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1. Introduction

Definition [2]. Let

S1 = {a11, a12, . . . , a1nr},
S2 = {a21, a22, . . . , a2nr},
S3 = {a31, a32, . . . , a3ns}, where a∗ ∈ S3 is a fixed element,

S4 = {a41, a42, . . . , a4ns}, where a∗∗ ∈ S4 is a fixed element,

be four non-empty, finite and pairwise disjoint sets and let S = S1 ∪S2 ∪S3 ∪S4.
We define a binary operation ∗ on S by

aij ∗ alk =



alk if aij ∈ S1

atk if aij ∈ S2 where t =


1 if l = 2
2 if l = 1
3 if l = 4
4 if l = 3

a∗ ∈ S3 if aij ∈ S3
a∗∗ ∈ S4 if aij ∈ S4.

The semigroup (S; ∗) is said to be a four-part semigroup.

Remark 1.

1. It is easy to see that the binary operation ∗ is well-defined and associative.
Therefore (S; ∗) is a finite semigroup. Since the sets S1 and S2 have the same car-
dinality, as do S3 and S4, any four-part semigroup has even cardinality. Four-part
semigroups were introduced by R. Butkote ([1]) (see also [2]) to give an abstract
description of the semigroup (On({0, 1}); +) of all n-ary Boolean operations for
n ≥ 1, where f + g := f(g, . . . , g), f, g ∈ On({0, 1}) is the n-ary Boolean opera-
tion which is defined by (f + g)(a1, . . . , an) := f(g(a1, . . . , an), . . . , g(a1, . . . , an)).
The sets S1, S2, S3 and S4 are then the following collections of Boolean oper-
ations : Cn

4 := {f ∈ On(A)|f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1}, ¬Cn
4 :=

{f ∈ On(A)|f(0, . . . , 0) = 1 and f(1, . . . , 1) = 0} (the notation ¬Cn
4 means

that each element of this set is the negation of an element of Cn
4 ), Kn

0 := {f ∈
On(A)|f(0, . . . , 0) = 0 and f(1, . . . , 1) = 0} which contains the n-ary constant op-
eration with value 0 and Kn

1 := {f ∈ On(A)|f(0, . . . , 0) = 1 and f(1, . . . , 1) = 1}.
Kn

1 contains the n-ary constant operation with value 1. Each element of Kn
1 is

the negation of some element of Kn
0 . Therefore, instead of Kn

1 one could also
write ¬Kn

0 . Clearly, On({0, 1}) = Cn
4 ∪ ¬Cn

4 ∪Kn
0 ∪Kn

1 is the disjoint union of
these sets and it is not difficult to see that (On({0, 1}); +) is a four-part semigroup
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since the operation + satisfies

f + g =


g if f ∈ Cn

4

¬g if f ∈ ¬Cn
4

cn0 if f ∈ Kn
0

cn1 if f ∈ ¬Kn
0 .

Our aim is to determine the semigroup-theoretical properties of four-part semi-
groups. This can be applied to determine the properties of the semigroup
(On({0, 1}); +).

2. To get a semigroup not necessarily all of the sets S1, S2, S3, S4 have to be
non-empty. We analyze all possible cases where at least one of our sets is empty.
Clearly, S1 = ∅ iff S2 = ∅ and S3 = ∅ iff S4 = ∅. Therefore except the case that
none of the sets S1, S2, S3, S4 is the empty set, we have three more cases:

1. S1 = S2 = ∅, S3 6= ∅, S4 6= ∅,

2. S3 = S4 = ∅, S1 6= ∅, S2 6= ∅,

3. S1 = S2 = S3 = S4 = ∅.

In the first case we have S = S3 ∪ S4 with

aij ∗ alk =

{
a∗ if aij ∈ S3
a∗∗ if aij ∈ S4

and in the second case we have S = S1 ∪ S2 with

aij ∗ alk =


alk if aij ∈ S1
a1k if aij ∈ S2 and l = 2

a2k if aij ∈ S2 and l = 1.

2. Subsemigroups of four-part semigroups

To study subsemigroups of four-part semigroups we define the following kinds of
semigroups:

Definition. A semigroup S = (S; ∗) is called a constant semigroup if there is
an element b∗ ∈ S such that a ∗ b = b∗ for any a, b ∈ S, a right-zero constant
semigroup if there are two disjoint non-empty sets S1, S2 such that S = S1 ∪ S2
and there is a fixed element b∗ ∈ S2 such that

a ∗ b =

{
b if a ∈ S1
b∗ if a ∈ S2,
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a two-constant semigroup if there are two disjoint non-empty sets S1, S2 such
that S = S1∪S2 and there are two fixed elements b∗ ∈ S1 and b∗∗ ∈ S2 such that

a ∗ b =

{
b∗ if a ∈ S1
b∗∗ if a ∈ S2,

a right-zero two-constant semigroup if there are subsets S1, S2, S3 of S such that

S =
3⋃

i=1
Si, Si 6= ∅, Si ∩ Sj = ∅ for i 6= j ∈ {1, 2, 3} and there are distinguished

elements b∗ ∈ S2 and b∗∗ ∈ S3 such that

a ∗ b =


b if a ∈ S1
b∗ if a ∈ S2
b∗∗ if a ∈ S3,

a right-zero ϕ-semigroup if there is a fixed point free bijective mapping ϕ : S → S
with ϕ ◦ ϕ = id and there are two disjoint sets S1, S2 of S such that S = S1 ∪ S2
and

a ∗ b =

{
b if a ∈ S1
ϕ(b) if a ∈ S2.

Lemma 2. Let S be a four-part semigroup. Then there is a fixed point free
bijective mapping ϕ : S → S such that ϕ ◦ ϕ = id, ϕ(a∗) = a∗∗, ϕ(a∗∗) = a∗,
ϕ(a1j) = a2j, ϕ(a2j) = a1j, ϕ(a3k) = a4k and ϕ(a4k) = a3k for j = 1, . . . , nr and
k = 1, . . . , ns.

Proof. We can define a bijective mapping ϕ : S → S by definition ϕ(a1j) = a2j ,
ϕ(a2j) = a1j , j = 1, . . . , nr and ϕ(a3k) = a4k and ϕ(a4k) = a3k, k = 1, . . . , ns and
ϕ(a∗) = a∗∗, ϕ(a∗∗) = a∗. It is easy to see that ϕ is a fixed point free bijection
satisfying ϕ ◦ ϕ = id.

Lemma 3. Let S be a four-part semigroup and let H ⊆ S be a subsemigroup with
H = H1 ∪H2 ∪H3 ∪H4, Hi ⊆ Si, i = 1, 2, 3, 4. Then we have

(i) If H2 6= ∅, then H1 6= ∅.

(ii) If H2 6= ∅, then H3 6= ∅ if and only if H4 6= ∅.

Proof. (i) Let H2 6= ∅ and a2j ∈ H2 ⊆ S2. Then a2j ∗ a2j = a1j ∈ S1 ∩H = H1,
i.e H1 6= ∅.

(ii) Let H2 6= ∅ and H3 6= ∅ and let a2j ∈ H2 and a3k ∈ H3. Then a2j ∗ a3k =
a4k ∈ S4 ∩H = H4, i.e., H4 6= ∅ and if a4k ∈ H4, then a2j ∗ a4k = a3k ∈ S3 ∩H
= H3.
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Lemma 4. Let S be a four-part semigroup and let H ⊆ S be a subsemigroup
of S.

(i) If H∩S2 6= ∅, then H is a four-part semigroup or a right-zero ϕ-semigroup.

(ii) If H ∩ S2 = ∅, then H is a right-zero, a constant, a right-zero constant, a
two-constant or a right-zero two-constant semigroup.

Proof. (i) Because of H ⊆ S1 ∪ S2 ∪ S3 ∪ S4 we can write H = (S1 ∩ H) ∪
(S2 ∩H) ∪ (S3 ∩H) ∪ (S4 ∩H). If H ∩ S2 6= ∅, then H ∩ S1 6= ∅ by Lemma 3.
We consider two cases:

1. S3∩H = ∅. Then also S4∩H = ∅ by Lemma 3 and H = (S1∩H)∪(S2∩H)
and with a bijection ϕ : S1 ∪ S2 → S1 ∪ S2 defined by ϕ(a1j) = a2j and
ϕ(a2j) = a1j for all j ∈ {1, 2, . . . , nr} we obtain ϕ ◦ ϕ = id on S and

aij ∗ alk =

{
alk if aij ∈ S1
ϕ(alk) if aij ∈ S2.

