) € A", we define p} := {(z1,...,2-1) €
Ah_1|(x1, ey Tp1,0, %k, ..., xp—1) € p} and p% = {11,y Th-11)s- -,
(T1my > Tho1n)) € (AP (214, T4, i Tk - - Tho1,) € p for every

i € {1,...,n}}. It is clear that pj is a cartesian product of the h — 1 rela-
tions pit,...,pe", Le., pr = ppt X - x pin. We say that f € O"(A) (a,b)x-
preserves p if and only if (f(x1,1,...,Z1n),---, [(@h—11,-- - Th-11)) € pi for ev-
ery ((T1,1,- s Th=11)s- -+ (T1ms -, Th—1,n)) € py. Then for every k € {1,...,h},
we define RZ:{: ={f € O"(A)|f (a,b)-preserves p}. We want to see the proper-
ties of RZ’f.

For further investigation, we recall the following concept of semigroup of
n-ary operations on A. Let A be an arbitrary finite set and let O™(A) be the
set of all n-ary operations on A. On O"(A), we define an operation + by f +
g = f(g,...,9) for arbitrary f,g € O"(A), ie., (f +9)(@) = f(g,--.,9)(x) =
flg(x),...,g(x)) for every z € A. To simplify the notation, we use T for (x, ..., x)
and thus we have (f 4 g)(z) = f(g(z)). Tt is easy to see that the operation + is
associative giving a semigroup (O"(A);+) (see [7, 9] and [10]). It is clear that if
C' is an n-clone on A, then (C;+) is a subsemigroup of (O™(A);+). Moreover, for
every f € A", by 7y we mean the unary operation on A such that 7(x) = f(7)
for every x € A. We use ¢y for the constant n-ary operation with value y.
Particularly for A = {0,1}, we put C} := {f € O"(A4)|f(0) = 0,f(1) = 1},
~Cp = {f € O"(A)|f(0) = 1, (1) = 0}, K§ == {f € O"{A)|£(D) = f(T) = 0}
and K{' := {f € O"(A4)|f(0) = f(1) = 1}. Clearly, C},~C}, K’ and K} are all
disjoint and O™(A) = C} U -C} U K U K. Moreover, the operation + has the
following properties:

g if feC}

- if € -C?%
frg=4{ 9 / o

cy if fe K

¢ if f e Ky

(for more details see [9] and [10]).
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2. PROPERTIES OF RZ:

In this section, we study some properties of R for arbitrary h-ary relation p
on A. The following propositions hold in O™ (A) for every n > 1.

Proposition 1. Let A be an arbitrary finite set and let n > 1, h > 2 and
1 < k < h be natural numbers. Let p be an h-ary relation on A. Then the
following propositions are true for every a,a’ € A™ and b,b',y € A.

() If RZ{: 0, then pi =0 or pb # 0.
(ii) If p} C plf, then Riy C Ry,
(i) If pft C pir then R C RIF
(iv) Let 1 <i<mn. If py # 0, then Rg’f contains a projection el if and only if
P C ph
(v) RZ’: contains a constant operation cy if and only if (y,...,y) € pb.

(vi) If f € Ry, and g € Ry, then [+ g € Ryy.

Proof. (i) Let Rgf # () and let f € Rgf . Assume that pj # 0. Then for ev-
ery ((T1,1,- -+ Th=11), -+ (T1ms -+ Tn1,)) € pg, we have (f(21,1,...,T1,n),-- -,
f(Th-11,---Tn-12)) € pb and thus pl # 0.
(ii) Let pb C pg and let f € RZ::. Then (f(z11,-.-,Z1n), -, f(@h_11,
S Th—1n)) € pi for arbitrary ((z1,1,...,%h-11)s---» (T1,ns---+Tho1m)) € pz
By assumption, (f(z1,1,..-,%1,n),- - f(Th—1,15-- -1 Th—1n)) € pk, ie., f € Ra Y
and therefore Rn K g™ o b,

