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Abstract

For a class of hypersubstitutions K, we define the K-solidity of general
varieties of tree languages (GVTLs) that contain tree languages over all
alphabets, general varieties of finite algebras (GVFAs), and general varieties
of finite congruences (GVFCs). We show that if K is a so-called category of
substitutions, a GVTL is K-solid exactly in case the corresponding GVFA,
or the corresponding GVFC, is K-solid. We establish the solidity status
of several known GVTLs with respect to certain categories of substitutions
derived from some important classes of tree homomorphisms.
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1. Introduction

The solidity of varieties of algebras is an extensively studied topic. For general
expositions and extensive bibliographies, the reader may consult Schweigert [32],
Koppitz and Denecke [26], and Denecke and Wismath [10, 11], where also appro-
priate references to the important early work by people like J. Aczél, V.D. Be-
lousov and W. Taylor can be found. A hypersubsitution is a mapping that re-
places in terms each operation symbol with a term of the same arity, and a variety
is said to be solid if every hypersubstitution turns each identity satisfied by the
variety to an identity also satisfied by the variety. Solid varieties were introduced
by Graczyńska and Schweigert [20] who also noted that the solidity of a vari-
ety can be defined in terms of the operator D that from a class of algebras U

forms the class D(U) of all derived algebras obtained from members of U by a
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hypersubstitution. The notion of M -solidity of Denecke and Reichel [9] is also
very useful here since few of our varieties are fully solid; for a submonoid M of
the monoid of all hypersubstitutions of the given type, a variety is M -solid if its
set of identities is closed under all members of M . Although not used here, we
should also mention the work on solid pseudovarieties by Graczyńska, Pöschel
and Volkov [21] and Pibaljommee’s study [27] of M -solid pseudovarieties.

Independently of these developments in algebra, Thatcher [37] defined tree
homomorphisms as special tree transformations. Engelfriet’s fundamental study
[13] of compositions and decompositions of tree transformations clearly shows
the importance of tree homomorphisms. They also appear in various models of
syntax-directed translation. For such matters, cf. [2, 16, 17, 18]. When trees are
defined as terms, as one usually does, it is obvious that tree homomorphisms and
hypersubstitutions are closely related. We shall clarify this relationship.

It is well known [17, 18] that the preimage of a regular tree language under
any tree homomorphism is also regular, but few known families of special regular
tree languages share this property. Many of these families are so-called varieties of
tree languages. There are a few different approaches to varieties of tree languages
(cf. [36] for a survey). In [35] the theory is presented for general varieties of tree
languages (GVTLs), which contain tree languages over all ranked alphabets, and
the matching general varieties of finite algebras (GFVAs) and general varieties
of finite congruences (GVFCs). This is a good framework here, too, as tree
homomorphisms typically change the ranked alphabets of trees, and as many
natural families of regular tree languages are known to be GVTLs. We may also
note that the definition of GVTLs already involves a mild solidity condition.

Baltazar [4] considers the M -solidity of Almeida’s [1] varieties of V -languages,
pseudovarieties, and varieties of filters of V -congruences, where M is a monoid of
hypersubstitutions and V is a given pseudovariety, and establishes some connec-
tions between the M -solidity of a pseudovariety and the M -solidity of the cor-
responding varieties of V -languages. A part of our paper parallels these results
but we prefer an independent presentation that develops the needed conceptual
framework for the theory of general varieties. In fact, it appeared counterpro-
ductive to try to translate the results of [4] to our setting. Denecke and Koppitz
[7] consider the M -solidity of positive varieties.

Section 2 recalls a few basic concepts and fixes some notation. In Section 3
we clarify the relation between tree homomorphisms and hypersubstitutions. A
natural correspondence is achieved by slightly restricting the class of tree homo-
morphisms considered. Indeed, each such tree homomorphism has an underlying
hypersubstitution that determines how it transforms the inner nodes of trees, and
each hypersubstitution yields a set of such tree homomorphisms. This restriction
on the tree homomorphisms has no effect on our notions of general varieties of
tree languages, finite algebras or finite congruences. The systems of hypersubsti-
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tutions that will correspond to the monoids of hypersubstitutions of the theory
of M -solidity, we call categories of substitutions (without suggesting any uses of
category theory). We shall consider several such categories that we derive from
some well-known types of tree homomorphisms.

In Section 4 we recall from [35] some basic notions concerning GVFAs. In
Section 5, the solidity of a GVFA is defined in the natural way: if K is a category of
substitutions, a GVFA U is said to be K-solid if DK(U) ⊆ U, where DK(U) is the
class of all derived algebras obtained from a member of U by a hypersubstitution
from K. We give some properties of the operators DK and a representation for
the K-solid GVFA generated by a given class of finite algebras. We also define a
new product of finite algebras based on a general hypersubstitution.

For a category of substitutions K, we call a tree homomorphism a K-morphism
if its underlying hypersubstitution belongs to K. In Section 6 a GVTL V is de-
fined to be K-solid if for any K-morphism ϕ, the pre-image Tϕ−1 of any tree
language T in V is also in V . We show that if a GVTL is K-solid, then so is the
corresponding GVFA, and conversely. These results have partial counterparts
in [4].

In Section 7 we define the K-solidity of a GVFC and show that if a GVFC
is K-solid, then so is the corresponding GVTL. However, instead of proving also
the converse, we complete the picture by showing that if a GVFA is K-solid, then
so is the corresponding GVFC.

Section 8 forms the other main part of the paper. We settle the solidity status
of several known general varieties of tree languages with respect to the categories
of linear, non-deleting, strict, symbol-to-symbol and alphabetic substitutions as
well as their intersections. The nontrivial GVTLs considered are those of nilpo-
tent, definite, reverse definite, generalized definite, locally testable, aperiodic and
piecewise testable tree languages and, in many cases, some sub-varieties of these.
Due to the inclusion relations between the categories of substitutions, depicted in
Figure 1, it suffices for each GVTL to prove just a couple of positive and negative
solidity results. In Section 9 we make some concluding remarks.

I thank Klaus Denecke and the anonymous Referee for their useful remarks.

2. General preliminaries

We may write A := B to emphasize that A is defined to be B. Similarly, A :⇔ B
means that A is defined by the condition expressed by B. For any integer n ≥ 0,
let [n] := {1, . . . , n}. For a relation ρ ⊆ A × B, the fact that (a, b) ∈ ρ is also
expressed by a ρ b or a ≡ρ b. For any a ∈ A, let aρ := {b | aρb}. For an
equivalence relation, we write [a]ρ, or just [a], for aρ. For any A′ ⊆ A, let A′ρ :=
{b ∈ B | (∃a ∈ A′) a ρ b}. The converse of ρ is the relation ρ−1 := {(b, a) | aρb}
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(⊆ B × A). The composition of two relations ρ ⊆ A × B and ρ′ ⊆ B × C is the
relation ρ ◦ ρ′ := {(a, c) | a ∈ A, c ∈ C, (∃b ∈ B) aρb and bρ′c}.

For a mapping ϕ : A → B, the image ϕ(a) of an element a ∈ A is also
denoted by aϕ. Especially homomorphisms will be treated this way as right
operators and the composition of ϕ : A → B and ψ : B → C is written as ϕψ.
For any sets A1, . . . , An (n ≥ 1) and any i ∈ [n], we let πi denote the ith projection
A1 × · · · ×An → Ai, (a1, . . . , an) 7→ ai,.

A ranked alphabet Σ is a finite set of symbols each of which has a unique
positive integer arity. For any m ≥ 1, the set of m-ary symbols in Σ is denoted
by Σm. The rank type of Σ is the set r(Σ) := {m | Σm 6= ∅}. In examples we
write Σ = {f1/m1, . . . , fk/mk} when Σ consists of the symbols f1, . . . , fk of the
respective arities m1, . . . ,mk. Similarly as in the theory of hypersubstitutions (cf.
[8, 26, 32]), we assume that ranked alphabets contain no nullary symbols. In what
follows, Σ, Ω, Γ and ∆ are ranked alphabets. In addition to ranked alphabets,
we use ordinary finite nonempty alphabets X,Y, Z, . . . that we call leaf alphabets.
These are assumed to be disjoint from the ranked alphabets. Furthermore, let
Ξ := {ξ1, ξ2, ξ3, . . .} be a countably infinite set of variables which do not appear
in any of the other alphabets. For any n ≥ 1, we set Ξn := {ξ1, . . . , ξn}.

For any ranked alphabet Σ and any set of symbols S such that Σ ∩ S = ∅,
the set TΣ(S) of Σ-terms over S is the smallest set T such that S ⊆ T , and
f(t1, . . . , tm) ∈ T whenever m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ T . If S is a
leaf alphabet X, such terms are regarded in the usual way as representations of
labeled trees, and we call them ΣX-trees. Subsets of TΣ(X) are called ΣX-tree
languages. We may also speak simply about trees and tree languages without
specifying the alphabets. The set of subtrees sub(t), the height hg(t) and the root
(symbol) root(t) of a ΣX-tree t are defined as follows:

(1) sub(x) = {x}, hg(t) = 0 and root(t) = x for any x ∈ X;

(2) sub(t) = {t} ∪ sub(t1)∪ . . .∪ sub(tm), hg(t) = max{hg(t1), . . . , hg(tm)}+ 1
and root(t) = f for t = f(t1, . . . , tm).

For any n ≥ 1, TΣ(Ξn) is the set of n-ary Σ-terms, and TΣ(Ξ) :=
⋃
n≥1 TΣ(Ξn)

is the set of all Σ-terms with variables. If t ∈ TΣ(Ξn) and t1, . . . , tn are terms of
any kind, t[t1, . . . , tn] denotes the term obtained from t by substituting for every
occurrence of a variable ξ1, . . . , ξn the respective term t1, . . . , tn.

Let ξ be a special symbol not in any of our alphabets. A ΣX-context is a
Σ(X ∪ {ξ})-tree in which ξ appears exactly once. The set of all ΣX-contexts is
denoted by CΣ(X). If p, q ∈ CΣ(X), then p · q = q(p) is the ΣX-context obtained
from q by replacing the ξ in it with p. Similarly, if t ∈ TΣ(X) and p ∈ CΣ(X),
then t · p = p(t) is the ΣX-tree obtained when the ξ in p is replaced with t.
Clearly, CΣ(X) forms a monoid with p · q as the product and ξ as the unit. The
powers pn of a ΣX-context are defined thus: p0 = ξ and pn = pn−1 · p (n ≥ 1).
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Any ranked alphabet Σ is also used as a set of operation symbols, and a Σ-
algebra A consists of a nonempty set A and a Σ-indexed family of operations
(fA | f ∈ Σ) on A such that if f ∈ Σm, then fA : Am → A is an m-ary operation
on A. We write simply A = (A,Σ) without any symbol for the assignment
f 7→ fA. Note that by our above assumption about ranked alphabets, there
are no nullary operations. Subalgebras, homomorphisms and direct products are
defined as usual (cf. [5, 6, 11], for example). If A and B are isomorphic, we write
A ∼= B, and if there is an epimorphism ϕ : A → B, then B is an image of A,
B և A in symbols. If A is a subalgebra of B, we write A ⊑ B. Furthermore, B
is said to cover A, expressed by A � B, if A is an image of a subalgebra of B.

For any Σ and X, the ΣX-term algebra TΣ(X) = (TΣ(X),Σ) is defined
by putting fTΣ(X)(t1, . . . , tm) = f(t1, . . . , tm) for all m ∈ r(Σ), f ∈ Σm and
t1, . . . , tm ∈ TΣ(X). It is generated by X and any mapping α : X → A of X into
any Σ-algebra A = (A,Σ) has a unique homomorphic extension α̂ : TΣ(X) → A.
If tA : An → A is the term function defined in A by a term t ∈ TΣ(Ξn), then
tA(a1, . . . , an) = tα̂ for all (a1, . . . , an) ∈ An, when α̂ : TΣ(Ξn) → A is obtained
from the map α : Ξn → A, ξi 7→ ai.