The restriction of ϕ on H satisfies ϕ ◦ ϕ = id on H and

aij ∗ alk =

{
alk if aij ∈ H1

ϕ(alk) if aij ∈ H2.

Therefore H is a right-zero ϕ-semigroup.

2. S3 ∩ H 6= ∅. Then by Lemma 3 also S4 ∩ H 6= ∅ and H is the union of
four pairwise disjoint non-empty sets. Since H is a subsemigroup by the
definition of ∗, we get a∗, a∗∗ ∈ H and we have

aij ∗ alk =



alk if aij ∈ S1 ∩H

atk if aij ∈ S2 ∩H where t =


1 if l = 2
2 if l = 1
3 if l = 4
4 if l = 3

a∗ ∈ S3 if aij ∈ S3 ∩H
a∗∗ ∈ S4 if aij ∈ S4 ∩H.

This shows that H is a four-part semigroup.

(ii) If H ∩ S2 = ∅, then H = (S1 ∩H) ∪ (S3 ∩H) ∪ (S4 ∩H). Now we have the
following cases:
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1. H ∩ S3 = H ∩ S4 = ∅. Then H = H ∩ S1 forms a right-zero semigroup.

2. H ∩ S1 = H ∩ S4 = ∅ or H ∩ S1 = H ∩ S3 = ∅. Then H is a constant
semigroup.

3. H ∩ S3 = ∅ or H ∩ S4 = ∅. Then H is a right-zero constant semigroup.

4. H ∩ S1 = ∅. Then H is a two-constant semigroup.

5. H ∩ S1 6= ∅, H ∩ S3 6= ∅, H ∩ S4 6= ∅. Then H is a right-zero two-constant
semigroup.

Lemma 4 answers to the question which kinds of semigroups can occur as sub-
semigroups of a four-part semigroup. Now we characterize the different cases.

Proposition 5. Let S be a four-part semigroup with constant elements a∗ and
a∗∗. Then a subset H ⊆ S is the universe of a four-part semigroup with constant
elements b∗ and b∗∗ if and only if

(i) H ∩ S2 6= ∅, b∗ = a∗, b∗∗ = a∗∗ and

(ii) H is closed under ϕ, that is ϕ(a) ∈ H for all a ∈ H.

Proof. Assume that the two conditions are satisfied. Then by Lemma 3 and
condition (i), H ∩ S1 6= ∅ and hence H ∩ Si 6= ∅ for all i = 1, 2, 3, 4 and we
define H1 := H ∩ S1, H2 := H ∩ S2, H3 := H ∩ S3, H4 := H ∩ S4. Clearly,
H = H1 ∪H2 ∪H3 ∪H4 and Hi ∩Hj = ∅ for i 6= j and each of these sets is non-
empty. We show that H is closed under the multiplication of S and therefore
a subsemigroup. If a1j ∈ H1 and b ∈ H is arbitrary, then a1j ∗ b = b since
a1j ∈ S1. If a2j ∈ H2 and b ∈ H, then a2j ∗ b = ϕ(b) ∈ H by ϕ(H) ⊆ H and if
a4k ∈ H4, then a2j ∗ a4k = a3k = ϕ(a4k) ∈ H by ϕ(H) ⊆ H. If a3k ∈ H3, then
a3k ∗ b = a∗ ∈ H for any b ∈ H and if a4k ∈ H4, then a4k ∗ b = a∗∗ ∈ H for any
b ∈ H. This shows that H is a four-part semigroup.

Assume now conversely, that H is a four-part subsemigroup of S. We want
to show that (i) and (ii) are satisfied. We know that H = H1 ∪ H2 ∪ H3 ∪ H4,
Hi 6= ∅, Hi ∩ Hj = ∅ for i 6= j and b∗ ∈ H3 and b∗∗ ∈ H4 are the constant
elements. We need the following

Claim. H1 ⊆ S1, H2 ⊆ S2, H3 ⊆ S3, H4 ⊆ S4.

Proof of the Claim. Assume that H1 6⊆ S1. Then there is an element a1j ∈ H1

but a1j 6∈ S1 and we form a1j ∗H a1j = a1j ∈ H1 using the multiplication ∗H of H.
But this has to be equal to a1j ∗Sa1j using the multiplication of S. Since a1j 6∈ S1,
there are the following possibilities for a1j , i.e., a1j ∈ H1 ∩ S2 or a1j ∈ H1 ∩ S3
or a1j ∈ H1 ∩ S4.
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1. a1j ∈ S2, then a1j ∗S a1j = a2j ∈ S2. But a2j 6= a1j , a contradiction.

2. a1j ∈ S3, then a1j ∗H b = b for any b ∈ H, but a1j ∗S b = a∗ ∈ S3. This
gives a contradiction for any b ∈ H.

3. a1j ∈ S4, then a1j ∗H b = b for any b ∈ H, but a1j ∗S b = a∗∗ ∈ S4 for any
b ∈ H, a contradiction.

These contradictions show that H1 ⊆ S1.
Assume that H2 6⊆ S2. Then there is an element a2j ∈ H2, but a2j 6∈ S2. We

form a2j ∗H a2j = a1j and this has to be equal to a2j ∗S a2j . Here we have the
following possibilities:

1. a2j ∈ S1, then a2j ∗S a2j = a2j 6= a1j .

2. a2j ∈ S3, then a2j ∗S a2j = a∗ 6= a1j .

3. a2j ∈ S4, then a2j ∗S a2j = a∗∗ 6= a1j .

This contradiction shows that H2 ⊆ S2.
Assume that H3 6⊆ S3. Then there is an element a3j ∈ H3, but a3j 6∈ S3. If

a3j ∈ S1, then a3j ∗H b = b∗ for any b ∈ H, but a3j ∗S b = b, i.e., b = b∗ for any
b ∈ H, a contradiction. If a3j ∈ S2, then a3j ∗H b = b∗ for any b ∈ H, b∗ ∈ H3

but a3j ∗S b = ϕ(b), i.e., ϕ(b) = b∗ for any b, a contradiction. If a3j ∈ S4, then
b ∗H a3j = a4j = ϕ(a3j) ∈ S4, but b ∗S a3j = ϕ(a3j) 6∈ S4 for any b ∈ H2 ⊆ S2.

H4 ⊆ S4 can be proved in a similar way as H3 ⊆ S3. This finishes the proof
of this claim.

H2 ⊆ S2 and H2 6= ∅ show that H ∩ S2 6= ∅. Moreover, since b∗ ∈ H3 ⊆ S3
and b∗∗ ∈ H4 ⊆ S4, we have b∗ = a3j ∗H b = a3j ∗S b = a∗ and b∗∗ = a4j ∗H b =
a4j ∗S b = a∗∗ for any a3j ∈ H3, a4j ∈ H4 and b ∈ H. Since H2 ⊆ S2, then
for every a ∈ H we have φ(a) = a2j ∗H a ∈ H for a2j ∈ H2, that means (ii) is
satisfied. This completes the proof.

Proposition 6. let S be a four-part semigroup. Then a subset H ⊆ S is the
universe of a right-zero two-constant subsemigroup of S if and only if H ⊆ S1 ∪
S3 ∪ S4, H ∩ S1 6= ∅ and there are two fixed elements b∗, b∗∗, b∗ 6= b∗∗ with
{a∗, a∗∗} = {b∗, b∗∗}.