(iii) Let pg C p,j and let f € RZ,’IZ. Then for every ((z1,1,...,Zh-11),---,

(.’ELn, ey xh*l,n)) S p% we have ((.%'1’1, . 7$h71,1)7 RN ({ELn, ey xh,l,n)) S ,0%,
and thus (f(z11,...,2Z1n),--, f(Tho11s- -, Th—1n)) € pz by assumption, i.e.,
feRryy

(iv) Let pi # 0. Let € be in RZf and let (z14,...,25-1,) € pi'. By
assumption, we can find (21;,...,24-1;) € pzj, i #j=1,...,n. Thus, we
obtain (.’Elﬂ', e ,iL‘h,Li) = (6?($171, e l’Ln), R ,e?(wh,l,l, ey Th—1 n)) € pz and
hence p}* C pz. Conversely, let pi* C PZ- Then for every ((z11,...,Zh-11),---,
(T1m,. . Tho1n)) € Py we have (e (T11,...,T10),. .. ,e?(wh_l,l, e ,xh_l,n)) =

(14,05 Tho1,) € ppt C pi and therefore e]' € RZ::.
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(v) Let ¢y be in RZ’:. Then for every (21,1, Th—11)s---» (T10s - Th—1,n))
€ ,0% we get (y,...,y) = (cp(x11,--21n)s- s Cy(Thor1, - Tho10)) € pz.
Conversely, let (y,...,y) € pz. Then for every ((z1,1,--,Th—1,1),---5 (Z1,0s-- -,
Th-1,)) € p we obtain (cy(@11s s Tin)y o (Tho11s s Tho1)) = (Y-, Y)

€ pz, Le., ¢y € Rg:f.
. k k
(vi) Let f € R and g € Ry Let ((z1,1,- -+, @h-1,1)s -+, (105 -+ Th1,0)

b,b’
€ pi- Then we have (g(z11,...,%10), .-, 9(Th—11s- - Tho1,)) € pﬁ and hence
((g(z1,1s- - 21n), 5 9(@R—11, - Tam1n) - -5 (9(@11, - )5 9 (@R—11,
o @p1n))) € 2. Thus ((F +9) (@11, 1)y (f + 9)(@ho115- -y Tho1n))
=(fl9(x11,-- - 21n))s -, f(9(@h—11,- s Tho1))) € pzl by assumption. ]

Remark 2. By Proposition 1 (vi) it follows that Rg’bk forms subsemigroup of
(O™(A);+) for every b € A and for every 1 < k < h.

Recall that for every clone C, we call the n-ary part C'N O™(A) an n-clone.

Proposition 3. Let A be an arbitrary finite set and let p be an arbitrary h-ary
relation on A. The following assertions hold for every natural number n > 1,
a€ A" and b € A.

(i) If RZ’f is an n-clone, then p; C pi.

(ii) If mp € R;’{f for every [ € RZ’f, then Rg’f forms a subsemigroup of
(O"(A); +). B )

(i) For h =2, if RZ’;” forms a subsemigroup of (O™(A);+), then my € R;f for
every f € RZ’:.

Proof. (i) If RZ”Z? is an n-clone, then RZf contains all projections. Therefore by
Proposition 1 ({v), Py C ,og. )

(ii) Let f,g € Rgf. For every ((z1,1,...,Th—11),--» (T1ms- -+ Tho1,n)) € pf
we have (¢(1,1,---,%1n),-- > 9(Th—11s--- s Th—1n)) € pz and hence

((f + g)(:cl,l, e xl,n), RN (f + g)(wh_l,l, e 7$h—1,n))

= (flg(@r,1,- s 210))s - f9(@R-1,1 - The1n)))