A mapping p : A→ A is an elementary translation of A = (A,Σ) if there exist
an m ∈ r(Σ), an f ∈ Σm, an i ∈ [m], and elements a1, . . . , ai−1, ai+1, . . . , am ∈ A
such that p(a) = fA(a1, . . . , ai−1, a, ai+1, . . . , am) for every a ∈ A. The set Tr(A)
of all translations of A is the smallest set of unary operations on A that contains
the identity map 1A : A → A, a 7→ a, and all the elementary translations, and is
closed under composition. It is well known [5, 6] that an equivalence on A is a
congruence of A exactly in case it is invariant with respect to every (elementary)
translation of A. The translations of the term algebra TΣ(X) correspond to
ΣX-contexts: for any p ∈ Tr(TΣ(X)), there is a unique q ∈ CΣ(X) such that
p(t) = q(t) for every t ∈ TΣ(X), and conversely.

3. Tree homomorphisms and hypersubstitutions

We shall now clarify the relation between hypersubstitutions (cf. [26, 10, 11, 32])
and tree homomorphisms (cf. [37, 13, 2, 17, 18]). Then we introduce the systems
of hypersubstitutions and tree homomorphisms to be used for defining our notions
of solidity.

Definition 3.1. A tree homomorphism ϕ : TΣ(X) → TΩ(Y ) is determined by
a mapping ϕX : X → TΩ(Y ) and a mapping ϕm : Σm → TΩ(Y ∪ Ξm) for each
m ∈ r(Σ) as follows:

(1) xϕ = ϕX(x) for x ∈ X, and

(2) tϕ = ϕm(f)[t1ϕ, . . . , tmϕ] for t = f(t1, . . . , tm).
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Definition 3.2. A ΣΩ-hypersubstitution is a mapping κ : Σ → TΩ(Ξ) such
that if f ∈ Σm, then κ(f) ∈ TΩ(Ξm). We write κ : Σ → Ω and call these
mappings simply ΣΩ-substitutions, or just substitutions without specifying the
ranked alphabets. Let S(Σ,Ω) denote the set of ΣΩ-substitutions

A substitution κ : Σ → Ω is extended to a mapping κ̂ : TΣ(Ξ) → TΩ(Ξ) by
setting ξiκ̂ = ξi for ξi ∈ Ξ, and tκ̂ = κ(f)[t1κ̂, . . . , tmκ̂] for t = f(t1, . . . , tm).

For each n ≥ 1, we get a mapping κ̂n : TΣ(Ξn) → TΩ(Ξn) as a restriction of
κ̂. We denote also κ̂ and κ̂n by κ if there is no danger of confusion.

The composition κλ of a ΣΩ-substitution κ and an ΩΓ-substitution λ is the
ΣΓ-substitution κλ : Σ → Γ such that (κλ)(f) = λ̂(κ(f)) for every f ∈ Σ. For
each ranked alphabet Σ, we define the identity ΣΣ-substitution ιΣ : Σ → Σ by
setting ιΣ(f) = f(ξ1, . . . , ξm) for all m ∈ r(Σ) and f ∈ Σm.

For any Σ, the ΣΣ-substitutions are just the ordinary hypersubstitutions of type
Σ. It is also obvious that κ̂λ = κ̂λ̂, (κλ)µ = κ(λµ), and ιΣκ = κ = κιΩ for any
substitutions κ : Σ → Ω, λ : Ω → Γ and µ : Γ → ∆.

Any ΣΩ-substitution κ yields a tree homomorphism ϕ : TΣ(X) → TΩ(Y )
such that ϕm(f) = κ(f) for all m ∈ r(Σ) and f ∈ Σm, when we introduce a
mapping ϕX : X → TΩ(Y ). The converse construction is not always possible
since for a tree homomorphism ϕ : TΣ(X) → TΩ(Y ), the terms ϕm(f) may
include also symbols from Y . We eliminate this discrepancy as follows.

Definition 3.3. A tree homomorphism ϕ : TΣ(X) → TΩ(Y ) is pure if ϕm(f) ∈
TΩ(Ξm) for all m ∈ r(Σ) and f ∈ Σm. The underlying substitution ϕ̇ : Σ → Ω of a
pure tree homomorphism ϕ : TΣ(X) → TΩ(Y ) is defined by setting ϕ̇(f) = ϕm(f)
for all m ∈ r(Σ) and f ∈ Σm.

Clearly, a pure tree homomorphism ϕ : TΣ(X) → TΣ(Y ) is a homomorphism of
Σ-algebras TΣ(X) → TΣ(Y ) if and only if ϕ̇ = ιΣ. Moreover, ˙(ϕψ) = ϕ̇ψ̇ for any
pure tree homomorphisms ϕ : TΣ(X) → TΩ(Y ) and ψ : TΩ(Y ) → TΓ(Z).

Any pure tree homomorphism has a unique underlying substitution, but
many pure tree homomorphisms ϕ : TΣ(X) → TΩ(Y ) belong to the same ΣΩ-
substitution because the map ϕX : X → TΩ(Y ) can be freely chosen.

The pure tree homomorphisms are also obtained from the following notion
introduced by G lazek [19] and Kolibiar [25] (cf. also [11, 26, 32]).

Definition 3.4. A mapping ϕ : A → B is a semi-weak homomorphism from an
algebra A = (A,Σ) to an algebra B = (B,Ω), if for all m ∈ r(Σ) and f ∈ Σm,
there is a term t ∈ TΩ(Ξm) such that fA(a1, . . . , am)ϕ = tB(a1ϕ, . . . , amϕ) for all
a1, . . . , am ∈ A.

The following observation has a straightforward proof.
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Proposition 3.5. A mapping ϕ : TΣ(X) → TΩ(Y ) is a semi-weak homomor-
phism from TΣ(X) to TΩ(Y ) if and only if it is a pure tree homomorphism.

From now on, we shall assume that all tree homomorphisms considered are pure
even when this is not explicitly said. The following classes of substitutions cor-
respond to some well-known types of tree homomorphisms.

Definition 3.6. A ΣΩ-substitution κ : Σ → Ω is

(1) linear if for all m ∈ r(Σ) and f ∈ Σm, each ξi (i ∈ [m]) appears at most
once in κ(f), and otherwise it is nonlinear ;

(2) non-deleting if for all m ∈ r(Σ) and f ∈ Σm, every ξi (i ∈ [m]) appears at
least once in κ(f), and otherwise it is deleting ;

(3) strict if κ(f) = ξi for no m ∈ r(Σ), f ∈ Σm and i ∈ [m];

(4) symbol-to-symbol if for all m ∈ r(Σ) and f ∈ Σm, κ(f) = g(ξi1 , . . . , ξik) for
some k ∈ r(Ω), g ∈ Ωk and i1, . . . , ik ∈ [m];

(5) alphabetic if for all m ∈ r(Σ) and f ∈ Σm, κ(f) = g(ξ1, . . . , ξm) for some
g ∈ Ωm.

Let lS(Σ,Ω), nS(Σ,Ω), sS(Σ,Ω), ssS(Σ,Ω) and aS(Σ,Ω) denote the sets of all
linear, non-deleting, strict, symbol-to-symbol and alphabetic ΣΩ-substitutions,
respectively. Intersections of these sets are denoted by combining prefixes. For
example, lnS(Σ,Ω) is the set of all linear non-deleting ΣΩ-substitutions.

Strict substitutions are also called pre-hypersubstitutions, and (linear) non-deleting
substitutions are sometimes said to be regular. Following [35] we call alphabetic
substitutions also assignments.

By a family of substitutions we mean a map K that assigns to each pair Σ, Ω
of ranked alphabets a set K(Σ,Ω) of ΣΩ-substitutions. We write K = {K(Σ,Ω)}
with the understanding that Σ and Ω range over all ranked alphabets. The
inclusion relation and intersections of these families are defined in the natural way:
K ⊆ K′ iff K(Σ,Ω) ⊆ K′(Σ,Ω) for all Σ and Ω, and K∩K′ = {K(Σ,Ω)∩K′(Σ,Ω)}.

The largest family of substitutions is S := {S(Σ,Ω)}. From Definition 3.6
we get the families lS := {lS(Σ,Ω)}, nS := {nS(Σ,Ω)}, lnS := {lnS(Σ,Ω)},
etc. Moreover, let I = {I(Σ,Ω)} be such that for any Σ and Ω, I(Σ,Σ) = {ιΣ}
but I(Σ,Ω) = ∅ if Σ 6= Ω. Clearly, I ⊂ aS ⊂ ssS ⊂ sS and aS ⊂ lS ∩ nS ∩ ssS.

If K is a family of substitutions, a tree homomorphism ϕ : TΣ(X) → TΩ(Y )
is called a K-morphism if its underlying substitution ϕ̇ is in K(Σ,Ω).
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Remark 3.7.

a. Any I-morphism ϕ : TΣ(X) → TΣ(Y ) is also a homomorphism ϕ : TΣ(X) →
TΣ(Y ) of Σ-algebras, and conversely.

b. The lS-, nS- and sS-morphisms are, respectively, exactly the linear, non-
deleting and strict (pure) tree homomorphisms.

c. The aS-morphisms are in essence the inner alphabetic tree homomorphisms
of [24]. In [35] they were obtained as the g-morphisms of term algebras.
The alphabetic tree homomorphisms (cf. [17, 18]) are the aS-morphisms that
map every leaf symbol to a leaf symbol. Similarly, the ssS-morphism are
generalized symbol-to-symbol tree homomorphisms.

Definition 3.8. A family of substitutions K = {K(Σ,Ω)} is called a category of
substitutions if the following conditions hold for all Σ, Ω and Γ.

(C1) aS(Σ,Ω) ⊆ K(Σ,Ω).

(C2) If κ ∈ K(Σ,Ω) and λ ∈ K(Ω,Γ), then κλ ∈ K(Σ,Γ).

(C3) If κ ∈ S(Σ,Ω) and κι ∈ K(Σ,Γ) for some ι ∈ aS(Ω,Γ), then κ ∈ K(Σ,Ω).

Requirement (C3) means that any substitution κ : Σ → Ω that becomes a K-
substitution by an alphabetic relabeling of the images κ(f), is also itself in K.

Lemma 3.9. Let K = {K(Σ,Ω)} be a category of substitutions.

(C4) ιΣ ∈ K(Σ,Σ) for every ranked alphabet Σ.

(C5) Every projection πi : Σ1×· · ·×Σn → Σi is in K(Σ1×· · ·×Σn,Σi) (i ∈ [n]).

(C6) If κ ∈ K(Σ,Ω) and Ω ⊆ Γ, then κ ∈ K(Σ,Γ) when we view any ΣΩ-
substitution in the natural way also as a ΣΓ-substitution.

Proof. (C4) and (C5) follow from (C1). The embedding ιΩ,Γ : Ω → Γ, f 7→ f,
of Ω into Γ is an alphabetic substitution, and κ viewed as a ΣΓ-substitution is
just the composition κιΩ,Γ. Hence (C6) follows from (C1) and (C2).

The following are our most important examples of categories of substitutions.

Proposition 3.10. The families S, lS, nS, sS, ssS, aS and their intersections
(such as lnS = lS ∩ nS) are categories of substitutions. Moreover, S is the
greatest category of substitutions while aS is the least category of substitutions.