Proof. Let H be the universe of a right-zero two-constant subsemigroup of S.
We show first that H ∩ S2 = ∅. Indeed, if H ∩ S2 6= ∅, then there is an element
a2j ∈ H ∩S2 for some j ∈ {1, . . . , nr} and then a2j ∗S b = ϕ(b) for any b ∈ H with
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ϕ(b) 6= b and b can be chosen in such a way that ϕ(b) 6= b∗ ∈ H2, ϕ(b) 6= b∗∗ ∈ H3.
But by the definition of a right-zero two-constant semigroup we must have

a2j ∗S b = a2j ∗H b =


b if a2j ∈ H1

b∗ if a2j ∈ H2

b∗∗ if a2j ∈ H3,

a contradiction. This shows that H ⊆ S1∪S3∪S4. Now we show that H∩S1 6= ∅.
If H ∩ S1 = ∅, then H ⊆ S3 ∪ S4 and then

aij ∗S alk =

{
b∗ if aij ∈ S3
b∗∗ if aij ∈ S4

for all aij , alk ∈ H. But if aij ∈ H1 6= ∅, aij ∈ S3, then we have aij ∗S b∗∗ =
b∗ 6= b∗∗ = aij ∗H b∗∗, a contradiction. If aij ∈ H1 6= ∅, but aij ∈ S4 we have
aij ∗S b∗ = b∗∗ 6= b∗ = aij ∗H b∗. This shows that H ∩ S1 6= ∅. Since b∗ ∈ H2 we
have b∗ ∗H b∗∗ = b∗. Since H2 ⊆ S1 ∪ S3 ∪ S4, we consider the following three
possibilities for b∗:

1. b∗ ∈ S1, then b∗ ∗S b∗∗ = b∗∗ 6= b∗, a contradiction.

2. b∗ ∈ S3, then b∗ ∗S b∗∗ = a∗ and thus a∗ = b∗ or

3. b∗ ∈ S4, then b∗ ∗S b∗∗ = a∗∗ = b∗.

Therefore {a∗, a∗∗} = {b∗, b∗∗}.
Conversely, assume that H ⊆ S is a subset of the universe S of a four-

part semigroup S with H ⊆ S1 ∪ S3 ∪ S4, H ∩ S1 6= ∅ and that there are two
elements b∗, b∗∗ ∈ H satisfying b∗ 6= b∗∗ and {a∗, a∗∗} = {b∗, b∗∗}. We show that
H is a right-zero two-constant subsemigroup of S. We show that H is closed
under the multiplication in S. If a ∈ H ∩ S1, then for any b ∈ H we have
a ∗S b = b ∈ H and in all other cases we get elements in {a∗, a∗∗}, which are in H
since {a∗, a∗∗} = {b∗, b∗∗}. Therefore H is a subsemigroup of S with H ∩S1 6= ∅.
Further we have H ∩ S3 6= ∅ and H ∩ S4 6= ∅ since {b∗, b∗∗} ⊆ H. Now we set
H1 := H ∩ S1, H2 := H ∩ S3, H3 := H ∩ S4. Then H = H1 ∪ H2 ∪ H3. We
have to show that b∗ ∈ H2 and b∗∗ ∈ H3 or conversely and that ∗S |H is the
multiplication of a right-zero two-constant semigroup. If a ∈ H2, then we have
a ∗S b = a ∗H b = a∗ ∈ H ∩ S3 = H2 for all b ∈ H and if a ∈ H3, then we have
a ∗S b = a ∗H b = a∗∗ ∈ H ∩ S4 = H3 for all b ∈ H. Now we can set a∗ = b∗ ∈ H2

or b∗ = a∗∗ or conversely. If a ∈ H1 = S1 ∩H, then a ∗H b = a ∗S b = b for all
b ∈ H. This shows that H is a right-zero two-constant subsemigroup of S.
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Proposition 7. A subset H ⊆ S of the universe of a four-part semigroup is the
universe of a two-constant subsemigroup of S if and only if H ⊆ S3 ∪ S4 and
there are two elements b∗, b∗∗ ∈ H, b∗ 6= b∗∗ such that {a∗, a∗∗} = {b∗, b∗∗}.

Proof. If H is a two-constant semigroup, then H ∩ S1 = ∅ and H ∩ S2 = ∅
since, if aij ∈ S1, then aij ∗S b∗ = b∗ and aij ∗S b∗∗ = b∗∗, aij ∈ H ∩ S1 means
aij ∈ H1 or aij ∈ H2. In the first case we have a1j ∗H b∗∗ = b∗ and in the second
case, a1j ∗H b∗ = b∗∗. In both cases, we have a contradiction. If a2j ∈ H ∩ S2,
then again we have a2j ∈ H1 or a2j ∈ H2 and a2j ∗S b∗ = ϕ(b∗) = b∗∗ and
a2j ∗S b∗∗ = ϕ(b∗∗) = b∗. If a2j ∈ H1, then a2j ∗H b∗ = b∗ and if a2j ∈ H2, then
a2j ∗H b∗∗ = b∗∗. In both cases we have a contradiction. This shows H ⊆ S3∪S4.
The second condition is clear. Assume now that H is a subset of S3 ∪ S4. We
define H1 := H ∩ S3 and H2 := H ∩ S4, b∗ := a∗, b∗∗ := a∗∗. If a ∈ H1, then
a ∗ b = b∗ = a∗ ∈ H and if a ∈ H2, then a ∗S b = b∗∗ ∈ H for all b ∈ H. This
shows that H is a two-constant semigroup.

Proposition 8. Let H ⊆ S be a subset of the universe of a subsemigroup of
the four-part semigroup S. Then H is the universe of a right-zero constant sub-
semigroup of S if and only if either H ⊆ S1 ∪ S3, H ∩ S1 6= ∅ and a∗ ∈ H or
H ⊆ S1 ∪ S4, H ∩ S1 6= ∅ and a∗∗ ∈ H.

Proof. Assume that H is a right-zero constant subsemigroup of S.

Claim.

(i) Either H ∩ S3 = ∅ or H ∩ S4 = ∅.

(ii) H 6⊆ S1, H 6⊆ S2, H 6⊆ S3, H 6⊆ S4.

Proof of Claim. (i) For the fixed element b∗ and for all a ∈ H we have
a ∗ b∗ = b∗. If a ∈ S3, then a ∗S b∗ = a∗ and then a∗ = b∗ and for a ∈ S4 we have
a ∗S b∗ = a∗∗ = b∗. Thus if S3 ∩H 6= ∅, then S4 ∩H = ∅ and if S4 ∩H 6= ∅, then
S3 ∩H = ∅ and this proves (i).

(ii) We use that |H| ≥ 2. Assume that H ⊆ S1, then for all a, b ∈ H we
have a ∗H b = b and if a ∈ H2 we get a ∗S b = b∗, i.e., b = b∗ for all b ∈ S, a
contradiction, which shows H 6⊆ S1. Assume that H ⊆ S2, then a∗H b = ϕ(b) for
all a ∈ H and a ∗S b = b if a ∈ H1, i.e., ϕ(b) = b for all b ∈ H, a contradiction.
Assume that H ⊆ S3. If a ∈ H1, then a ∗H b = b = a∗ = a ∗S b for all b ∈ H, i.e.,
|H| = 1, a contradiction. In a similar way we show that H 6⊆ S4.

Now we prove that H ⊆ S is a right-zero constant subsemigroup if the con-
ditions are satisfied. We show that H ⊆ S is closed under ∗S . Assume that
a ∈ S1 ∩ H, then a ∗S b = b ∈ H. If a ∈ H ∩ S3, then a ∗S b = a∗ ∈ H.
In the second case we conclude in the same way. We set H1 = H ∩ S1 6= ∅
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and H2 = H ∩ S3 6= ∅ and b∗ = a∗ since a∗ ∈ H ∩ S3 in the first case and
H1 := H ∩ S1 6= ∅ and H2 = H ∩ S4 6= ∅ and b∗ = a∗∗ in the second one. Then
all conditions for a right-zero subsemigroup are satisfied. Now we assume that
H is a right-zero constant semigroup. By the claim we have H ⊆ S1 ∪ S2 ∪ S4 or
H ⊆ S1 ∪ S2 ∪ S3. We know also that H 6⊆ S1, H 6⊆ S2, H 6⊆ S3, H 6⊆ S4. Note
that H cannot contain an element b from S3 together with an element a ∈ S2
since otherwise a ∗H b = ϕ(b) ∈ S4 ∩ H which contradicts the claim. A similar
argument shows that H cannot contain an element from S4 together with an
element from S2. Then for H we have precisely the following cases:

1. H ⊆ S3 ∪ S1, H ∩ S3 6= ∅, H ∩ S1 6= ∅ or

2. H ⊆ S4 ∪ S1, H ∩ S4 6= ∅, H ∩ S1 6= ∅ or

3. H ⊆ S1 ∪ S2, H ∩ S1 6= ∅, H ∩ S2 6= ∅.

If a ∈ S2, b∗ ∈ S1, then a ∗S b∗ = ϕ(b∗) = b∗ = a ∗H b∗, a contradiction and for
a ∈ H, b∗ ∈ S2 we get a ∗S b∗ = b∗, which is also a contradiction. Therefore the
third case can be excluded. In the first case from an element in H ∩ S1 6= ∅ and
an element from H ∩ S3 6= ∅ we can produce a∗, namely by a ∗H b = a∗ and
have a∗ ∈ H. In the second case we get a∗∗ ∈ H. By the claim both conditions
exclude each other.