= (Wf(g(xLl, <o 7331,n))7 v ,Wf(g(.’l?h_l’l, v 7$h—1,n))) € Pz

by assumption. Therefore f + g € RZ’;C , l.e

. . Rs’f forms a subsemigroup of
(0" (A); +).
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(iii) Let h = 2. Let f € Rnb and let y € pb. By Proposition 1 (v), ¢y €
Rnf and hence f + ¢ € Rab by assumptlon Thus for every (z1,...,2,) € p%
we have (f + cy)(a:l, ...,my) € pb. Therefore ms(y) = ﬂ'f( Ty, Ty)) =
f(cg(xl, conxy)) = (f+ cZ)(xl, ceeyTy) € pz, ie., mp € Rb’b . ]
Theorem 4. Let A be an arbitrary finite set and let p be a binary relation on A.
For arbitraryn > 1, a € A™ and b € A, it follows that RZ’: forms a subsemigroup
of (O"(A);+) if and only if 7y € R;f for every [ € RZ’{:.

Proof. is clear by Proposition 3 (ii) and Proposition 3 (iii). [ ]
Corollary 5. Let A be an arbitrary finite set and let p be a binary relation on A.
For arbitrary a,b € A, it follows that Ri’lg forms a subsemigroup of (O(A);0) if
and only if R(ll’]; C R;’f.

Proof. 1t is clear by Theorem 4 and the fact that f = my for n = 1. [

Proposition 6. Let A be an arbitrary finite set and let p be an arbitrary h-ary re-
lation on A. For every natural number n > 1 4t follows Pol"p C

h k
Naean Upea Mi=1 RZ,b :

Proof Let f € Pol™p and let a € A™ be arbitrary. We will show that f €

Nr_, Zk for some b € A. Let ((%171,...,:11}1,171),...,($1,n,...,$h,17n)) S

fe, (140 Bho1,is i, Tht1y-- -, Tho1,1) € p for every i € {1,...,n}. Then

(f(xl,h SRR xl,n)v R 7f($k*1,17 R xk*l,n% f(@), f(karl,la B 7xk+1,n)7 SRR

f(@h-11,---,@n—1,)) € p by assumption and therefore (f(z11,...,2Z10),---,
: k

f(xh—l,l) s wTh—Ln)) € pi(g)’ Le., f € R;L:f(g)' n

Example 7. Let A be an arbitrary finite set and let n > 1 be a natural number
and let p be an h- ary relation on A. For every a € A" and b € A, if p = {a €
Ala € A}, then R b is an n-clone if and only if ¢ = b if and only if Rnk
forms a subsemlgroup of (O"(A);+). This can be explained as follows. It is clear
that when R™ a,b is an n-clone, then RZ?f forms a subsemigroup of (O™(A); +) and

moreover, contains all projections. Since p = {@ € A"|a € A}, it follows that
py, contains only (ar,...,an) € p". Thus, a; = €}'(a) = b for every i=1,...,n
and hence a = b. Conversely, 1f a = b, then for every b € A, pk contains only b.

Thus e?(b) = b, i.e., e € R for every 1 < i < n. Now, for every f,g € Rbb’

we have (f 4+ g)(b) = f(b) = b that implies f + g € RE};' Hence, Rg’b is an
n-clone. Furthermore, let Rg’f form a subsemigroup of (O™(A);+). For every
fe Rab’ it follows that f(a) = b. Thus, if g1,...,9, € R™ then we have

ab’

flg1,---y9n)(a) = f(g1,...,91)(a) = (f +g1)(a) = b and thus R&b is an n-clone.
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3. PROPERTIES OF RZf FOR SOME PARTICULAR RELATIONS

In this section, we study some properties of R * for some particular relations,
i.e., partial order relation, equivalence relation and central relation. Instead of

RZf , We use P ¥ for partial order relation <. The following propositions are

true for arbltrary partial order relation < on A.

Proposition 8. Let (A;<) be an arbitrary finite partially ordered set and let
n > 1 be a natural number. Then the following properties hold for every a,a’ €
A", bbb € A and k =1,2.