Proof. It is clear that S satisfies all three conditions (C1)–(C3), and it is easy
to verify conditions (C1) and (C2) for lS, nS, sS, ssS and aS.
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Let κ : Σ → Ω be any ΣΩ-substitution and let ι ∈ aS(Ω,Γ). Consider any
m ∈ r(Σ) and f ∈ Σm. Since ι is alphabetic, ι(κ(f)) is obtained from κ(f) by
relabeling each inner node while preserving all variables. This ‘isomorphism’ im-
plies that ι(κ(f)) is linear, nondeleting, in TΩ(Ξm)\Ξm, of the form g(ξi1 , . . . , ξik),
or of the form g(ξ1, . . . , ξm), if and only if κ(f) has the same respective form. It
follows that if κι is linear, nondeleting, strict, symbol-to-symbol or alphabetic,
then so is κ. Hence, lS, nS, sS, ssS and aS satisfy (C3), too. Finally, we note
that if two families satisfy one of the conditions (Ci), then also their intersection
satisfies (Ci). The assertions concerning S and aS are obvious.

4. General varieties of finite algebras

We shall now recall some notions and facts from Section 3 of [35]. The prefix g
appearing in some names stands for “generalized”.

We call Ω a subalphabet of Σ and write Ω ⊆ Σ, if Ωm ⊆ Σm for every m > 0.
If Ω ⊆ Σ, an Ω-algebra B = (B,Ω) is an Ω-subalgebra of a Σ-algebra A = (A,Σ)
if B ⊆ A and fB(b1, . . . , bm) = fA(b1, . . . , bm) for all m ∈ r(Ω), f ∈ Ωm and
b1, . . . , bm ∈ B. Then we also call B a g-subalgebra of A without specifying Ω.

A g-morphism (ι, ϕ) : A → B from a Σ-algebra A = (A,Σ) to an Ω-algebra
B = (B,Ω) consists of an assignment ι : Σ → Ω and a mapping ϕ : A → B
such that fA(a1, . . . , am)ϕ = ι(f)B(a1ϕ, . . . , amϕ) for all m ∈ r(Σ), f ∈ Σm and
a1, . . . , am ∈ A. It is a g-epimorphism, a g-monomorphism or a g-isomorphism if
the maps ι and ϕ are surjective, injective or bijective, respectively. We call B a
g-image of A, if there exists a g-epimorphism (ι, ϕ) : A → B, and A and B are
g-isomorphic, A ∼=g B in symbols, if there is a g-isomorphism (ι, ϕ) : A → B.

In a g-morphism (ι, ϕ) : TΣ(X) → TΩ(Y ) of term algebras, ϕ is the aS-
morphism TΣ(X) → TΩ(Y ) such that ϕX(x) = xϕ for x ∈ X, and ϕm(f) =
ι(f)(ξ1, . . . , ξm) for m ∈ r(Σ), f ∈ Σm. Moreover, ι is fully determined by ϕ.
Conversely, any aS-morphism ϕ : TΣ(X) → TΩ(Y ) yields a unique g-morphism
(ι, ϕ) : TΣ(X) → TΩ(Y ), where ι(f) = ϕm(f) for all m ∈ r(Σ) and f ∈ Σm.
Hence, we may replace g-morphisms of term algebras by aS-morphisms.

An equivalence on a ranked alphabet Σ is an equivalence σ on the set Σ
such that if f σ g for some f, g ∈ Σ, then f and g have the same arity. Let
Er(Σ) denote the set of these equivalences. For any σ ∈ Er(Σ), the quotient
ranked alphabet Σ/σ is defined by (Σ/σ)m := {[f ]σ | f ∈ Σm} (m > 0). A
g-congruence of an algebra A = (A,Σ) is a pair (σ, θ) ∈ Er(Σ) × Eq(A) such
that for all m ∈ r(Σ), f, g ∈ Σm and a1, . . . , am, b1, . . . , bm ∈ A, if f σ g and
a1 θ b1, . . . , am θ bm, then fA(a1, . . . , am)θgA(b1, . . . , bm). Let GCon(A) denote
the set of all g-congruences of A. It is clear that if (σ, θ) ∈ GCon(A), then
θ ∈ Con(A). The g-quotient algebra of A with respect to (σ, θ) ∈ GCon(A) is
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the Σ/σ-algebra A/(σ, θ) = (A/θ,Σ/σ) such that [f ]
A/(σ,θ)
σ ([a1]θ, . . . , [am]θ) =

[fA(a1, . . . , am)]θ for all m ∈ r(Σ), f ∈ Σm and a1, . . . , am ∈ A.
The usual relations between homomorphisms, congruences and quotient al-

gebras hold also between g-morphisms, g-congruences and g-quotients. In par-
ticular, the kernel ker(ι, ϕ) := (ker ι, kerϕ) of any g-morphism (ι, ϕ) : A → B is
a g-congruence of A, and if (ι, ϕ) is a g-epimorphism, then A/ ker(ι, ϕ) ∼=g B.

For our purposes it suffices to define the generalized direct products for finite
families of algebras only. The product Σ1×· · ·×Σn of ranked alphabets Σ1, . . . ,Σn

is the ranked alphabet Σ such that Σm = Σ1
m × · · · × Σn

m for every m > 0.
Obviously, r(Σ) = r(Σ1)∩. . .∩r(Σn). Let κ : Γ → Σ1×· · ·×Σn be an assignment
for some ranked alphabet Γ. For each i ∈ [n], the composition κi := κπi of κ

and the ith projection πi : Σ1 × · · · × Σn → Σi is an assignment Γ → Σi. The
κ-product of any algebras A1 = (A1,Σ

1), . . . ,An = (An,Σ
n) is the Γ-algebra

κ(A1, . . . ,An) = (A1 × · · · ×An,Γ) such that

fκ(A1,...,An)(a1, . . . ,am) = (κ1(f)A1(a11, . . . , am1), . . . ,κn(f)An(a1n, . . . , amn)),

for all m ∈ r(Γ), f ∈ Γm and ai = (ai1, . . . , ain) ∈ A1 × · · · × An (i = 1, . . . ,m).
For n = 0, we define the product to be the trivial Γ-algebra. Without specifying
the assignment κ, we call such products jointly g-products.

A class of finite Σ-algebras U is a variety of finite Σ-algebras (Σ-VFA), or
a pseudovariety, if it is closed under the formation of subalgebras, homomorphic
images and finite direct products, i.e., if S(U), H(U), Pf (U) ⊆ U. These Σ-VFAs
correspond bijectively to varieties of tree languages over the given ranked alphabet
Σ (cf. [1, 33, 34, 36]). To obtain such an Eilenberg-type correspondence for
varieties of tree languages that contain tree languages over all ranked alphabets,
we have to consider varieties of finite algebras that contain algebras of all finite
types. Thus, when we now say that U is a class of finite algebras, U may include
finite Σ-algebras for any Σ. The class of Σ-algebras in U is denoted by UΣ.

For any class U of finite algebras, let Sg(U) be the class of all g-subalgebras
of members of U, Hg(U) the class of all g-images of members of U, and Pgf (U)
be the class of all algebras isomorphic to a g-product of members of U. We call
U a generalized variety of finite algebras (GVFA) if Sg(U), Hg(U), Pgf (U) ⊆ U.
The GVFA generated by a class U of finite algebras is denoted by Vgf (U).

Let Q and R be any algebra class operators such as Sg, Hg or Pgf . As usual,
QR is the operator such that QR(U) = Q(R(U)) for each class U, and we write
Q ≤ R iff Q(U) ⊆ R(U) for every U. We shall use the operators S, H and Pf
also in an extended sense by applying them to general classes of finite algebras.
The obvious relations S ≤ Sg, H ≤ Hg and Pf ≤ Pgf are frequently used without
comment. As shown in [35], SgSg = Sg, HgHg = Hg, and PgfPgf = Pgf , and
SgHg ≤ HgSg, PgfHg ≤ HPgf ≤ HgPgf , PgfSg ≤ SPgf ≤ SgPgf , and hence
Vgf (U) = HgSgPgf (U) for any U. In fact, it was shown that a finite algebra A
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belongs to Vgf (U) iff A � κ(A1, . . . ,An) for a g-product κ(A1, . . . ,An) of some
members A1, . . . ,An (n ≥ 0) of U, that is to say, Vgf (U) = HSPgf (U).

Finally, let us note that if U is a GVFA, then UΣ is a Σ-VFA for every Σ.

5. The solidity of general varieties of finite algebras

The K-solid varieties of finite algebras to be defined in this section extend the no-
tion of M -solid pseudovarieties of [21] or [4] to general varieties of finite algebras.
We use the following variant of a notion considered in [20, 21, 32], for example.

Definition 5.1. For any ΣΩ-substitution κ : Σ → Ω and any Ω-algebra B =
(B,Ω), the Σ-algebra κ(B) = (B,Σ) such that fκ(B) = κ(f)B for all f ∈ Σ, is
called a derived algebra of B. If κ ∈ K(Σ,Ω) for a category of substitutions K, we
call κ(B) also a K-derived algebra of B. For any class U of algebras, let DK(U)
denote the class of all K-derived algebras of members of U.

Clearly, κ(λ(A)) = (κλ)(A) for any substitutions κ : Σ → Ω and λ : Ω → Γ and
any Γ-algebra A. If κ and λ belong to a category K, then so does κλ. Hence the
following fact.

Lemma 5.2. DKDK = DK for every category of substitutions K.

Obviously, ϕ : A → B is a semi-weak homomorphism from A = (A,Σ) to B =
(B,Ω) if and only if there is a ΣΩ-substitution κ such that ϕ is a homomorphism
of Σ-algebras from A to κ(B). Also the following facts have easy proofs.

Lemma 5.3. Let κ ∈ S(Σ,Ω), and let B and C be Ω-algebras.

(a) tκ(B) = κ(t)B for every t ∈ TΣ(Ξk), k ≥ 1.

(b) Any homomorphism ϕ : B → C of Ω-algebras is also a homomorphism
ϕ : κ(B) → κ(C) of Σ-algebras.

(c) If θ ∈ Con(B), then θ ∈ Con(κ(B)) and κ(B)/θ = κ(B/θ).

(d) Any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) defines a homomorphism of
Σ-algebras ϕ : TΣ(X) → ϕ̇(TΩ(Y )).

The following facts are quite obvious.

Lemma 5.4. Let κ ∈ S(Σ,Ω), and let A and B be Ω-algebras. If A ⊑ B, then
κ(A) ⊑ κ(B), and if A և B, then κ(A) և κ(B). Also, κ(A×B) = κ(A)×κ(B).

Definition 5.5. For any category of substitutions K, a class U of finite algebras
is said to be K-solid if DK(U) ⊆ U. In particular, U is solid if it is S-solid. The
K-solid GVFA generated by U is denoted by VK(U).
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In what follows, K = {K(Σ,Ω)} is any given category of substitutions.

In [20, 32], the relations DS ≤ SD, DH ≤ HD and DP ≤ PD were shown
for the fixed-type operator D. Hence, the solid variety generated by a class U of
algebras of a given type is HSPD(U). By restricting products to finite families,
we get the representation HSPfD(U) for the solid Σ-VFA generated by a class
U of finite Σ-algebras. We derive a similar description for the GVFAs VK(U).

Lemma 5.6.

(a) DKS ≤ DKSg ≤ SDK ≤ SgDK and

(b) DKH ≤ DKHg ≤ HDK ≤ HgDK.