Proposition 9. Let H ⊆ S be a subset of the universe of a subsemigroup of a
four-part semigroup S. Then H is the universe of a right-zero semigroup if and
only if H ⊆ S1 or H = {a∗} or H = {a∗∗}.

Proof. Assume that H ⊆ S1 or {a∗} or {a∗∗}. Then H is closed under the
multiplication of S and forms a right-zero semigroup. Conversely, let H be a
right-zero subsemigroup of S. Assume that H 6⊆ S1, then there exists a ∈
H ∩ (S2 ∪ S3 ∪ S4). But if a ∈ S2 then we have a ∗H a = a 6= ϕ(a) = a ∗S a,
a contradiction. Therefore H ⊆ S3 ∪ S4. We show that H ∩ S3 = {a∗} and
H ∩ S4 = {a∗∗}. Let a ∈ H ∩ S3, a 6= a∗. Then a ∗H a = a∗ which contradicts
the definition of a right-zero semigroup. Therefore H ∩ S3 = {a∗}. Similarly
we obtain H ∩ S4 = {a∗∗}. Hence H ⊆ {a∗, a∗∗} and we obtain H = {a∗}
or H = {a∗∗} or H = {a∗, a∗∗}. The latter case is impossible since otherwise
a∗ ∗H a∗∗ = a∗ ∗S a∗∗ = a∗.

Proposition 10. Let H ⊆ S be a subset of the universe of a subsemigroup of a
four-part semigroup S. Then H is the universe of a constant semigroup if and
only if H ⊆ S3 and a∗ ∈ H or H ⊆ S4 and a∗∗ ∈ H or H = {a}, a ∈ S1.

Proof. If the condition is satisfied, then a ∗S b = a∗ ∈ H if a, b ∈ H ∩ S3 or
a ∗S b = a∗∗ if a, b ∈ S4 ∩H. Therefore the set H is closed under multiplication
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and forms a constant subsemigroup of S. If H ⊆ S is a constant subsemigroup of
S and |H| ≥ 2, then H ∩S1 = ∅, H ∩S2 = ∅, H ∩S4 = ∅ or H ∩S1 = ∅, H ∩S2 =
∅, H ∩ S3 = ∅. Indeed, if a ∈ H ∩ S1 and b 6= a, b ∈ H, then a ∗H b = b, but
a ∗H a = a 6= b and H is not a constant semigroup, therefore H ∩ S1 = ∅. Let
H ∩ S2 6= ∅ and a ∈ H ∩ S2. Then a ∗S b = ϕ(b) and a ∗S ϕ(b) = b. Because
of ϕ(b) 6= b (ϕ is a fixed point free mapping) is H not a constant semigroup.
Therefore H ∩ S2 = ∅. If a ∈ H ∩ S4 and assume that b ∈ S3. Then a ∗S b = a∗∗

and b ∗ a = a∗ ∈ A. Because of a∗ 6= a∗∗, H cannot be constant. In the second
case we conclude in a similar way. Moreover, we cannot have elements from S3
and from S4 since otherwise a ∗H b = a∗ if a ∈ S3 and a ∗H b = a∗∗ if a ∈ S4 and
this contradicts the assumption that H is a constant semigroup. These equation
show also that a∗ ∈ H if H ⊆ S3 or a∗∗ ∈ H if H ⊆ S4. If |H| = 1 then the only
element must be idempotent, i.e a ∈ S1 or a ∈ {a∗, a∗∗}. But the second case is
already included in the previous cases.

Proposition 11. Let S be a four-part semigroup. Then a non-empty subset
H ⊆ S is the universe of a right-zero ϕ-subsemigroup of S if and only if H ⊆
S1 ∪S2, H ∩S1 6= ∅ and H ∩S2 6= ∅ and H is closed under ϕ, i.e., if a ∈ H, then
ϕ(a) ∈ H for all a ∈ H.

Proof. Let H be the universe of a right-zero ϕ-subsemigroup of S. We prove
that H ∩ S3 = ∅ and H ∩ S4 = ∅. If H ∩ S3 6= ∅ and a ∈ S3, then a ∗H b = b
if a ∈ H1 or a ∗H b = ϕ(b) if a ∈ H2, but a ∗S b = a∗ for any b ∈ H, i.e.,
b = a∗ for any b ∈ H, a contradiction or ϕ(b) = a∗ for any b ∈ H, which is also
a contradiction. Similarly we get a contradiction if H ∩ S4 6= ∅. Altogether, we
have H ⊆ S1 ∪ S2.

Suppose that H∩S1 = ∅. Then H ⊆ S2 and since H 6= ∅, there is an element
a ∈ H ∩S2. Then a ∗S a = a ∗H a = ϕ(a), where ϕ is the idempotent, fixed point
free bijective mapping from S. Since a ∈ S2, the image ϕ(a) belongs to S1, a
contradiction. If H ∩ S2 = ∅, then H ⊆ S1 and with a ∈ H ∩ S1 and b ∈ H2 we
have b∗Sa = b∗Ha = ϕ(a) ∈ H1, where ϕ is the fixed point free, bijective mapping
from H. The element ϕ(a) belongs to S and since a ∈ S1, we have ϕ(a) ∈ S2, a
contradiction. With b ∈ H2 for any a ∈ H we have b ∗H a = ϕ(a) ∈ H, i.e., H is
closed under ϕ.

Since H ⊆ S is a subsemigroup let conversely, H ⊆ S be a subset which
satisfies H ⊆ S1 ∪ S2, H ∩ S1 6= ∅, H ∩ S2 6= ∅. Then we define H1 := H ∩ S1
and H2 := H ∩ S2 and use as fixed point free, bijective mapping from H the
restriction of the corresponding mapping of H since H is closed under ϕ. Now
we have

a ∗H b =

{
b if a ∈ H1

ϕ(b) if a ∈ H2

and H is a right-zero ϕ-semigroup.
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3. Idempotent and regular subsemigroups of four-part semigroups

Proposition 12. Let S be a four-part semigroup and let a ∈ S be arbitrary.
Then a is an idempotent element of S if and only if a ∈ S1 ∪ {a∗, a∗∗}.

Proof. If a ∈ S1 ∪ {a∗, a∗∗}, then it is clear that a ∗ a = a. Conversely, let a ∈ S
be idempotent. Assume that a 6∈ S1∪{a∗, a∗∗}. If a ∈ S2 then a∗a = ϕ(a) 6= a, a
contradiction. If a ∈ (S3∪S4)\{a∗, a∗∗}, then a∗a ∈ {a∗, a∗∗} and thus a∗a 6= a,
a contradiction. This completes the proof.

Proposition 13. Let S be a four-part semigroup and let H ⊆ S. Then H is an
idempotent subsemigroup of S if and only if H ⊆ S1 ∪ {a∗, a∗∗}.

Proof. If H ⊆ S1 ∪ {a∗, a∗∗}, then by definition a ∗ b ∈ H for every a, b ∈ H
and thus H is a subsemigroup of S. By Proposition 12 it follows that H is an
idempotent subsemigroup. Conversely, if H is an idempotent subsemigroup of S,
then by Proposition 12, H ⊆ S1 ∪ {a∗, a∗∗}.