(i) Fyy #0.
(ii) P;’k Pnlf if and only if b € gg_
(iii) If <j C Sg/, then PQ”,]; C P;}Jk_
(iv) Let1 <i<n. Pg;)’f contains the projection e? if and only if a; € <b.

(v) Pnbk contains the constant operation cy if and only if y € §2. Moreover,
P;Lbk contains exactly | <4 | constant operations.
(vi) Ifge P and f € P:b’f, then f + g € Pry.
Proof. (i) Since b € <! for every b € A and k = 1,2, then by Proposition 1 (v),
e Pk
b ab
(ii) Let Pg;}k C P;gf. Since b € <? then by (i) ¢ € Pn e P i * and hence for
every (Z1,...,op) € S% we have b = ¢} (21,...,2p) € gg . The opp051te direction
is clear by Proposition 1 (ii).
(iii), (iv), (v) and (vi) are clear respectively by (iii), (iv), (v) and (vi) of
Proposition 1. [ |

If A has the least element and the greatest element, then we have the following
properties.

Proposition 9. Let (A;<) be an arbitrary finite partially ordered set and let
n > 1 be a natural number. If A has the least and the greatest element and \ 4
is the least element and \/ 4 is the greatest element in A, then for every a € A"
and b € A the following propositions are true.

(i) P;’bl = O"(A) if and only if b= A4 (P;’b2 = O"(A) if and only if b=/ 4).
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(i) P;’;}j {cp} if and only if a = N,y and b=\/, (P;;)2 = {c}} if and only if
a=\,andb=A\,).

Proof. We prove for k = 2 and similar way for & = 1.

(i) Let PZ}? = O"(A). Then ¢ € sz for all y € A and hence for all
(T1,...,x,) €
<5 we obtain y = cy(T1,.. ., ) € <b for every y € A, ie., b = V4. Con-
versely, let b =\/, and let f € O"(A). Then for all (z1,...,2,) € <5, we have
fl@r,... mn) € <, ie., O"(A) = PIY.

(i) Let Pnb2 = {c'}. Assume a # \/ 4. If b=/ 4, then by (i), Pnb2 =O0"(A),
a contradiction. If b # \/ 4, then consider an n-ary operation f € O" (A) satisfying

f(x1,...,z,) = b for every (z1,...,2,) # V4, and f(\/4) = V4. This f is not
equal to ¢ and is in Py, Hence P # {0}, a contradiction Assume now b #

A 4. Then by Proposition 8 (v), {CK gt C Ph b , a contradiction. Conversely,
let f € P;f = P%’j/\A and let (x1,...,2,) € A™. Since (x1,...,2,) € S;/A, then

flx1,...,2p) € Sé\A, e, f(x1,...,xn) = Ay le., [ = c’/‘\A. Hence P:;)Q = {c}'}.
| |

Theorem 10. Let (A; <) be an arbitrary finite partially ordered set and let n > 1
be a natural number. For arbitrary a € A™ and b € A the following propositions
are equivalent for k=1, 2.

(i) P;;}k is an n-clone.

(ii) P/ _P”k

a,

(iii) a € <} and P C P"k.

Proof. (i)=(ii) Let P:;)k be an n-clone. Then by Proposition 3 (i), <% C
§Z and thus by Proposition 8 (iii), ngb C Pp,. Now, let f € P}y and let

(y1,... ,yn) E <5, ie., y; € <b for every i = 1,2,...,n. Then by Proposition 8
(v), ey, € Py * and hence f(c" ChpseeesCy) € Pnk for 1 < i < n. Therefore, for ev-

ery (a:l,...,:rn) Egk, fler Chpseees Zn)(arl,..., )ES and hence f(yl,...,yn):
fleg, (1, yn),ooosey (w1, x0)) = fleg, ey (@1, @) € <b. ie,

fe Pfl’k. Thus P"’k - Pf“k and hence P:})k = Pznl;k.