Proof. In both cases, the first and the third inequality are obvious. Let U be a
class of finite algebras. Any member of DKSg(U) is of the form κ(B) = (B,Γ),
where B = (B,Ω) is a g-subalgebra of some A = (A,Σ) in U and κ : Γ → Ω is in
K(Γ,Ω). By Lemma 3.9, κ is also in K(Γ,Σ) and it is clear κ(B) ⊑ κ(A). Hence
κ(B) ∈ SDK(U) which proves the second inequality of (a).

Any member of DKHg(U) has the form κ(B) = (B,Γ), where B = (B,Ω) is
in Hg(U) and κ ∈ K(Γ,Ω). Hence, there exists a g-epimorphism (ι, ϕ) : A → B
from some A = (A,Σ) in U. Since ι : Σ → Ω is alphabetic and surjective,
there exists for every t ∈ TΩ(Ξm) (m > 0) an s ∈ TΣ(Ξm) such that ι(s) = t.
This means that we can define a ΓΣ-substitution λ : Γ → Σ such that λι = κ.
Moreover, λ ∈ K(Γ,Σ) by (C3), and hence λ(A) = (A,Γ) is in DK(U). It is
straightforward to verify that ϕ : λ(A) → κ(B) is a homomorphism of Γ-algebras.
Since ϕ : A→ B is surjective, this means that κ(B) ∈ HDK(U).

For any substitution κ : Γ → Σ1 × · · · × Σn and each i ∈ [n], let κi again be the
ΓΣi-substitution κπi : Γ → Σi.

Definition 5.7. For any substitution κ : Γ → Σ1 × · · · × Σn, the κ-product of
any algebras A1 = (A1,Σ

1), . . . ,An = (An,Σ
n) is the Γ-algebra κ(A1, . . . ,An) =

(A1 × · · · ×An,Γ) such that

fκ(A1,...,An)(a1, . . . ,am) = (κ1(f)A1(a11, . . . , am1), . . . ,κn(f)An(a1n, . . . , amn)),

for all m ∈ r(Γ), f ∈ Γm and ai = (ai1, . . . , ain) ∈ A1 × · · · × An (i = 1, . . . ,m).
For n = 0, let κ(A1, . . . ,An) be a trivial Γ-algebra. If κ belongs to a category
of substitutions K, we call κ(A1, . . . ,An) a K-product. For any class U of finite
algebras, PK(U) denotes the class of all K-products of members of U.

The g-products are precisely the aS-products. Hence the following lemma.
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Lemma 5.8. Pgf = PaS ≤ PK.

For any ΣΩ-substitution κ and any Ω-algebra B = (B,Ω), the one-component
κ-product κ(B) is the same algebras as the derived algebra of κ(B) (when we
identify (b) and b for each b ∈ B). Hence the following lemma.

Lemma 5.9. DK ≤ PK.

From Lemmas 5.8 and 5.9 we get the following result.

Proposition 5.10. Every GVFA is aS-solid.

The following lemma is a direct consequence of Definition 5.7.

Lemma 5.11. Let κ : Γ → Σ1 × · · · × Σn be a substitution. Then

κ(A1, . . . ,An) = κ1(A1) × · · · × κn(An)

for all algebras A1 = (A1,Σ
1), . . . ,An = (An,Σ

n).

If κ ∈ K(Γ,Σ1 × · · · × Σn), then κi ∈ K(Γ,Σi) for every i ∈ [n]. Hence the
following corollary of Lemma 5.11.

Corollary 5.12. PK ≤ PfDK ≤ PgfDK.

Lemma 5.13. DKPK = PK.

Proof. To prove DKPK ≤ PK, it suffices to show that κ(λ(A1, . . . ,An)) =
(κλ)(A1, . . . ,An) for any substitutions κ : Σ → Γ and λ : Γ → Σ1 × · · · × Σn

and any algebras A1 = (A1,Σ
1), . . . ,An = (An,Σ

n); if κ and λ are in K, then
so is κλ. Both sides of the claimed equality are Σ-algebras with A1 × · · · × An
as the set of elements. To verify that their operations are the same, we consider
any m ∈ r(Σ), f ∈ Σm and ai = (ai1, . . . , ain) ∈ A1× · · ·×An (i = 1, . . . ,m). By
using Lemma 5.3 and the obvious fact that κλi = (κλ)i for every i ∈ [n], we get

fκ(λ(A1,...,An))(a1, . . . ,am) = κ(f)λ(A1,...,An)(a1, . . . ,am)

= (λ1(κ(f))A1(a11, . . . , am1), . . . , λn(κ(f))An(a1n, . . . , amn))

= ((κλ)1(f)A1(a11, . . . , am1), . . . , (κλ)n(f)An(a1n, . . . , amn))

= f (κλ)(A1,...,An)(a1, . . . ,am).

The converse inequality PK ≤ DKPK is obvious.
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Corollary 5.14. DKPf ≤ DKPgf ≤ PfDK ≤ PgfDK.

Proof. DKPf ≤ DKPgf ≤ DKPK = PK ≤ PfDK ≤ PgfDK by Lemmas 5.8 and
5.13 and Corollary 5.12.

Proposition 5.15. VK = HgSgPgfDK = HSPgfDK.

Proof. Consider any class U of finite algebras. Since U ⊆ HSPgfDK(U) ⊆
HgSgPgfDK(U) ⊆ VK(U), it suffices to show that U′ := HSPgfDK(U) is a
K-solid GVFA. Since U′ is, by Proposition 4.5 of [35], the GVFA generated
by DK(U), it remains just to verify that U′ is closed under the DK-operator.
Indeed, DK(U′) ⊆ HDKSPgfDK(U) ⊆ HSDKPgfDK(U) ⊆ HSPgfD

2
K(U) = U′

by Lemma 5.6, Corollary 5.14 and Lemma 5.2.

6. The solidity of general varieties of tree languages

Among the numerous characterizations of the regular tree languages (cf. [17, 18]),
the following one is particularly suitable for an algebraic treatment of the subject.

Definition 6.1. An algebra A = (A,Σ) recognizes a ΣX-tree language T if
there exist a homomorphism ϕ : TΣ(X) → A and a subset F ⊆ A such that
T = Fϕ−1. A ΣX-tree language is recognizable, or regular, if it is recognized by a
finite Σ-algebra. The set of regular ΣX-tree languages we denote by Rec(Σ, X).

A family of tree languages is a mapping V that assigns to each pair Σ, X a
set of ΣX-tree languages. We write V = {V(Σ, X)} with the understanding
that Σ and X range over all ranked alphabets and leaf alphabets, respectively.
The inclusion relation, unions and intersections of these families are defined by
the natural componentwise conditions. For example, for U = {U(Σ, X)} and
V = {V(Σ, X)}, U ⊆ V means that U(Σ, X) ⊆ V(Σ, X) for all Σ and X, and
U ∩ V = {U(Σ, X) ∩ V(Σ, X)}. In [35] a family of tree languages V = {V(Σ, X)}
was defined to be a general variety of tree languages (GVTL) if the following
conditions hold for all Σ, Ω, X and Y :

(T1) ∅ 6= V(Σ, X) ⊆ Rec(Σ, X).

(T2) If T ∈ V(Σ, X), then TΣ(X) \ T ∈ V(Σ, X).

(T3) If T, U ∈ V(Σ, X), then T ∩ U ∈ V(Σ, X).

(T4) If T ∈ V(Σ, X), then p−1(T ) := {t ∈ TΣ(X) | p(t) ∈ T} ∈ V(Σ, X) for every
p ∈ CΣ(X).

(T5) If ϕ : TΣ(X) → TΩ(Y ) is an aS-morphism, then Tϕ−1 ∈ V(Σ, X) for every
T ∈ V(Ω, Y ).
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Since all aS-morphisms are pure tree homomorphisms, our decision to consider
pure tree homomorphisms only does not affect the definition of GVTLs.

Definition 6.2. Let K = {K(Σ,Ω)} be a category of substitutions. A family of
tree languages V = {V(Σ, X)} is said to be K-solid if for all Σ, Ω, X and Y , and
any K-morphism ϕ : TΣ(X) → TΩ(Y ), Tϕ−1 ∈ V(Σ, X) for every T ∈ V(Ω, Y ).
In particular, V is said to be solid if it is S-solid.

The following fact is an immediate consequence of (T5) and Definition 6.2.

Proposition 6.3. Every GVTL is aS-solid.

In [35] it was shown that GVFAs and GVTLs can be linked also via the usual
syntactic algebras. The syntactic congruence of a ΣX-tree language T is the
relation θT on TΣ(X) defined by

s θT t ⇔ (∀p ∈ CΣ(X))(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TΣ(X)),

and the syntactic algebra of T is SA(T ) := TΣ(X)/θT . The natural homomor-
phism ϕT : TΣ(X) → SA(T ), t 7→ [t]T , where [t]T is the θT -class of t, is called the
syntactic homomorphism of T . For any ΣX-tree language T , θT is a congruence
of TΣ(X) and it is the greatest congruence that saturates T (i.e., T is the union
of some θT -classes), a Σ-algebra A recognizes T if and only if SA(T ) � A, and
hence T ∈ Rec(Σ, X) iff SA(T ) is finite (cf. [1, 33, 34, 36]).

For any GVFA U, let Ut(Σ, X) := {T ⊆ TΣ(X) | SA(T ) ∈ U} for all Σ and
X. Then Ut := {Ut(Σ, X)} is a GVTL. On the other hand, if for any GVTL
V = {V(Σ, X)}, we let Va be the GVFA generated by the syntactic algebras
SA(T ) where T ∈ V(Σ, X) for some Σ and X, we get the converse map from
GVTLs to GVFAs. That is to say, if U is a GVFA and V is a GVTL, then
Uta = U and Vat = V . For further facts about this correspondence cf. [35].

Again, let K = {K(Σ,Ω)} be any category of substitutions.

Proposition 6.4. If U is a K-solid GVFA, then Ut is a K-solid GVTL.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be a K-morphism, and let T ∈ Ut(Ω, Y ). Then
SA(T ) ∈ UΩ, ϕT : TΩ(Y ) → SA(T ) is an epimorphism, and T = Fϕ−1

T for some
subset F of SA(T ). From Lemma 5.3 it follows that ϕ : TΣ(X) → ϕ̇(TΩ(Y ))
and ϕT : ϕ̇(TΩ(Y )) → ϕ̇(SA(T )) are homomorphisms of Σ-algebras. Obviously
Tϕ−1 = F (ϕϕT )−1, and thus Tϕ−1 is recognized by ϕ̇(SA(T )). Since ϕ̇(SA(T )) ∈
UΣ, this means that Tϕ−1 ∈ Ut(Σ, X).

Proposition 6.4 parallels Proposition 4 of [4] but our proof is slightly simpler.
Also the following converse corresponds to a result appearing in [4].
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Proposition 6.5. If V is a K-solid GVTL, then Va is a K-solid GVFA.

Proof. Let U = Va and let U∗ denote the class of all syntactic algebras in U.
Since U = HSPgf (U∗), the K-solidity of U means that DKHSPgf (U∗) ⊆ U,
and as DKHSPgf (U∗) ⊆ HSPgfDK(U∗), it suffices to show that DK(U∗) ⊆ U.