Proposition 14. Let S be a four-part semigroup and let a ∈ S be arbitrary.
Then a is a regular element of S if and only if a ∈ S1 ∪ S2 ∪ {a∗, a∗∗}.

Proof. Let a ∈ S1 ∪ S2 ∪ {a∗, a∗∗}. If a ∈ S1, then (a ∗ a) ∗ a = a ∗ a = a, if
a2j ∈ S2, then (a2j ∗ a2j) ∗ a2j = ϕ(a2j) ∗ a2j = a1j ∗ a2j = a2j and if a = a∗ or
a = a∗∗, then a∗a∗a = a. Thus any a ∈ S1∪S2∪{a∗, a∗∗} is regular. Conversely,
for arbitrary a3j ∈ S3, a3j 6= a∗, a4j ∈ S4, a4j 6= a∗∗ and for any b ∈ S we have
(a3j ∗ b) ∗ a3j = a∗ ∗ a3j = a∗ 6= a3j and (a4j ∗ b) ∗ a4j = a∗∗ ∗ a4j = a∗∗ 6= a4j .
Hence, a ∈ (S3 ∪S4) \ {a∗, a∗∗} cannot be regular. Therefore if a ∈ S is a regular
element, then a ∈ S1 ∪ S2 ∪ {a∗, a∗∗}.

Proposition 15. Let S be a four-part semigroup and let H ⊆ S. Then H is a
regular subsemigroup of S if and only if H ⊆ S1 ∪ {a∗, a∗∗} or H ⊆ S1 ∪ S2 ∪
{a∗, a∗∗} such that ϕ(a) ∈ H for all a ∈ H.

Proof. If H ⊆ S1 ∪ {a∗, a∗∗}, then by Proposition 13, H is an idempotent sub-
semigroup and hence a regular subsemigroup. Now, let H ⊆ S1 ∪ S2 ∪ {a∗, a∗∗}
such that ϕ(a) ∈ H for all a ∈ H. If a ∈ S1, then for all b ∈ H we have
a ∗ b = b ∈ H, if a ∈ S2 and b ∈ H, then a ∗ b = ϕ(b) ∈ H, if a = a∗ or a = a∗∗,
then a ∗ b = a∗ ∈ H or a ∗ b = a∗∗ for all b ∈ H. Thus H is closed under multi-
plication and hence forms a subsemigroup and by Proposition 14, H is regular.
Conversely, let H be a regular subsemigroup of S such that H 6⊆ S1 ∪ {a∗, a∗∗}.
Then by Proposition 14 we have H ⊆ S1 ∪ S2 ∪ {a∗, a∗∗} and H ∩ S2 6= ∅. Since
H is a semigroup then for all b ∈ H ∩ S2 and a ∈ H we have b ∗ a = ϕ(a) ∈ H.
This completes the proof.
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4. Homomorphisms of four-part semigroups

Lemma 16. Let S = (S; ∗) be a four-part semigroup with constant elements
a∗ and a∗∗ and let S ′ = (S; ∗′) be an arbitrary semigroup. Let φ : S → S′

be a homomorphism. Then the following Propositions are true for all j, j′ ∈
{1, . . . , nr} and k, k′ ∈ {1, . . . , ns}.

(i) If there are a1j , a2j′ ∈ S such that (a1j , a2j′) ∈ Kerφ, then (a, ϕ(b)) ∈ Kerφ
for every (a, b) ∈ Kerφ.

(ii) If there are a1j , a3k ∈ S such that (a1j , a3k) ∈ Kerφ, then φ is constant.

(iii) If there are a1j , a4k ∈ S such that (a1j , a4k) ∈ Kerφ, then φ is constant.

(iv) If there are a2j , a3k ∈ S such that (a2j , a3k) ∈ Kerφ, then φ is constant.

(v) If there are a2j , a4k ∈ S such that (a2j , a4k) ∈ Kerφ, then φ is constant.

(vi) If there are a3k, a4k′ ∈ S such that (a3k, a4k′) ∈ Kerφ, then (a∗, a∗∗) ∈
Kerφ.

Proof. Let φ : S → S′ be a homomorphism.

(i) If (a1j , a2j′) ∈ Kerφ, then (a, ϕ(b)) = (a1j ∗ a, a2j′ ∗ b) ∈ Kerφ for every
(a, b) ∈ Kerφ.

(ii) If (a1j , a3k) ∈ Kerφ, then for every b ∈ S we have (b, a∗) = (a1j ∗b, a3k ∗b)
∈ Kerφ and therefore φ is constant.

(iii) If (a1j , a4k) ∈ Kerφ, then for every b ∈ S we have (b, a∗∗) = (a1j∗b, a4k∗b)
∈ Kerφ and therefore φ is constant.

(iv) If (a2j , a3k) ∈ Kerφ, then (a1j , a
∗) = (a2j ∗ a2j , a3k ∗ a3k) ∈ Kerφ and

by (ii), φ is constant.

(v) If (a2j , a4k) ∈ Kerφ, then (a1j , a
∗∗) = (a2j ∗ a2j , a4k ∗ a4k) ∈ Kerφ and

by (iii), φ is constant.

(vi) If (a3k, a4k′) ∈ Kerφ, then (a∗, a∗∗) = (a3k ∗ a3k, a4k′ ∗ a4k′) ∈ Kerφ.

Using the kernel Kerφ of a homomorphism φ we now give some more conditions
for a homomorphism φ.

Theorem 17. Let S = (S; ∗) be a four-part semigroup with constant elements a∗

and a∗∗ and let S ′ = (S; ∗′) be an arbitrary semigroup. If the mapping φ : S → S′

is a homomorphism then

(i) φ is constant and maps every element of S to an idempotent element of S′

or
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(ii) φ satisfies (ϕ(a), ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ and (a, b) ∈ Kerφ
if and only if a, b ∈ Si for i = 1, 2, 3, 4 and for any a, b ∈ S or

(iii) φ satisfies (a∗, a∗∗) ∈ Kerφ, (ϕ(a), ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ
and (a, b) ∈ Kerφ if and only if a, b ∈ S3 ∪ S4 or a, b ∈ S1 or a, b ∈ S2 for
any a, b ∈ S or

(iv) φ satisfies (a, ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ and (a, b) ∈ Kerφ if
and only if a, b ∈ S1 ∪ S2 or a, b ∈ S3 ∪ S4 for any a, b ∈ S.

Proof. Let φ : S → S′ be a homomorphism. Let (a, b) ∈ Kerφ. We consider the
following cases:

1. If there are a1j , a3k ∈ S such that (a1j , a3k) ∈ Kerφ or there are a1j , a4k ∈ S
such that (a1j , a4k) ∈ Kerφ or there are a2j , a3k ∈ S such that (a2j , a3k) ∈
Kerφ or there are a2j , a4k ∈ S such that (a2j , a4k) ∈ Kerφ, then by Lemma
16 (ii), (iii), (iv) and (v), φ is constant. Moreover, if φ maps all a ∈ S to
c ∈ S′, then c = φ(a ∗ b) = φ(a) ∗′ φ(b) = c ∗′ c, i.e., c is idempotent and we
have (i).

2. If (a1j , a3k), (a1j , a4k), (a2j , a3k), (a2j , a4k) 6∈ Kerφ for all j ∈ {1, . . . , nr} and
for all k ∈ {1, . . . , ns}, then we consider the following subcases:

a. If (a1j , a2j′), (a3k, a4k′) 6∈ Kerφ for all j, j′ ∈ {1, . . . , nr} and for all k, k′ ∈
{1, . . . , ns}, then (a, b) ∈ Kerφ if and only if a and b are in the same set Si
for all a, b ∈ S. Moreover, (ϕ(a), ϕ(b)) = (a2j ∗a, a2j ∗b) ∈ Kerφ whenever
(a, b) ∈ Kerφ and j ∈ {1, . . . , nr}. Hence we have (ii).

b. If (a3k, a4k′) ∈ Kerφ for some k, k′ ∈ {1, . . . , ns} and (a1j , a2j′) 6∈ Kerφ
for every j, j′ ∈ {1, . . . , nr}, then (a∗, a∗∗) = (a3k ∗a3k, a4k′ ∗a4k′) ∈ Kerφ.
Moreover, (ϕ(a), ϕ(b)) = (a2j ∗ a, a2j ∗ b) ∈ Kerφ whenever (a, b) ∈ Kerφ
and (a, b) ∈ Kerφ if and only if a, b ∈ S3 ∪ S4 or a, b ∈ S1 or a, b ∈ S2.
Thus we have (iii).

c. If there is (a1j , a2j′) ∈ Kerφ for some j, j′ ∈ . . . , nr, then by Lemma 16
(i), (a, ϕ(b)) ∈ Kerφ for any (a, b) ∈ Kerφ. Moreover, (a, b) ∈ Kerφ if
and only if a, b ∈ S1 ∪ S2 or a, b ∈ S3 ∪ S4 and thus we have (iv).