(11) (iii) By PI‘OpOblthIl 8 (iv), Pgn l’)k contains all projections. Therefore

Pgb = P” contains all projections and hence by Proposition 8 (iv), a; € Sg for

every i € {1, ...,n}, ie, a€ <b
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(iii)=(i) By assumption and Proposition 8 (iv), P}, contains all projections.
Moreover, let f,g1,...,9, be in Py, ngb. Then, g;(x1,...,z,) € SZ for every
(z1,...,2n) € <pandi=1,2,...,n. Thus, (g1(z1,...,2Zn), ..., gn(@1,...,2n)) €

<b. Hence for every (z1,...,25) € <%, f(g1,---, gn) (@1, ..., 2p) = f(gl(azl,...,
Tn)y .-y Gn(T1s. .., 1)) € <b. Therefore, f(g1,...,0n) € P"bk and hence P"b is
an n-clone. [ |

Theorem 11. Let (A;<) be an arbitrary finite partially ordered set and let
n > 1 be a natural number. For every a € A", b € A it follows that Pol™ <

1 2
= Nuean Upea(Papy NEL3)-

Proof. (C) is clear by Proposition 6.

(2) Let f € Nyean UbeA(P;bl Pgbz) Let (uj,v;) € <, i =1,2,...,n. Now,
take a = u. By assumption, for this a € A", we can ﬁnd b € A such that
/€ P:; A P, Therefore f(u) € <4 and f(0) € <0, ie. (f(w). /() € <.
Hence f € Pol"pA [

Example 12. Let A = {0,1}. By Proposition 9, P{ﬁ = {c{} and ng’ll =
{c}'}. Moreover, Pn’1 = 0"({0,1}) = P, 2. Therefore P"bl np; 2 = P”’O2 and
P"’1 Pglz Pnl and hence UbeA(P(Z’bl ﬂP(Zf) = P;fll P”0 and we get Pol™ <

= maeAn Ubea(Py5 N ! NP, 2) = ﬂaeAn(P;,’ll UPC:’OQ) by Theorem 11. Now consider
all operations on O2({0, 1}) as follows B

fi fo fs fa fs fo fr fs fo fio Jfuu fiz fiz fuu fi5 fie
©0)0 0 000000 1 1 1 1 1 1 1 1
1o o 1 100 1100 1 1 0 0 1 1
(1,0) o 1 o1 0o 1 O 1 0 1 0 1 0 1 0 1
1,L) 0 0 0 0 1 1 1 100 0 0 1 1 1 1

Remark 13. From above example, we have fi = ¢3, fi¢ = ¢ and we obtain

K§ = {c§, fo, f3, fa}, CF = {f57f67f7:f8} -C7 = {fo, f107f11,f12} and Ki =
{f13, f14, f15, c1}. By Proposition 9, P( = {2} and P 0.0)1 = {c2}. Moreover,
it is easy to see that

211)71 = {fr, fs, fi5, 3} P(Zd’go)’o =KpucCs
! 1 :{f67f87f14yc711} P(%?l)’oz{c(%af%f&ffi}
Py, =Ciu Kt Py o =1 fs. fs. f1}

and hence we obtain Pol?> <= C7 U {c3,c3}.
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Generally, for A = {0 < 1} and for every n > 1, by applying Proposition 8, we
have some properties on P Wb ! and P™ b as follows

(i) € P;;)l and ¢} € ng since 1 € <% and 0 € <§.

(ii) If a # 0, then P”’1 NCy # (Z) This fact holds since 1 € <% which implies
el € C} is contamed in P by Proposition 8 (iv) for some ¢ such that
a; # 0. Similarly, if a # 1, then Pgnl? NCy # 0.