Let κ ∈ K(Σ,Ω) and let SA(T ) = (B,Ω) for some T ∈ V(Ω, Y ). If X is
sufficiently large, there is a K-morphism ϕ : TΣ(X) → TΩ(Y ) such that ϕ̇ = κ

and TΣ(X)ϕ contains an element of every θT -class. Then ϕ : TΣ(X) → κ(TΩ(Y ))
and ϕT : κ(TΩ(Y )) → κ(SA(T )) are homomorphisms of Σ-algebras, and ϕϕT :
TΣ(X) → κ(SA(T )) is surjective. For each b ∈ B, bϕ−1

T ∈ V(Ω, Y ) (cf. Lemma
5.2 of [34]), and hence b(ϕϕT )−1 = bϕ−1

T ϕ−1 ∈ V(Σ, X) as V is K-solid, and this
means that SA(b(ϕϕT )−1) ∈ U. It is easy to see that

⋂
{θaψ−1 | a ∈ A} ⊆ kerψ

for any algebra A = (A,Σ) and any epimorphism ψ : TΣ(X) → A. Since
κ(SA(T )) ∼= TΣ(X)/ kerϕϕT , this means that κ(SA(T )) is an image of a subdi-
rect product of the algebras SA(b(ϕϕT )−1), and therefore κ(SA(T )) ∈ U.

7. The solidity of varieties of finite g-congruences

For any Σ and X, let FC(Σ, X) := {θ ∈ Con(TΣ(X)) | TΣ(X)/θ finite} be the set
of finite congruences of the term algebra TΣ(X), and let

GFC(Σ, X) := {(σ, θ) ∈ GCon(TΣ(X)) | θ ∈ FC(Σ, X)}

be the set of finite g-congruences of TΣ(X). Clearly, FC(Σ, X) is a filter of the
congruence lattice Con(TΣ(X)), and if (ι, ϕ) : TΣ(X) → TΩ(Y ) is a g-morphism,
then (ι ◦ω ◦ ι−1, ϕ ◦ θ ◦ϕ−1) ∈ GFC(Σ, X) for any (ω, θ) ∈ GFC(Ω, Y ). This fact
will be generalized in Lemma 7.2 below.

A family of finite g-congruences C = {C(Σ, X)} is a mapping that assigns
to each pair Σ, X a subset C(Σ, X) of GFC(Σ, X). It is a variety of finite g-
congruences (GVFC) if the following conditions hold for all Σ, Ω, X and Y .

(FC1) For every σ ∈ Er(Σ), the set C(Σ, X)σ := {θ ∈ FC(Σ, X) | (σ, θ) ∈
C(Σ, X)} is a filter of FC(Σ, X).

(FC2) If (σ, θ) ∈ C(Σ, X) and (τ, θ) ∈ GFC(Σ, X), then (τ, θ) ∈ C(Σ, X).

(FC3) If (ι, ϕ) : TΣ(X) → TΩ(Y ) is any g-morphism and (ω, θ) ∈ C(Ω, Y ), then
(ι ◦ ω ◦ ι−1, ϕ ◦ θ ◦ ϕ−1) ∈ C(Σ, X).

For any σ ∈ Er(Σ), let σ̄ be the least equivalence on TΣ(Ξ) satisfying

(1) ξi σ̄ ξi for every i = 1, 2, 3, . . ., and
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(2) if m ∈ r(Σ), f, g ∈ Σm, and s1, . . . , sm, t1, . . . , tm ∈ TΣ(Ξ) are such that
f σ g, and si σ̄ ti for every i ∈ [m], then f(s1, . . . , sm) σ̄ g(t1, . . . , tm).

Obviously, s σ̄ t means that s and t have the same “shape” and that corresponding
leaves in them are labeled by the same variable and corresponding inner nodes
by σ-equivalent symbols. The following can be shown by induction on s.

Lemma 7.1. Let (σ, θ) ∈ GCon(A) for some algebra A = (A,Σ). If s, t ∈ TΣ(Ξn)
(n > 0) and s σ̄ t, then sA(a1, . . . , an) θ tA(a1, . . . , an) for all a1, . . . , an ∈ A.

For any congruence θ of a Σ-algebra A, there is an equivalence M(θ) ∈ Er(Σ)
such that for any σ ∈ Er(Σ), (σ, θ) ∈ GCon(A) iff σ ≤ M(θ) (cf. [35]). We
define the pre-image of any (ω, θ) ∈ GFC(Ω, Y ) under any tree homomorphism
ϕ : TΣ(X) → TΩ(Y ) as ϕ ◦ (ω, θ) ◦ ϕ−1 := (ϕ−1[ω], ϕ ◦ θ ◦ ϕ−1), where ϕ−1[ω] ∈
Er(Σ) is defined so that for any m ∈ r(Σ), f, g ∈ Σm, f ϕ−1[ω] g iff ϕ̇(f) ω̄ ϕ̇(g).

Lemma 7.2. Let ϕ : TΣ(X) → TΩ(Y ) be any tree homomorphism. If (ω, θ) ∈
GFC(Ω, Y ), then ϕ ◦ (ω, θ) ◦ ϕ−1 ∈ GFC(Σ, X).

Proof. Clearly, ϕ ◦ θ ◦ϕ−1 is a finite equivalence on TΣ(X), and ϕ−1[ω] ∈ Er(Σ)
by definition. To show that ϕ ◦ θ ◦ ϕ−1 ∈ Con(TΣ(X)), consider any m ∈ r(Σ),
f ∈ Σm and s1, . . . , sm, t1, . . . , tm ∈ TΣ(X) such that si ϕ ◦ θ ◦ ϕ−1 ti for every
i ∈ [m]. Then siϕθ tiϕ for every i ∈ [m], and therefore

fTΣ(X)(s1, . . . , sm)ϕ = ϕm(f)[s1ϕ, . . . , smϕ] = ϕ̇(f)TΩ(Y )(s1ϕ, . . . , smϕ)

≡θ ϕ̇(f)TΩ(Y )(t1ϕ, . . . , tmϕ) = fTΣ(X)(t1, . . . , tm)ϕ,

i.e., fTΣ(X)(s1, . . . , sm) ϕ ◦ θ ◦ ϕ−1 fTΣ(X)(t1, . . . , tm). If f ϕ−1[ω] g for some m ∈
r(Σ), f, g ∈ Σm, and t1, . . . , tm ∈ TΣ(X), then

fTΣ(X)(t1, . . . , tm)ϕ = ϕm(f)[t1ϕ, . . . , tmϕ] = ϕ̇(f)TΩ(Y )(t1ϕ, . . . , tmϕ)

≡θ ϕ̇(g)TΩ(Y )(t1ϕ, . . . , tmϕ) = gTΣ(X)(t1, . . . , tm)ϕ

by Lemma 7.1, and hence fTΣ(X)(t1, . . . , tm) ϕ ◦ θ ◦ ϕ−1 gTΣ(X)(t1, . . . , tm). This
shows that ϕ ◦ (ω, θ) ◦ ϕ−1 is a g-congruence of TΣ(X).

In the reduced syntactic congruence ρT := (σT , θT ) of a ΣX-tree language T , θT
is the usual syntactic congruence of T and σT := M(θT ). The reduced syntactic
algebra of T is the g-quotient RA(T ) := TΣ(X)/ρT , and the syntactic g-morphism
of T is the g-morphism (ιT , ϕT ) : TΣ(X) → RA(T ), where ιT : f 7→ [f ]T and
ϕT : t 7→ [t]T . Lemma 7.2 yields following fact.
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Corollary 7.3. For any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) and any ΩY -
tree language T ⊆ TΩ(Y ), ϕ−1[σT ] ⊆M(ϕ ◦ θT ◦ ϕ−1).

We extend any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) to a tree homomorphism
ϕ∗ : TΣ(X ∪ {ξ}) → TΩ(Y ∪ {ξ}) by setting ξϕ∗ = ξ. The image pϕ∗ of a ΣX-
context p is a unary ΩY -polynomial symbol, i.e., a member of TΩ(Y ∪ {ξ}). If
ϕ is non-linear, pϕ∗ may contain several ξ’s, and if ϕ is deleting, pϕ∗ may be an
ΩY -tree. Nevertheless, p(t)ϕ = pϕ∗(tϕ) for any p ∈ CΣ(X) and t ∈ TΣ(X). It is
also easy to see that for any ΩY -tree language T and all s, t ∈ TΩ(Y ),

s θT t ⇔ (∀q ∈ TΩ(Y ∪ {ξ}))(q(s) ∈ T ↔ q(t) ∈ T ).

In fact, such a definition of θT is used in [33] and [1], for example.

Lemma 7.4. For any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) and any ΩY -tree
language T ⊆ TΩ(Y ), ϕ ◦ ρT ◦ ϕ−1 ≤ ρTϕ−1.

Proof. We should show that (1) ϕ−1[σT ] ⊆ σTϕ−1 and (2) ϕ ◦ θT ◦ϕ−1 ⊆ θTϕ−1 .
For any s, t ∈ TΣ(X),

sϕ ◦ θT ◦ ϕ−1 t ⇔ sϕ θT tϕ

⇔ (∀q ∈ TΩ(Y ∪ {ξ}))(q(sϕ) ∈ T ↔ q(tϕ) ∈ T )

⇒ (∀p ∈ CΣ(X))(pϕ∗(sϕ) ∈ T ↔ pϕ∗(tϕ) ∈ T )

⇔ (∀p ∈ CΣ(X))(p(s)ϕ ∈ T ↔ p(t)ϕ ∈ T )

⇔ s θTϕ−1 t,

from which (2) follows. Now ϕ−1[σT ] ⊆ M(ϕ ◦ θT ◦ ϕ−1) ⊆ M(θTϕ−1) = σTϕ−1

by Corollary 7.3 and (2), and hence also (1) holds.

Again, let K be any given category of substitutions.

Definition 7.5. A GVFC C = {C(Σ, X)} is K-solid if for all Σ, Ω, X, Y and
(ω, θ) ∈ C(Ω, Y ), ϕ ◦ (ω, θ) ◦ ϕ−1 ∈ C(Σ, X) for every K-morphism ϕ : TΣ(X) →
TΩ(Y ), and C is solid if it is S-solid.

The GVTL Ct = {Ct(Σ, X)} that corresponds to a given GVFC C = {C(Σ, X)}
is defined [35] by the condition Ct(Σ, X) := {T ⊆ TΣ(X) | ρT ∈ C(Σ, X)}.

The following result corresponds to the converse part of Proposition 6 of [4].

Proposition 7.6. If C is a K-solid GVFC, then Ct is a K-solid GVTL.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be a K-morphism. If T ∈ Ct(Ω, Y ), then
ρT ∈ C(Ω, Y ). This implies ρTϕ−1 ∈ C(Σ, X) because ϕ ◦ ρT ◦ ϕ−1 ≤ ρTϕ−1 by
Lemma 7.4, and hence Tϕ−1 ∈ Ct(Σ, X).
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As shown in [35], the GVFC Uc corresponding to a given GVFA U may be
defined also by the condition Uc(Σ, X) := {(σ, θ) ∈ GFC(Σ, X) | TΣ(X)/θ ∈ U}.

Proposition 7.7. If U is a K-solid GVFA, then Uc is a K-solid GVFC.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be a K-morphism, and let (ω, θ) ∈ Uc(Ω, Y ).
Then TΩ(Y )/θ ∈ UΩ, and hence ϕ̇(TΩ(Y )/θ) ∈ UΣ.

Let β := ϕ ◦ θ ◦ ϕ−1. We shall verify that

ψ : TΣ(X)/β → ϕ̇(TΩ(Y )/θ), [t]β 7→ [tϕ]θ,

is a monomorphism of Σ-algebras. It is easy to see that ψ is well-defined and
injective. Moreover, for any m ∈ r(Σ), f ∈ Σm and t1, . . . , tm ∈ TΣ(X),

fTΣ(X)/β([t1]β , . . . ,[tm]β)ψ = [f(t1, . . . , tm)]βψ = [f(t1, . . . , tm)ϕ]θ

= [ϕ̇(f)[t1ϕ, . . . , tmϕ]]θ = [ϕ̇(f)TΩ(Y )(t1ϕ, . . . , tmϕ)]θ

= [f ϕ̇(TΩ(Y ))(t1ϕ, . . . , tmϕ)]θ = f ϕ̇(TΩ(Y ))/θ([t1ϕ]θ, . . . , [tmϕ]θ)

= f ϕ̇(TΩ(Y ))/θ([t1]βψ, . . . , [tm]βψ).