The opposite direction is not true. The following easy example shows that there
are mappings φ which satisfy (ii), but are not homomorphisms. Let φ : S → Z4

with Z4 = ({0̄, 1̄, 2̄, 3̄}; ·) be defined by φ(S1) = 0̄, φ(S2) = 1̄, φ(S3) = 2̄, φ(S4) =
3̄. Then φ satisfies (ii) but is not a homomorphism since φ(a∗a∗) = φ(a∗) = 2̄,
but φ(a∗)φ(a∗) = 2̄ · 2̄ = 0̄.

As a consequence we get the following description of congruence relations of four-
part semigroups.
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Proposition 18. Let S be a four-part semigroup with a∗ and a∗∗ as the constant
elements. Then the following equivalence relations are congruence relations on S.

(i) θ = S × S or

(ii) θ = θ1 ∪ θ2 ∪ θ3 ∪ θ4 where θi is an equivalence relation on Si for all
i = 1, 2, 3, 4 such that (ϕ(a), ϕ(b)) ∈ θ whenever (a, b) ∈ θ or

(iii) θ = θ1 ∪ θ2 ∪ θ3 where θi is an equivalence relation on S3 ∪ S4, on S1 and
on S2, respectively such that (a∗, a∗∗) ∈ θ and (ϕ(a), ϕ(b)) ∈ θ whenever
(a, b) ∈ θ or

(iv) θ = θ1∪θ2 where θ1, θ2 are equivalence relations on S1∪S2 and on S3∪S4,
respectively such that (a, ϕ(a)) ∈ θ for all a ∈ S.

Now, we consider the particular case that S and S ′ both are four-part semigroups.

Lemma 19. Let S = (S; ∗) and S ′ = (S′; ∗′) be two four-part semigroups with
the constant elements a∗, a∗∗ and b∗, b∗∗ respectively and let φ : S → S′ be an
arbitrary homomorphism. Then the following Propositions hold:

(i) If φ(S1) 6⊆ S′1, then φ is constant and φ(S) ⊆ {b∗, b∗∗}.

(ii) If φ(S2) 6⊆ S′2, then (a, ϕ(a)) ∈ Kerφ for all a ∈ S or φ is constant and
φ(S) ⊆ {b∗, b∗∗}.

(iii) If φ(S3) 6⊆ S′3, then φ(a∗) = b∗∗ or φ is constant and φ(S) ⊆ S′1 ∪ {b∗, b∗∗}.

(iv) If φ(S4) 6⊆ S′4, then φ(a∗∗) = b∗ or φ is constant and φ(S) ⊆ S′1 ∪ {b∗, b∗∗}.

Proof. Let φ : S → S′ be a homomorphism.

(i) Let a ∈ S1 such that φ(a) 6∈ S′1. Then for all b ∈ S we have b = a ∗ b and
φ(b) = φ(a ∗ b) = φ(a) ∗′ φ(b). If φ(a) ∈ S′2, then we have φ(b) = φ(a) ∗′ φ(b) =
ϕ′(φ(b)), a contradiction. If φ(a) ∈ S′3 or φ(a) ∈ S′4, then φ(b) = φ(a) ∗′ φ(b) = b∗

or φ(b) = φ(a) ∗′ φ(b) = b∗∗, i.e., φ is constant and φ(S) ⊆ {b∗, b∗∗}.
(ii) Let a2j ∈ S2 such that φ(a2j) 6∈ S′2. Then for all a ∈ S, we have

ϕ(a) = a2j ∗ a and φ(ϕ(a)) = φ(a2j) ∗′ φ(a). If φ(a2j) ∈ S′1, then φ(ϕ(a)) =
φ(a2j) ∗′ φ(a) = φ(a), i.e., (a, ϕ(a)) ∈ Kerφ. If φ(a2j) ∈ S′3 or φ(a2j) ∈ S′4, then
φ(ϕ(a)) = φ(a2j) ∗′ φ(a) = b∗ or φ(ϕ(a)) = φ(a2j) ∗′ φ(a) = b∗∗, i.e., φ is constant
and φ(S) ⊆ {b∗, b∗∗}.

(iii) Let a3j ∈ S3 such that φ(a3j) 6∈ S′3. Then for all a ∈ S we have
a3j ∗a = a∗ and therefore φ(a3j)∗′ φ(a) = φ(a3j ∗a) = φ(a∗). If φ(a3j) ∈ S′1, then
φ(a) = φ(a∗), i.e., φ is a constant homomorphism such that φ(S) ⊆ S′1∪{b∗, b∗∗}.
If φ(a3j) ∈ S′2, then φ(a∗) = φ(a3j)∗′φ(a) = ϕ′(φ(a)) and hence φ(a∗) = ϕ′(φ(a)).
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But this is not possible for a = a∗ and therefore we have a contradiction. If
φ(a3j) ∈ S′4, then b∗∗ = φ(a3j) ∗′ φ(a) = φ(a∗).

(iv) If there is a4j ∈ S4 such that φ(a4j) 6∈ S′4, then in the same way as in
(iii), we have that φ is a constant homomorphism such that φ(S) ⊆ S′1 ∪{b∗, b∗∗}
or φ(a∗∗) = b∗.

Lemma 20. Let S = (S; ∗) and S ′ = (S′; ∗′) be two four-part semigroups with
the constant elements a∗, a∗∗ and b∗, b∗∗ respectively and let φ : S → S′ be an
arbitrary homomorphism. If (a, ϕ(a)) ∈ Kerφ for all a ∈ S, then

(i) φ is constant such that φ(S) ⊆ S′1 ∪ {b∗, b∗∗} or

(ii) φ(S1) ⊆ S′1 and φ(a∗) = b∗ or

(iii) φ(S1) ⊆ S′1 and φ(a∗) = b∗∗.

Proof. Let φ : S → S′ be a homomorphism satisfying φ(a) = φ(ϕ(a)) for all
a ∈ S. Then we have φ(S1) = φ(S2) and φ(S3) = φ(S4). Now we will consider
H = φ(S1) = φ(S2) and K = φ(S3) = φ(S4). If H 6⊆ S′1, then by Lemma 19 (i),
φ is constant and φ(S) ⊆ {b∗, b∗∗} and we obtain (i). If H ⊆ S′1, then φ(S2) =
H 6⊆ S′2 and thus by Lemma 19 (ii), φ is constant such that φ(S) ⊆ {b∗, b∗∗},
i.e., (i) or φ(a) = φ(ϕ(a)) for all a ∈ S. In the second case, if K ⊆ S′3, i.e.,
φ(S4) 6⊆ S′4 then by Lemma 19 (iv), φ is constant such that φ(S) ⊆ S′1 ∪ {b∗, b∗∗}
which is not possible or φ(a∗∗) = b∗ implying φ(a∗) = φ(ϕ(a∗∗)) = φ(a∗∗) = b∗

and hence we obtain (ii). If K 6⊆ S′3, then by Lemma 19 (iii), φ is constant such
that φ(S) ⊆ S′1 ∪ {b∗, b∗∗} or φ(a∗) = b∗∗. Thus we have (i) or (iii).

Proposition 21. Let S = (S; ∗) and S ′ = (S′; ∗′) be two four-part semigroups
with the constant elements a∗, a∗∗ and b∗, b∗∗ respectively and let φ : S → S′ be
an arbitrary mapping such that φ(Si) ⊆ S′i for all i = 1, 2, 3, 4. Then φ is a
homomorphism if and only if φ(ϕ(a)) = ϕ′(φ(a)) for all a ∈ S and φ(a∗) = b∗.