(iii) If b = 1, then P! N (K§ U—-CF) = 0. Tt is clear that T € <. But for all
f € Kp U—=C%, we have f(1) = 0 ¢ <1 and hence f ¢ P;}}. Similarly if
b =0, then P/ N (K U~C}) = 0.
(iv) Pol™ <= CU{cj,c}} for some C C CY.
Now, we come to the properties of RZ’f for an arbitrary equivalence relation 6 on
A. By symmetry property of 6, it follows that 8% = 65 and 0f = 05 for every b € A
and a € A" and these imply RZ’; = RZ’? . Therefore, we can omit the number k.

Moreover, since 82 = 63 is actually an equivalence class that contains b, then we
use [b]y instead 6° and we use En’be instead of Rnf since we might have various

equivalence relations on A. Thus, by f € E™ b we mean an n-ary operation such
that (f(z1,...,2n),b) € 0 for every (z1,...,x,) satisfying (z;,a;) € 6 for every
1=1,...,n
Proposition 14. Let A be an arbitrary finite set and n > 1 be an arbitrary
natural number. For an arbitrary equivalence relation 04 # A x A on A, the
following properties are true for arbitrary a,a’ € A™ and b,V € A.

(i) LY 0.

(ii) [blo = [V']g if and only if E,) ) ‘nE™ W O £ 0 if and only ZfE Egba/

(iii) [algn = [/)gn if and only if E™ = E™S

(iv) If [algn # [a/]gn, then By NV ELS, # 0.

(v) Let 1 <i<n. Eg’be contains a projection e}’ if and only if [blg = |ails.

(vi) En’be contains a constant operation cy if and only if y € [blg. Moreover,

EZ’be contains precisely |[blg| constant operations.
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(vii) If f € Ebb, and g € E;’f, then f+g € EZ{?/

Proof. (i) By reflexivity of  and Proposition 1 (v), ¢}’ € E:be, ie., B, )

(ii) By Proposition 1 (ii), if [b] [b'], then E"g = Ea - Thus if [b]g = [b'],
then Eab N Ea y 7 0 since E 75 0 by (i). Conversely, let Ene N Ez;”be, # () and
let f e E"G N E”be, Then for every (T1,...,2y) € [a]on we have flz1,...,2p) €
[blg N[V ]9 and hence [blg = [V']6.

(iii) By Proposition 1 (iii), if [a]gn = [a/]gn, then E"’be = En’(9 Conversely,
let E;’be = E&%. Assume that [a]gn # [d/]gn, i.e., a & [@/]on and a’ & [a]pn. Since
64 # A x A, then there is V' € A such that [b ]9 # [V']g. Now consider an n-ary
operation f on A such that f(z1,...,2,) = b for all (1, ..., 2n) E [a]gn and
f(a’) = V. Then it is clear that f € En but f € E'; ’b and hence Eab + E" ’b’

contradiction.

(iv) Let [a]gn # [a/]gn. Consider an f € O™(A) such that f(x1,...,z,) = bfor

every (x1,...,op) € [a ]gn and f(z1,...,2,) = b for every (X1,...,xn) € [d]pn
It is clear that fEE ﬂE,band hence E.” ﬂE,b/ # .
(v), (vi) and (vu) are clear by Proposmon 1 (iv), (v) and (vi). ]

Theorem 15. Let A be an arbitrary finite set and n > 1 be an arbitrary natural
number and let 6 # A x A be an arbitrary equivalence relation on A. Then for
arbitrary a € A™ and b € A it follows that Eg’be is an n-clone if and only if

Proof. 1If E™ b is an n-clone, then by Proposition 3 (i), a € [blgn, i.e., [algn =
[b]gn. Conversely, let [a]gn = [b]gn. By Proposition 1 (iv), "be contains all
projections. Now, let f,g1,...,9, € E' b 9 and (z1,...,2,) € [a]gn be arbitrary.