Since ϕ̇(TΩ(Y ))/θ = ϕ̇(TΩ(Y )/θ) by Lemma 5.3, this means that also TΣ(X)/β
is in U. It follows by Lemma 7.2 that ϕ ◦ (ω, θ) ◦ϕ−1 ∈ Uc(Σ, X) as required.

Propositions 6.5, 7.6 and 7.7 may be summed up as follows.

Theorem 7.8. For any category of substitutions K, a GVTL V is K-solid iff Va

is a K-solid GVFA, and also iff Vc is a K-solid GVFC.

8. The solidity of some general varieties of tree languages

We shall settle the solidity status of several GVTLs with respect to the categories
of substitutions that we derived from some classes of tree homomorphisms. Their
internal inclusion relations are shown by the Hasse diagram of Figure 1. If a
GVTL V is K-solid for some category K, V is also K′-solid for any category K′

such that K′ ⊆ K. On the other hand, if K′ ⊆ K and V is not K′-solid, it
cannot be K-solid either. Thus, a complete description of the solidity of a given
GVTL with respect to these categories may be presented in terms of just a couple
positive and negative facts. Often a GVTL V is the union of an ascending chain
V0 ⊆ V1 ⊆ V2 ⊆ . . . of sub-GVTLs. It is easy to see that if there is an n0 ≥ 0
such that Vn is K-solid for every n ≥ n0, then also V is K-solid. A similar remark
applies to unions of (upwards) directed families of GVTLs. Most of the families
of tree languages considered here were shown to be GVTLs in [35].
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S

lS nS sS

lnS lsS nsS ssS

lnsS lssS nssS

lnssS

aS

Figure 1. Our categories of substitutions.

The trivial cases. The least GVTL Triv := {{∅, TΣ(X)}} and the greatest
GVTL Rec := {Rec(Σ, X)} are solid. For Rec we need the well-known fact that
Rec is closed under all inverse tree homomorphisms (cf. [13, 17, 18]).

Nilpotent tree languages. For any Σ and X, let Nil(Σ, X) consist of all finite
ΣX-tree languages and their complements in TΣ(X), and let Nil := {Nil(Σ, X)}.

Proposition 8.1. The GVTL Nil is nsS-solid but neither lnS- nor lssS-solid.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be an nsS-morphism, and let T ∈ Nil(Ω, Y ).
Since ϕ is strict and nondeleting, hg(sϕ) ≥ hg(s) for every s ∈ TΣ(X). This
implies that tϕ−1 is finite for every t ∈ TΩ(Y ). Hence, if T is finite, then so is
Tϕ−1, and if TΩ(Y ) \ T is finite, then Tϕ−1 is co-finite.

To see that Nil is not lnS-solid, let Σ = {f/1, g/1}, X = {x}, T = {f(x)},
and let ϕ : TΣ(X) → TΣ(X) be the lnS-morphism such that ϕ1(f) = f(ξ1),
ϕ1(g) = ξ1 and ϕX(x) = x. Obviously, T ∈ Nil(Σ, X) but Tϕ−1 is neither finite
nor co-finite; it consists of the ΣX-trees with exactly one f -labeled node.

To show that Nil is not lssS-solid, let Σ = {f/2}, Ω = {g/1}, X = {x},
T = {g(x)}, and let ϕ : TΣ(X) → TΩ(X) be the lssS-morphism such that ϕ2(f) =
g(ξ1), and ϕX(x) = x. Again, T ∈ Nil(Σ, X) but Tϕ−1 = {f(x, t) | t ∈ TΣ(X)}
is neither finite nor co-finite.

A finite algebra A = (A,Σ) is nilpotent if there exist an a∗ ∈ A and a k ≥ 0 such
that for any n > 0 and t ∈ TΣ(Ξn), if hg(t) ≥ k, then tA(a1, . . . , an) = a∗ for all
a1, . . . , an ∈ A. The class Nil of all nilpotent algebras is the GVFA corresponding
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to the GVTL Nil (cf. [34, 35]). Hence, it follows from Propositions 8.1 and 6.5
that Nil is nsS-solid but neither lnS- nor lssS-solid.

Proposition 10 and Corollary 5 of [4] claim, for the single-type case, that Nil
and Nil are nS-solid. However, this holds only if we exclude unary symbols.

Definite tree languages. The k-root rtk(t) of a ΣX-tree t is defined as follows:

(0) rt0(t) = ε, where ε represents the empty root segment, for every t ∈ TΣ(X);

(1) rt1(t) = root(t) for every t ∈ TΣ(X);

(2) for k ≥ 2, rtk(t) = t if hg(t) < k, and rtk(t) = f(rtk−1(t1), . . . , rtk−1(tm)) if
hg(t) ≥ k and t = f(t1, . . . , tm).

A ΣX-tree language T is k-definite (cf. [22, 34]) if for all s, t ∈ TΣ(X) such that
rtk(s) = rtk(t), s ∈ T iff t ∈ T , and it is definite if it is k-definite for some k ≥ 0.
Let Defk = {Defk(Σ, X)} and Def = {Def(Σ, X)} be the GVTLs of k-definite
(k ≥ 0) and all definite tree languages. Clearly Def0 ⊂ Def1 ⊂ Def2 ⊂ . . . and
Def =

⋃
n≥0Defk (cf. [35]).

The single-type version of the following lemma appears in [4]. Also here it
can easily be verified by induction on k.

Lemma 8.2. Let ϕ : TΣ(X) → TΩ(Y ) be an sS-morphism. For any s, t ∈ TΣ(X)
and k ≥ 0, if rtk(s) = rtk(t), then rtk(sϕ) = rtk(tϕ).

Counterparts to the positive statements of the following proposition appear, in
their respective forms, in [15] and [4].

Proposition 8.3. The GVTL Def is sS-solid, but not lnS-solid. Defk is sS-
solid for every k ≥ 0, but for no k ≥ 1 is Defk lnS-solid. Def0 is solid.

Proof. That Defk (k ≥ 0) and Def are sS-solid follows from Lemma 8.2.

To prove the second claim, let Σ = {f/1, g/1} and X = {x}, and define the
lnS-morphism ϕ : TΣ(X) → TΣ(X) by ϕ1(f) = f(ξ1), ϕ1(g) = ξ1 and ϕX(x) = x.
Now T = {x} is k-definite for every k ≥ 1 but Tϕ−1 = {gn(x) | n ≥ 0} is not
k-definite for any k ≥ 0. This shows that neither Def nor Defk for any k ≥ 1 is
lnS-solid. For the last assertion, it suffices to note that Def0 = Triv.

For any k ≥ 0, let Defk be the class of finite k-definite algebras, i.e., the GVFA
Def ak corresponding to Defk. Similarly, let Def := Defa be the GVFA of all

finite definite algebras. In [14] Ésik showed that for any Σ, the Σ-VFA of all k-
definite finite Σ-algebras is defined by the identities of the form u ≈ v such that
u, v ∈ TΣ(Ξn) for some n ≥ 1 and rtk(u) = rtk(v). From Propositions 6.5 and 8.3
it follows that the GVFAs Defk and Def are sS-solid, but it is easy to show this
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also directly when we note that if κ : Σ → Ω is a strict ΣΩ-substitution, then
rtk(u) = rtk(v) (u, v ∈ TΣ(Ξn)) implies rtk(κ(u)) = rtk(κ(v)).

Reverse definite tree languages. For each k ≥ 0 and any t ∈ TΣ(X), let
Sk(t) := {s ∈ sub(t) | hg(s) < k} be the set of subtrees of t of height < k.
In particular, S0(t) = ∅. A ΣX-tree language T is reverse k-definite if for all
s, t ∈ TΣ(X) such that Sk(s) = Sk(t), s ∈ T iff t ∈ T , and it is reverse definite
if it is reverse k-definite for some k ≥ 0. Let RDefk = {RDefk(Σ, X)} and
RDef = {RDef(Σ, X)} be the GVTLs of reverse k-definite ( k ≥ 0) and reverse
definite tree languages, respectively. Clearly, RDef0 ⊂ RDef1 ⊂ RDef2 ⊂ . . .
and RDef =

⋃
k≥0RDefk (cf. [35]).

Lemma 8.4. Let ϕ : TΣ(X) → TΩ(Y ) be an nssS-morphism. If s ∈ TΣ(X) and
t ∈ sub(sϕ), then t ∈ sub(s′ϕ) for some s′ ∈ sub(s) such that hg(s′) ≤ hg(t).
Hence, Sk(sϕ) =

⋃
{Sk(s

′ϕ) | s′ ∈ Sk(s)} for all k ≥ 0 and s ∈ TΣ(X).

Proof. Clearly, hg(sϕ) ≥ hg(s) for every s ∈ TΣ(X). We prove the first assertion
by induction on s. If s ∈ X, we may choose s′ = s for every t ∈ sub(sϕ). Now, let
s = f(s1, . . . , sm) for some m > 0, f ∈ Σm and s1, . . . , sm ∈ TΣ(X), and assume
that the claim holds for all ΣX-trees of height < hg(s). Since ϕ is nondeleting
and symbol-to-symbol, we have ϕm(f) = g(ξi1 , . . . , ξin) for some n > 0, g ∈ Ωn

and i1, . . . , in such that {i1, . . . , in} = [m]. Hence, sϕ = g(si1ϕ, . . . , sinϕ). There
are two cases to consider. If t = sϕ, and we may choose s′ = s. Otherwise,
t ∈ sub(sijϕ) for some j ∈ [n], we may apply the inductive assumption to find an
s′ ∈ sub(sij ) such that hg(s′) ≤ hg(t) and t ∈ sub(s′ϕ). Then s′ ∈ sub(s), too,
and we are done. The second claim follows immediately from the first one.

Proposition 8.5.

(a) RDef is nssS-solid, but neither lnsS- nor lssS-solid.

(b) For each k ≥ 2, RDefk is nssS-solid, but neither lnsS- nor lssS-solid.

(c) RDef1 is nS-solid, but not lssS-solid.

(d) RDef0 is solid.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be an nssS-morphism, and let T ∈ RDefk(Ω, Y )
for some k ≥ 0. Consider any ΣX-trees s and t such that Sk(s) = Sk(t) and
s ∈ Tϕ−1. Then sϕ ∈ T , and Sk(sϕ) = Sk(tϕ) by Lemma 8.4, and hence also
t ∈ Tϕ−1. This shows that RDefk and RDef are nssS-solid.

The negative parts of (a) and (b) are proved by the following two examples.

First, let Σ = {f1/2, f2/2, g/1}, Ω = {f/2, g/1, h/1}. X = {x}, and let ϕ :
TΣ(X) → TΩ(X) be defined by ϕ2(f1) = f(g(ξ1), ξ2), ϕ2(f2) = f(h(ξ1), ξ2),
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ϕ1(g) = g(ξ1) and ϕX(x) = x. Then ϕ is linear, nondeleting and strict. The
ΩX-tree language T := {t ∈ TΩ(Y ) | S2(t) = {x, g(x)}} is reverse k-definite
for every k ≥ 2. For each n ≥ 1, let sn := f1(x, g

n(x)) and tn = f2(x, g
n(x)).