Proof. Let for a mapping φ : S → S′ the conditions be satisfied. Then we have
φ(a∗∗) = φ(ϕ(a∗)) = ϕ′(φ(a∗)) = ϕ′(b∗) = b∗∗ and thus

φ(a ∗ b) =


φ(b) = φ(a) ∗′ φ(b) if a ∈ S1
φ(ϕ(b)) = ϕ′(φ(b)) = φ(a) ∗′ φ(b) if a ∈ S2
φ(a∗) = b∗ = φ(a) ∗′ φ(b) if a ∈ S3
φ(a∗∗) = b∗∗ = φ(a) ∗′ φ(b) if a ∈ S4.

Hence φ is a homomorphism. Conversely, let φ : S → S ′ be a homomorphism
such that φ(Si) ⊆ S′i. Then we have φ(a∗) = φ(a3j ∗ a3j) = φ(a3j) ∗′ φ(a3j) = b∗

and for every a ∈ S we have φ(ϕ(a)) = φ(a2j ∗ a) = φ(a2j) ∗′ φ(a) = ϕ′(φ(a)).
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More generally, we have

Theorem 22. Let S = (S; ∗) and S ′ = (S′; ∗′) be two four-part semigroups with
the constant elements a∗, a∗∗ and b∗, b∗∗, respectively and let φ : S → S′ be an
arbitrary mapping. Then φ is a homomorphism if and only if

(i) φ is constant such that φ(S) ⊆ S′1 ∪ {b∗, b∗∗} or

(ii) φ(Si) ⊆ S′i for i = 1, 2, 3, 4 such that φ(ϕ(a)) = ϕ′(φ(a)) for all a ∈ S and
φ(a∗) = b∗ or

(iii) φ(S1) ⊆ S′1, φ(S2) ⊆ S′2, φ(S3) ⊆ S′4, φ(S4) ⊆ S′3, φ(ϕ(a)) = ϕ′(φ(a)) for
all a ∈ S and φ(a∗) = b∗∗ or

(iv) φ(S1) ⊆ S′1, φ(S3) ⊆ S′3, φ(a) = φ(ϕ(a)) for all a ∈ S and φ(a∗) = b∗ (or
φ(S1) ⊆ S′1, φ(S3) ⊆ S′4, φ(a) = φ(ϕ(a)) for all a ∈ S and φ(a∗) = b∗∗6 ).

Proof. Let S,S ′ be two four-part semigroups with a∗, a∗∗ and b∗, b∗∗ being con-
stant elements of S and S ′, respectively. Let φ : S → S′ be a homomorphism.
We will consider the different cases from Theorem 17:

1. If φ is constant and maps every element of S to an idempotent element of S′,
then by Proposition 12, φ(S) ⊆ S′1 ∪ {b∗, b∗∗}. Thus we have (i)

2. Let φ satisfy (ϕ(a), ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ and (a, b) ∈ Kerφ
only if a, b ∈ Si for i = 1, 2, 3, 4 and for every a, b ∈ S. It is clear that φ is
not constant and (a, ϕ(a)) 6∈ Kerφ for all a ∈ S. Then by Lemma 19 (i) and
Lemma 19 (ii), φ(S1) ⊆ S′1 and φ(S2) ⊆ S′2. Now we consider the following
cases:

a. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2 and φ(S3) 6⊆ S′3, then by Lemma 19 (iii),
φ(a∗) = b∗∗. In this case, a3j ∗ a3j = a∗ implies φ(a3j) ∗′ φ(a3j) = φ(a∗) =
b∗∗, i.e., φ(a3j) ∈ S′4 and hence φ(S3) ⊆ S′4. For any a4j ∈ S4 and for
a2j ∈ S2 we obtain φ(a4j) = φ(a2j ∗ a3j) = φ(a2j) ∗′ φ(a3j) = ϕ′(φ(a3j)) ∈
ϕ′(S′4) = S′3, i.e., φ(S4) ⊆ S′3. Moreover, for every a ∈ S and for a2j ∈ S2
we get ϕ(a) = a2j ∗ a and hence φ(ϕ(a)) = φ(a2j) ∗′ φ(a) = ϕ′(φ(a)).
Therefore we have (iii).

b. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2, φ(S3) ⊆ S′3 and φ(S4) 6⊆ S′4, then by Lemma
19 (iv) we get φ(a∗∗) = b∗. In this case, we have φ(a∗∗) = φ(a4j ∗ a4j) =
φ(a4j)∗′φ(a4j) = b∗ for every a4j ∈ S4. This is possible iff φ(a4j) ∈ S′3 and
hence φ(S4) ⊆ S′3. Therefore for every a2j ∈ S2 and a3j ∈ S3 we obtain
φ(a3j) = φ(a2j ∗ a4j) = φ(a2j) ∗′ φ(a4j) = ϕ′(φ(a4j)) ∈ ϕ′(S′3) = S′4, i.e.,
φ(S3) ⊆ S′4, a contradiction.
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c. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2, φ(S3) ⊆ S′3 and φ(S4) ⊆ S′4, then by Proposi-
tion 21, we have (ii).

3. Let φ satisfy (a∗, a∗∗) ∈ Kerφ, (ϕ(a), ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ
and (a, b) ∈ Kerφ only if a, b ∈ S3 ∪ S4 or a, b ∈ S1 or a, b ∈ S2 for every
a, b ∈ S. It is clear that φ is not constant and (a1j , ϕ(a1j)) 6∈ Kerφ for a1j ∈
S1. Then by Lemma 19 (i) and Lemma 19 (ii), φ(S1) ⊆ S′1 and φ(S2) ⊆ S′2.
Now we will consider all possible cases:

a. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2 and φ(S3) 6⊆ S′3, then by Lemma 19 (iii),
φ(a∗) = b∗∗ and we have b∗∗ = φ(a∗) = φ(a∗∗). Then for every a3j ∈ S3
and for every a4j ∈ S4 we have φ(a3j)∗′φ(a3j) = φ(a3j ∗a3j) = φ(a∗) = b∗∗

and φ(a4j) ∗′ φ(a4j) = φ(a4j ∗ a4j) = φ(a∗∗) = b∗∗ i.e., φ(a3j), φ(a4j) ∈ S′4.
Hence we obtain φ(a2j ∗ a3j) = φ(a4j) ∈ S′4 and φ(a2j ∗ a3j) = φ(a2j) ∗′
φ(a3j) ∈ S′3, a contradiction.

b. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2, φ(S3) ⊆ S′3 and φ(S4) 6⊆ S′4, then by Lemma
19 (iv), φ(a∗∗) = b∗. Thus we have b∗ = φ(a∗) = φ(a∗∗). Hence for
every a3j ∈ S3 and for every a4j ∈ S4 we have φ(a3j) ∗′ φ(a3j) = φ(a3j ∗
a3j) = φ(a∗) = b∗ and φ(a4j) ∗′ φ(a4j) = φ(a4j ∗ a4j) = φ(a∗∗) = b∗ i.e.,
φ(a3j), φ(a4j) ∈ S′3. Therefore we obtain φ(a2j ∗ a3j) = φ(a4j) ∈ S′3 and
φ(a2j ∗ a3j) = φ(a2j) ∗′ φ(a3j) ∈ S′4, a contradiction.

c. If φ(S1) ⊆ S′1, φ(S2) ⊆ S′2, φ(S3) ⊆ S′3 and φ(S4) ⊆ S′4, then we have a
contradiction to (a∗, a∗∗) ∈ Kerφ.

4. Let φ satisfy (a, ϕ(b)) ∈ Kerφ whenever (a, b) ∈ Kerφ and (a, b) ∈ Kerφ
only if a, b ∈ S1 ∪ S2 or a, b ∈ S3 ∪ S4 for every a, b ∈ S. It is obvious that
(a, ϕ(a)) ∈ Kerφ for all a ∈ S. Thus by Lemma 20, we have two possible
cases φ(S1) ⊆ S′1 and φ(a∗) = b∗ or φ(S1) ⊆ S′1 and φ(a∗) = b∗∗. For every
a3j ∈ S3, in the first case we obtain φ(a3j)∗′φ(a3j) = φ(a3j∗a3j) = φ(a∗) = b∗,
i.e., φ(a3j) ∈ S′3 and hence φ(S3) ⊆ S′3 and in the second case we have
φ(a3j) ∗′ φ(a3j) = φ(a3j ∗ a3j) = φ(a∗) = b∗∗, i.e., φ(a3j) ∈ S′4 and hence
φ(S3) ⊆ S′4. Therefore we have (iv).