Then 91($1,---7$n2,--~,9n($1,-- ,Tp) € [blp and therefore (g1(z1, o yxn), e ny
gn(@1,-..,2p)) € [blon = [a]gn. Thus, f(gly-n,gn)(ﬂojhn-,wn) = flor(z1,. .-,
Tn)y - G215+ @n)) € [Dlg, ey fg1,--.50n) € Egy. u

Now, if we define Ep? := {f € O"(A)|f(x1,...,2a) € [f(a)]y for every (z1,
., Tp) € [a]on }, then we have the following proposition.

Proposition 16. Let A be an arbitrary finite set and n > 1 be an arbitrary
natural number. For an arbitrary equivalence relation 6 # A x A on A and an
arbitrary a € A™ it follows that Eg’e = Upea EZ’be.
Proof. (C) It is clear by definition.

(2) Let f € Upea EZ’,?. Then, we can find b € A such that f € Ene
and thus for every (z1,...,2,) € [a]gn, we have f(z1,...,2n), f(a) € [bly, ie.,
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flzy, ... an) € [f(@)o, ie., f € Er® Hence Usea E:’g C EX and therefore
By’ = Usea E:be =

Theorem 17. Let A be an arbitrary finite set and n > 1 be an arbitrary natural
number. For an arbitrary equivalence relation 0 = A x A on A, it follows that

0 0
Pol™f = mgeA" Usea Eg,b = ﬂgeA" Eg”.

Proof. (C) is clear by Proposition 6 and by Proposition 16.

(2) Let f € Nyean EX?. For every (zi,y:) € 0, i = 1,...,n we have

(x1,...,2n) € [(Y1,-.-,Yn)]on. By assumption, we know that f € E@f...yn)'

Therefore f(z1,...,@n) € [f(y1s- - yn)lo and thus (f(z1, .., 20), f(Y1,- - )
€0, ie., fe Pol"0.

Recall that an h-ary relation ¢ on A is called a central relation if { satisfies these
three properties: (i) totally symmetric, i.e., if (a1,...,an) € ¢, then (asq),. ..,
ay(ny) € ¢ for all permutations o on {1,...,h} (ii) totally reflexive, i.e., nf}‘ C¢
for kf == {(a1...,an)|3i3j (i # j Aa; = a;)} and (iii) there exists ) # C C A
such that (c,aqg,...,ap) € ¢ for every ¢ € C and for all ag,...,a, € A. We
call the set C as the central of (. Now, we consider an arbitrary h-ary central
relation ¢, h > 2. We use h < |A| since otherwise we would have ¢ = A"
and the center of ¢ would be trivial. Moreover, by totally symmetry property
of ¢, wehave{,g:g“lbandg“,%:ﬁl@foreverygeA”,beAandk;ﬁl6
{1,...,h}. Therefore, we can again omit the number k£ and since we might
have many central relation on A, we then use C(Z’bc instead of RZf . Without

lost of generality, we use implicitly £ = h, i.e., by f € Cgb’bc we mean n-ary

operation satisfying (f(z1,1,...,Z1n),---, f(@n—11,.-- ,mh_l;;),b) € ( for every
(1,45, Th—14,0;) € ¢, i =1,...,n. By the third property of ¢, i.e., for every
(z1,...,25_1) € AP and for all ¢ € C, it follows (x1,...,24_1,¢) € ¢ and we

have the following simple properties.

Proposition 18. Let ( be an h-ary relation on A with central C. For every
be A and a € A™ we have the following properties.

(i) ¢b C¢e for every c € C.
(ii) ¢2 C (& for every c € C™.

By Proposition 1, we have the following properties for an arbitrary h-ary central
relation ¢ on A.

Proposition 19. Let A be an arbitrary finite set and let n > 1, h > 2 be natural
numbers. Let ¢ be an h-ary central relation on A with C' as the central. Then the
following propositions are true for every a,a’ € A™ and b,V',y € A.
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(i) Ciy # 0.
(ii) If ¢ C ¢Y, then Oy € Ol
(i) If ¢2 C ¢, then Cl5 C Cy .
(iv) Let 1 <i<n. C;’If contains a projection el if and only if (% C (°.
(v) C;’bc contains the constant operation cy if and only if (y,...,y) € ¢b.