Then Sk(sn) = Sk(tn) for every k ≤ n + 1, but snϕ = f(g(x), gn(x)) ∈ T while
tnϕ = f(h(x), gn(x)) /∈ T . Hence, Tϕ−1 is not reverse k-definite for any k ≥ 0.

Next, let Σ = {f/2, g/1}, Ω = {h/1}, X = {x, x′} and define the lssS-
morphism ϕ : TΣ(X) → TΩ(X) by ϕ2(f) = ϕ1(g) = h(ξ1), ϕX(x) = x and
ϕX(x′) = x′. The ΩX-tree language T := {x, h(x), h2(x), . . .} is reverse k-definite
for every k ≥ 1, but Tϕ−1 is not reverse k-definite for any k ≥ 0. Indeed, if
sk := f(gk(x), gk(x′)) and tk = f(gk(x′), gk(x)) (k ≥ 1), then Sk(sk) = Sk(tk),
but skϕ = hk+1(x) ∈ T while tkϕ = hk+1(x′) /∈ T .

The previous example shows that RDef1 is not lssS-solid. For any t ∈
TΣ(X), S1(t) is the set of leaf symbols appearing in t, and it is easy to see that if
ϕ : TΣ(X) → TΩ(Y ) is an nS-morphism, then S1(tϕ) =

⋃
{S1(xϕ) | x ∈ S1(t)}.

Hence, if s, t ∈ TΣ(X) and S1(s) = S1(t), then S1(sϕ) = S1(tϕ). From this it
immediately follows that Tϕ−1 ∈ RDef1(Σ, X) for every T ∈ RDef1(Ω, Y ).

Finally, it is clear that RDef0 equals Triv, and is therefore solid.

Generalized definite tree languages. Generalized definite tree languages,
introduced by Heuter [23], combine conditions on a root-segment and on the
subtrees up to a given height. For any j, k ≥ 0, a ΣX-tree language T is called
j, k-definite if Sj(s) = Sj(t) and rtk(s) = rtk(t) imply that s ∈ T iff t ∈ T
(s, t ∈ TΣ(X)), and it is generalized definite if it is j, k-definite for some j, k ≥ 0.
Let GDefj,k = {GDefj,k(Σ, X)} and GDef = {GDef(Σ, X)} be the GVTLs of
j, k-definite and all generalized definite ΣX-tree languages, respectively (cf. [35]).
Clearly, GDefj,k ⊆ GDefj′,k′ whenever j ≤ j′ and k ≤ k′, and the inclusion is
proper if j < j′ or k < k′. Moreover, GDef =

⋃
j,k≥0GDefj,k. Since GDef0,k =

Defk for every k ≥ 0 and GDefj,0 = RDefj for every j ≥ 0, these cases are not
treated separately in the following proposition.

Proposition 8.6.

(a) GDef is nssS-solid, but neither lnsS- nor lssS-solid.

(b) For all j, k ≥ 0, GDefj,k is nssS-solid.

(c) For all j ≥ 2 and k ≥ 0, GDefj,k is neither lnsS- nor lssS-solid.

(d) For every k ≥ 1, GDef1,k is nsS-solid but neither lnS- nor lssS-solid.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be an nssS-morphism and let T ∈ GDefj,k(Ω, Y )
for some j, k ≥ 0. If s, t ∈ TΣ(X) are such that Sj(s) = Sj(t) and rtk(s) = rtk(t),
then Sj(sϕ) = Sj(tϕ) by Lemma 8.4, and rtk(sϕ) = rtk(tϕ) by Lemma 8.2, and
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hence sϕ ∈ T iff tϕ ∈ T , which shows that Tϕ−1 ∈ GDefj,k(Σ, X). Hence,
GDefj,k and GDef are nssS-solid. This proves (b) and the first part of (a).

For the first part of (d), let ϕ : TΣ(X) → TΩ(Y ) be an nsS-morphism and
let T ∈ GDef1,k(Ω, Y ) with k ≥ 0. Let s, t ∈ TΣ(X) satisfy S1(s) = S1(t) and
rtk(s) = rtk(t). Since ϕ is nondeleting, S1(s) = S1(t) implies S1(sϕ) = S1(tϕ) (cf.
the proof of Proposition 8.5). Since ϕ is strict, we get rtk(sϕ) = rtk(tϕ) by Lemma
8.2. This means that sϕ ∈ T iff tϕ ∈ T , and hence Tϕ−1 ∈ GDef1,k(Σ, X).

The negative statements are again proved by counter-examples. First, let Σ =
{f1/2, f2/2, g/1}, Ω = {f/2, g/1, h/1} and X = {x}. Define the lnsS-morphism
ϕ : TΣ(X) → TΩ(X) by ϕ2(f1) = f(g(ξ1), ξ2), ϕ2(f2) = f(h(ξ1), ξ2), ϕ1(g) =
g(ξ1) and ϕX(x) = x. Clearly, T := {t ∈ TΩ(X) | S2(t) = {x, g(x)}, rt0(t) =
ε} is 2,0-definite. For any j, k ≥ 0, let sj,k := gk(f1(x, g

j(x)) and tj,k :=
gk(f2(x, g

j(x))). Then Sj(sj,k) = Sj(tj,k) and rtk(sj,k) = rtk(tj,k), but sj,kϕ =
gk(f(g(x), gj(x))) ∈ T while tj,kϕ = gk(f(h(x), gj(x))) /∈ T . Therefore Tϕ−1 is
not j, k-definite for any j, k ≥ 0, and hence not generalized definite. This proves
the first part of (c) and the second claim of (a).

Next, let Σ = {f/2, g/1}, Ω = {h/1}, X = {x, x′}, and define the lssS-
morphism ϕ : TΣ(X) → TΩ(X) by ϕ2(f) = ϕ1(g) = h(ξ1), ϕX(x) = x and
ϕX(x′) = x′. Now T := {t ∈ TΩ(X) | S1(t) = {x}, rt0(t) = ε} is 1,0-definite, but
Tϕ−1 is not j, k-definite for any j, k ≥ 0, which can be seen by considering the
trees s = f(gj+k(x), gj+k(x′)) and t = f(gj+k(x′), gj+k(x)). This example proves
the last statements of (a), (c) and (d).

That GDef1,k is not lnS-solid for any k ≥ 1 is shown by the example used
in the proof of Proposition 8.3. Indeed, the tree language T = {x} is 1, k-definite
for every k ≥ 1, but Tϕ−1 = {gn(x) | n ≥ 0} is 1, k-definite for no k ≥ 1.

Locally testable tree languages. The set fork(t) of forks of a ΣX-tree t is
defined by setting fork(x) = ∅ for x ∈ X, and fork(t) = fork(t1)∪ . . .∪ fork(tm)∪
{f〈root(t1), . . . , root(tm)〉} for t = f(t1, . . . , tm). A ΣX-tree language T is local if
for all s, t ∈ TΣ(X), if root(s) = root(t) and fork(s) = fork(t), then s ∈ T iff t ∈ T
(cf. [17, 18, 35]). Let Loc = {Loc(Σ, X)} be the GVTL local tree languages.

Proposition 8.7. Loc is nsS-solid but neither lssS- nor lnS-solid.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be an nsS-morphism, T ∈ Loc(Ω, Y ), and let
root(s) = root(t) and fork(s) = fork(t) for some s, t ∈ TΣ(X). Since ϕ is strict,
root(sϕ) = root(tϕ). For the same reason, each fork in sϕ or tϕ can be ascribed
to a fork in s or t, respectively. If f〈d1, . . . , dm〉 ∈ fork(s)(= fork(t)), then there
are subtrees s′ = f(s1, . . . , sm) ∈ sub(s) and t′ = f(t1, . . . , tm) ∈ sub(t) such
that root(si) = di = root(ti) for every i ∈ [m]. As ϕ is nondeleting, s′ϕ ∈
sub(sϕ) and t′ϕ ∈ sub(tϕ). All forks in s′ϕ and t′ϕ that arise from f(d1, . . . , dm)
appear in ϕm(f)[root(s1ϕ), . . . , root(smϕ)] and ϕm(f)[root(t1ϕ), . . . , root(tmϕ)],
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respectively. Since root(siϕ) = root(tiϕ) for every i ∈ [m], this implies fork(sϕ) =
fork(tϕ), and hence sϕ ∈ T iff tϕ ∈ T . This shows that Tϕ−1 ∈ Loc(Σ, X).

For showing that Loc is not lssS-solid, let Σ = {f/2}, Ω = {g/1}, X =
{x, x′} and Y = {y, y′}, and let ϕ : TΣ(X) → TΩ(Y ) be defined by ϕ2(f) = g(ξ1),
ϕX(x) = y and ϕX(x′) = y′. Consider the local ΩY -tree language

T := {t ∈ TΩ(Y ) | root(t) = g, fork(t) = {g〈g〉, g〈y〉}

and the ΣX-trees s := f(f(x, x), f(x′, x′)) and t := f(f(x′, x′), f(x, x)). Now,
root(s) = f = root(t) and fork(s) = {f〈f, f〉, f〈x, x〉, f〈x′, x′〉} = fork(t), but
sϕ = g(g(y)) ∈ T while tϕ = g(g(y′)) /∈ T .

To show that Loc is not lnS-solid, let Σ = {f/1, g/1, h/1} and X = {x},
and define ϕ : TΣ(X) → TΣ(X) by ϕ1(f) = ξ1, ϕ1(g) = g(ξ1), ϕ1(h) = h(ξ1)
and ϕX(x) = x. Clearly, ϕ is linear and nondeleting. Consider the local ΣX-
tree language T = {t ∈ TΣ(X) | root(t) = g}. If s = f(g(f(h(g(x))))) and
t = f(h(g(f(g(x))))), then root(s) = root(t) and fork(s) = fork(t), but sϕ =
g(h(g(x))) ∈ T while tϕ = h(g(g(x))) /∈ T , and hence Tϕ−1 is not local.

Aperiodic tree languages. Aperiodic tree languages were defined by Thomas
[38] who characterized them by syntactic monoids. A regular ΣX-tree language
T is aperiodic if for some n ≥ 0 and all p, q ∈ CΣ(X) and t ∈ TΣ(X), t·pn+1 ·q ∈ T
iff t · pn · q ∈ T . For T aperiodic, let ia(T ) be the least n satisfying the above
condition. Let Ap = {Ap(Σ, X)} be the GVTL of aperiodic tree languages ([35]).

In Section 7 we extended any tree homomorphism ϕ : TΣ(X) → TΩ(Y ) to a
tree homomorphism ϕ∗ : TΣ(X ∪ {ξ}) → TΩ(Y ∪ {ξ}) by setting ξϕ∗ = ξ. If ϕ
is linear and p ∈ CΣ(X), then pϕ∗ is either an ΩY -context or an ΩY -tree. Let
us extend the products p · q of two contexts and the product t · p of a tree and
a context to a product u · v where u, v ∈ TΩ(Y ) ∪ CΩ(Y ) by putting u · v = v
whenever v ∈ TΩ(Y ). The following facts can be proved by induction on q.

Lemma 8.8. If ϕ : TΣ(X) → TΩ(Y ) is an lS-morphism, then (t · q)ϕ = tϕ · qϕ∗

and (p · q)ϕ∗ = pϕ∗ · qϕ∗ for all p, q ∈ CΣ(X) and t ∈ TΣ(X).

Proposition 8.9. The GVTL Ap is lS-solid, but it is not nssS-solid.

Proof. Let ϕ : TΣ(X) → TΩ(Y ) be linear and consider any T ∈ Ap(Ω, Y ). Let
n := max(ia(T ), 1). To prove Tϕ−1 ∈ Ap(Σ, X), consider any t ∈ TΣ(X) and
p, q ∈ CΣ(X). By Lemma 8.8, we should show that

(Ap∗) tϕ · (pϕ∗)
n+1 · qϕ∗ ∈ T ⇔ tϕ · (pϕ∗)

n · qϕ∗ ∈ T.