(vi) If f € Cfy and g € Gy, then [ +g € Cyyy.

As a consequence of Proposition 18 and Proposition 19, we have

Proposition 20. Let A be an arbitrary finite set and let n > 1, h > 2 be natural
numbers. Let C be an h-ary central relation on A with C as the central. Then the
following propositions are true for every a € A™ and b € A.

(i) C’Z’bc C (755 for every c € C.
(ii) ngf C Cgf for every c € C™.

(iii) Ifb € C, then C:’b contains all projections, contains all constant operations
and moreover is an n-clone.

(iv) If C’;L,’% contains all projections for all a’ € A™, then b € C.
(v) If h=2 and C’;l’bc contains all constant operations, then b € C.

(vi) If h > 3, then C'g’bc contains all constant operations.

Proof. (i) By Proposition 18 (i) and Proposition 19 (ii).

(ii) By Proposition 18 (ii) and Proposition 19 (iii).

(iii) By Proposition 18 (i), Proposition 19 (iv) and Proposition 19 (v). More-
over, since for every z1,..., 2,1 € A it follows that (z1,...,z4_1) € ¢?, then for
every (Ti1,---sTh—11)s---»(T1ns---,Th—1n) € ¢* and for every f,g1,...,9n €
Cgf, we have (f(g1,.--,9n)(@115-- -, Z1n), - f(91,- s ) (Th=11,- s Th—11))
e ¢b e, fg1,...,9n) € CZ’bC. Thus C’Z’f is an n-clone.

(iv) Let (21,...,2n_1) € AP~! be arbitrary. Then (z1,...,25_1,74_1) € .
By assumption, for every a’ € A" such that a;/ = z5,_1, we have that CZZ/,%
contains all projections and hence by Proposition 19 (iv), (ai/ C (b, Therefore,
(x1,...,xp—1) € (*r-1 = ¢%' C ¢b. Thus (r1,...,2p-1,b) € ¢ and hence b € C
since (x1,...,2xn_1) is arbitrary.
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v) Let h = 2 and let y € A. By assumption, C™ contains ¢ Therefore,
a,b

7
a Y-
by Proposition 19 (v), y € ¢%, i.e., (y,b) € (. Since y is arbitrary we have b € C.

(vi) By totally reflexive property of ¢ it follows that for every (y,...,y) €

ARl 1 > 3 we have (y,...,y,b) €(, ie., cy € Cg’bg by Proposition 19 (v). [

Proposition 21. Let A be an arbitrary finite set and let n > 1, h > 2 be natural
numbers. Let ¢ be an h-ary central relation on A with C as the central. Then

for every a € A™ and b € A, Cg’bc contains all constant operations if and only if
beC orh>3. -

Proof. If C"; contains all constant operations and h < 3, i.e., h = 2, then
b € C by Proposition 20 (v). The converse is clear by Proposition 20 (iii) and
Proposition 20 (vi). ]

Proposition 22. Let A be an arbitrary finite set and let n > 1, h > 2 be natural
numbers. Let ( be an h-ary central relation on A with C as the central. For
b e A, the following propositions are equivalent.

(i) Cg’bc contains all projections for all a € A™.

(ii) Cg”bc is an n-clone for all a € A™.
(iii) be C.

Proof. (i)=(iii) is clear by Proposition 20 (iv).

(iii)=(ii) is clear by Proposition 20 (iii).

(ii)=(i) is obvious by definition. ]
The following property is clear by Proposition 6.

Proposition 23. Let A be an arbitrary finite set and let n > 1, h > 2 be natural
numbers. Let ¢ be an h-ary central relation on A with C as the central. Then

Pol"¢ C Nyean Upea Cg,f'
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