If qϕ∗ ∈ TΩ(Y ), then tϕ · (pϕ∗)
n+1 · qϕ∗ = qϕ∗ = tϕ · (pϕ∗)

n · qϕ∗ and (Ap∗)
trivially holds. Secondly, if qϕ∗ ∈ CΩ(Y ) but pϕ∗ ∈ TΩ(Y ), then (Ap∗) follows
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from tϕ·(pϕ∗)
n+1 ·qϕ∗ = pϕ∗ ·qϕ∗ = tϕ·(pϕ∗)

n ·qϕ∗. Finally, if pϕ∗, qϕ∗ ∈ CΩ(Y ),
then (Ap∗) follows from T ∈ Ap(Ω, Y ) and ia(T ) ≤ n.

That Ap is not nssS-solid will follow from Proposition 8.10 below.

The syntactic monoid congruence µT of a ΣX-language T is defined by

p µT q :⇔ (∀t ∈ TΣ(X))(∀r ∈ CΣ(X))(t·p·r ∈ T ↔ t·q·r ∈ T ) (p, q ∈ CΣ(X)),

and the syntactic monoid of T is the quotient monoid SM(T ) := CΣ(X)/µT . In
[31] it was shown that for any recognizable tree language, SM(T ) is isomorphic
to the monoid of translations Tr(SA(T )) of the syntactic algebra of T .

Recall that a variety of finite monoids (VFM) is a class of finite monoids
closed under submonoids, epimorphic images and finite direct products. A monoid
is aperiodic if it has no non-trivial subgroups. The finite aperiodic monoids form
the VFM Ap (cf. [12, 29]). With any VFM M, we associate the family of tree lan-
guages Mt = {Mt(Σ, X)} where Mt(Σ, X) := {T ∈ Rec(Σ, X) | SM(T ) ∈ M}.
Furthermore, let Ma be the class of the finite algebras A such that Tr(A) ∈ M.
Then Mt is a GVTL, Ma is a GVFA, Mat = Mt and Mta = Ma (cf. [35]).
Thomas’ [38] characterization of the aperiodic tree languages says that Apt = Ap.
(The GVTLs definable this way by syntactic monoids were characterized in [30].)
Note that Apa = Apa.

Proposition 8.10. The GVFA Apa is not nssS-solid.

Proof. Let Ω = {g/2}. The Ω-algebra B = (B,Ω) in which B = {0, a, b},
gB(a, a) = b, gB(b, b) = a and gB(a1, a2) = 0 for all other (a1, a2) ∈ B2, has three
elementary translations:

α := gB( , a) = gB(a, ) : 0 7→ 0, a 7→ b, b 7→ 0;

β := gB( , b) = gB(b, ) : 0 7→ 0, a 7→ 0, b 7→ a;

o := gB( , 0) = gB(0, ) : 0 7→ 0, a 7→ 0, b 7→ 0.

From these we get as compositions two more translations, namely

γ := αβ : 0 7→ 0, a 7→ a, b 7→ 0, and δ := βα : 0 7→ 0, a 7→ 0, b 7→ b.

Hence, Tr(B) = {1, α, β, γ, δ, o}, where 1 = 1B is the identity and o is a zero
element. The monoid Tr(B) has the four idempotents 1, o, γ and δ, but none of
them belongs to a nontrivial group. Hence, Tr(B) ∈ Ap and B ∈ Apa(= Apa).

Now, let Σ = {f/1} and define κ ∈ nssS(Σ,Ω) by κ(f) = g(ξ1, ξ1). Then
κ(B) = ({0, a, b},Σ) is the Σ-algebra such that fκ(B) : 0 7→ 0, a 7→ b, b 7→ a.
Clearly, Tr(κ(B)) = {1B, f

κ(B)} is a 2-element group, and hence κ(B) /∈ Apa.
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Piecewise testable tree languages. As the last case we consider the piecewise
testable tree languages studied by Piirainen [28]. Their definition is based on
the homeomorphic embedding order of trees used for proving the termination of
term rewriting systems (cf. [3], for example). For any Σ and X, this relation
E on TΣ(X) is defined by stipulating that for any s, t ∈ TΣ(X), s E t iff (1)
s = t, or (2) s = f(s1, . . . , sm), t = f(t1, . . . , tm) and s1 E t1, . . . , sm E tm, or (3)
t = f(t1, . . . , tm) and sE ti for some i ∈ [m].

If sE t, we call s a piecewise subtree of t. For any k ≥ 0 and t ∈ TΣ(X), let
Pk(t) := {s ∈ TΣ(X) | sE t, hg(s) < k}. Now, the relation

πk(Σ, X) := {(s, t) | s, t ∈ TΣ(X), Pk(s) = Pk(t)}

is in FC(Σ, X). A ΣX-tree language is piecewise k-testable if it is saturated by
πk(Σ, X), and it is piecewise testable if it is piecewise k-testable for some k ≥ 0.

Our setting differs from [28] at two points. Firstly, for any k ≥ 0, our “piece-
wise (k + 1)-testable” is the “k-piecewise testable” of [28] while our “0-testable”
means no testing at all. Secondly, since we consider pure tree homomorphisms
only, some of the results of [28] appear here in a slightly stronger form.

Let Pwtk = {Pwtk(Σ, X)} and Pwt = {Pwt(Σ, X)} be the GVTLs of piece-
wise k-testable and piecewise testable tree languages, respectively (cf. [28]).
Piirainen also showed that Pwt is closed under inverse non-deleting tree homo-
morphisms, i.e., that Pwt is nS-solid. We can extend this result to the GVTLs
Pwtk. For this, we need the following versions of Lemmas 6.1 and 6.2 of [28].

Lemma 8.11. Let ϕ : TΣ(X) → TΩ(Y ) be an nS-morphism. For any k ≥ 0,
s ∈ TΣ(X) and t ∈ Pk(sϕ), there exists an s′ ∈ Pk(s) such that t ∈ Pk(s

′ϕ).

Proof. We proceed by induction on k. The case k = 0 is trivial since P0(sϕ) = ∅.
If t ∈ P1(sϕ), then t ∈ Y and since ϕ is pure, there must be an x ∈ P1(s) such
that t ∈ P1(xϕ). Assuming now that k ≥ 2, we proceed by induction on s.

If s ∈ X, then hg(s) < k and we may choose s′ = s for every t ∈ Pk(sϕ).
Now, let s = f(s1, . . . , sm) and assume that the claim holds for all smaller trees.
Then sϕ = ϕm(f)[s1ϕ, . . . , smϕ], and we distinguish two cases.

If tEsiϕ for some i ∈ [m], then t ∈ Pk(s
′ϕ) for some s′ ∈ Pk(si) ⊆ Pk(s). Oth-

erwise, t = t′[t1, . . . , tm] for some t′ ∈ TΩ(Ξm) and t1, . . . , tm ∈ TΩ(Y ) such that
t′ E ϕm(f) (E-relation of TΩ(Ξm)) and t1 ∈ Pk−1(s1ϕ), . . . , tm ∈ Pk−1(smϕ). By
the main inductive assumption, there are trees s′1 ∈ Pk−1(s1), . . . , s

′
m ∈ Pk−1(sm)

such that t1 ∈ Pk−1(s
′
1ϕ), . . . , tm ∈ Pk−1(s

′
mϕ). Obviously, s′ := f(s′1, . . . , s

′
m) is

in Pk(s), and since ϕ is nondeleting, t = t′[t1, . . . , tm] E ϕm(f)[s′1ϕ, . . . , s
′
mϕ] =

s′ϕ, which means that t ∈ Pk(s
′ϕ).
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Lemma 8.12. If ϕ : TΣ(X) → TΩ(Y ) is an nS-morphism, then s πk(Σ, X) t
implies that sϕπk(Ω, Y ) tϕ.

Proof. Let s πk(Σ, X) t for some s, t ∈ TΣ(X), and consider any u ∈ Pk(sϕ). By
Lemma 8.11, u ∈ Pk(s

′ϕ) for some s′ ∈ Pk(s) = Pk(t). Then also s′ E t. By
Lemma 5.2 of [28], this implies s′ϕE tϕ, and hence u ∈ Pk(s

′ϕ) ⊆ Pk(tϕ). This
proves Pk(sϕ) ⊆ Pk(tϕ), and the converse inclusion is shown the same way.

Proposition 8.13.

(a) Pwt is nS-solid but not lssS-solid.

(b) For each k ≥ 1, Pwtk is nS-solid but not lssS-solid.

(c) Pwt0 = Triv is solid.

Proof. The GVTL Pwt is nS-solid by Theorem 6.3 of [28], but here our stronger
Lemma 8.12 implies that also every Pwtk is nS-solid. Of course, Pwt0 = Triv
is solid. It remains to show that Pwt and Pwtk (k ≥ 1) are not lssS-solid.

Let Σ = {f/2}, X = {x, x′} and Ω = {g/1}, and let ϕ : TΣ(X) → TΩ(X)
be the lssS-morphism defined by ϕ2(f) = g(ξ1), ϕX(x) = x and ϕX(x′) = x′.
The ΩX-tree language T = {gn(x) | n ≥ 0} = {x, g(x), g(g(x)), . . .} is clearly
piecewise k-testable for any k ≥ 1. Let us now define (1) s0 := x and t0 := x′,
and (2) sn := f(sn−1, tn−1) and tn := f(tn−1, sn−1) for any n ≥ 1.

It is easy to see that for any k ≥ 1, u E sk and u E tk for every u ∈ TΣ(X)
such that hg(u) < k. Hence, sk π

k(Σ, X) tk for every k ≥ 1. On the other hand,
skϕ = gk−1(x) ∈ T while tkϕ = gk−1(x′) /∈ T . Hence Tϕ−1 /∈ Pwtk(Σ, X) for all
k ≥ 1, and thus also Tϕ−1 /∈ Pwt(Σ, X).

Note that Example 6.4 of [28], which was used for showing that Pwt1 is not
lnS-solid, is not valid here as we consider pure tree homomorphisms only.

9. Some concluding remarks

We have presented a framework for the study of the solidity of general varieties
of tree languages, that contain tree languages over all alphabets, as well as the
corresponding general varieties of finite algebras and general varieties of finite
congruences. Secondly, we established the solidity properties of several known
families of regular tree languages with respect to certain categories of substi-
tutions that were derived from some important classes of tree homomorphisms.
These GVTLs turned out to have quite different solidity properties, and largest
of the categories with respect to which all of them are solid, is that of linear
nondeleting symbol-to-symbol substitutions. However, at least GVTLs like the
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one considered in Example 10.4 of [35] are not even lnssS-solid. As noted also by
Baltazar [4], the tree language varieties of Ésik [15] are solid and his more general
+-varieties are sS-solid (when applying our terminology to the single-type case).
Hence none of the nontrivial GVTLs considered in Section 8 is a variety in the
sense of [15] and just the definite tree languages form a +-variety.

Of course, many more questions related to our topic remain to be studied.
For example, some important GVTLs were not yet studied, and there could also
be some further interesting categories of substitutions to consider.

It was indicated by the Referee that the bi-algebras of Yu. M. Movsisjan (cf.
[10, 26] for references) resemble our g-algebras, and hence some of the results of
Sections 4 and 5 and may have counterparts in Movsisjan’s work. So far, I have
not got access to that work and cannot settle the matter. In any case, in view of
the main focus of this paper, it was natural to stick to the formalism of [35].
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