Conversely, let φ : S → S′ be a mapping. If φ satisfies (i) and φ(a) = c for all
a ∈ S with c ∈ S′1∪{b∗, b∗∗}, then we get φ(a∗b) = c = c∗c = φ(a)∗φ(b) and hence
φ is a homomorphism. If φ satisfies (ii), then φ is a homomorphism by Proposition
21. If φ satisfies (iii), then φ(a∗∗) = φ(ϕ(a∗)) = ϕ′(φ(a∗)) = ϕ′(b∗∗) = b∗ and we
obtain

φ(a ∗ b) =


φ(b) = φ(a) ∗′ φ(b) if a ∈ S1
φ(ϕ(b)) = ϕ′(φ(b)) = φ(a) ∗′ φ(b) if a ∈ S2
φ(a∗) = b∗∗ = φ(a) ∗′ φ(b) if a ∈ S3
φ(a∗∗) = b∗ = φ(a) ∗′ φ(b) if a ∈ S4,
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i.e., φ is a homomorphism. If φ satisfies (iv), i.e., φ(a) = φ(ϕ(a)) for all a ∈ S,
φ(S1) ⊆ S′1, φ(S3) ⊆ S′3 and φ(a∗) = b∗, then we have φ(S2) = φ(ϕ(S1)) =
φ(S1) ⊆ S′1, φ(S4) = φ(ϕ(S3)) = φ(S3) ⊆ S′3 and φ(a∗∗) = φ(ϕ(a∗)) = φ(a∗) =
b∗. Therefore we have

φ(a ∗ b) =


φ(b) = φ(a) ∗′ φ(b) if a ∈ S1
φ(ϕ(b)) = φ(b) = φ(a) ∗′ φ(b) if a ∈ S2
φ(a∗) = b∗ = φ(a) ∗′ φ(b) if a ∈ S3
φ(a∗∗) = b∗ = φ(a) ∗′ φ(b) if a ∈ S4.

Hence φ is a homomorphism. Similarly, φ is a homomorphism if φ(a) = φ(ϕ(a))
for all a ∈ S, φ(S1) ⊆ S′1, φ(S3) ⊆ S′4 and φ(a∗) = b∗∗. This completes the
proof.

Proposition 23. Let S = (S; ∗) and S ′ = (S′; ∗′) be two four-part semigroups
with the constant elements a∗, a∗∗ and b∗, b∗∗ respectively and let φ : S → S′ be a
homomorphism. Then the following Propositions are true.

(i) If φ is a homomorphism of the first type of Theorem 22, then Imφ forms a
constant subsemigroup of S ′.

(ii) If φ is a homomorphism of the second type or of the third type of Theorem
22, then Imφ forms a four-part subsemigroup of S ′.

(iii) If φ is a homomorphism of the fourth type of Theorem 22, then Imφ forms
a right-zero constant subsemigroup of S ′.

Proof. (i) is obvious.
(ii) Let φ : S → S′ be a homomorphism of the third type of Theorem 22, i.e.,

φ(Si) ⊆ S′i for i = 1, 2, φ(S3) ⊆ S′4, φ(S4) ⊆ S′3, φ(ϕ(a)) = ϕ′(φ(a)) for all a ∈ S,
φ(a∗) = b∗∗ and φ(a∗∗) = b∗. Then it is clear that Imφ∩S′2 6= ∅ and b∗, b∗∗ ∈ Imφ.
Moreover, if b ∈ Imφ, then there is a ∈ S such that b = φ(a). Thus, by
assumption, we obtain b = φ(a) = φ(a2j ∗ϕ(a)) = φ(a2j)∗′φ(ϕ(a)) = ϕ′(φ(ϕ(a)))
for a2j ∈ S2 and hence ϕ′(b) = φ(ϕ(a)) ∈ Imφ. Therefore Imφ satisfies the two
conditions in Proposition 5 and hence forms a four-part subsemigroup of S ′. By
the same argumentation, if φ is a homomorphism of the second type of Theorem
22, then Imφ forms a four-part subsemigroup of S ′.

(iii) Let φ : S → S′ be a homomorphism of the fourth type of Theorem
22, i.e., φ(a) = φ(ϕ(a)) for all a ∈ S such that φ(S1) ⊆ S′1, φ(S3) ⊆ S′3 and
φ(a∗) = b∗ (or φ(a) = φ(ϕ(a)) for all a ∈ S such that φ(S1) ⊆ S′1, φ(S3) ⊆ S′4
and φ(a∗) = b∗). Then Imφ ⊆ S′1 ∪ S′3, Imφ ∩ S′1 6= ∅ and b∗ ∈ Imφ (or
Imφ ⊆ S′1 ∪ S′4, Imφ ∩ S′1 6= ∅ and b∗∗ ∈ Imφ). Thus by Proposition 8, Imφ
forms a right-zero constant subsemigroup of S ′.
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5. Green’s relations on four-part semigroups

Let a and b be two elements in the semigroup S = (S; ∗). Recall that Green’s
relations are defined in the following way: aLb iff a = b or there exist c, d ∈ S
such that c ∗ a = b and d ∗ b = a, aRb iff a = b or there exist c, d ∈ S such that
a ∗ c = b and b ∗ d = a, H = L ∩R, D = L ◦ R. It is well-known that for a finite
semigroup D and J are the same.

Proposition 24. Let S = (S; ∗) be a four-part semigroup with a∗ and a∗∗ as
constant elements. Then La = {a, ϕ(a)} for all a ∈ S.

Proof. Let a, b ∈ S such that a 6= b satisfy aLb. Thus there are c, d ∈ S such
that c ∗ a = b and d ∗ b = a. Assume that b 6= ϕ(a). If a = a1j ∈ S1, then
a1j 6= b 6= ϕ(a1j) = a2j ∈ S2. Thus we have

c ∗ a = c ∗ a1j =


a1j 6= b if c ∈ S1
ϕ(a1j) = a2j 6= b if c ∈ S2
a∗ if c ∈ S3
a∗∗ if c ∈ S4.

Therefore c ∗ a = b is only possible for b = a∗ or b = a∗∗. But if b = a∗, then we
have

d ∗ b = d ∗ a∗ =


a∗ 6= a1j = a if d ∈ S1
ϕ(a∗) = a∗∗ 6= a1j = a if d ∈ S2
a∗ 6= a1j = a if d ∈ S3
a∗∗ 6= a1j = a if d ∈ S4,

a contradiction. Similarly, we have a contradiction when b = a∗∗. If a = a2j ∈ S2,
then in the same way we also obtain a contradiction.

Now, if a = a3j ∈ S3, then a3j 6= b 6= ϕ(a3j) = a4j . Thus we have

c ∗ a = c ∗ a3j =


a3j 6= b if c ∈ S1
ϕ(a3j) = a4j 6= b if c ∈ S2
a∗ if c ∈ S3
a∗∗ if c ∈ S4.

Thus c ∗ a = b is only possible for b = a∗ or b = a∗∗. But if b = a∗, then we have

d ∗ b = d ∗ a∗ =


a∗ if d ∈ S1
ϕ(a∗) = a∗∗ 6= a3j = a if d ∈ S2
a∗ if d ∈ S3
a∗∗ 6= a3j = a if d ∈ S4,
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and therefore d∗b = a is possible only when a = a3j = a∗ and we have a = a∗ = b,
a contradiction. If b = a∗∗, then we obtain

d ∗ b = d ∗ a∗∗ =


a∗∗ 6= a3j = a if d ∈ S1
ϕ(a∗∗) = a∗ if d ∈ S2
a∗ if d ∈ S3
a∗∗ 6= a3j = a if d ∈ S4,

and therefore d ∗ b = a is possible only when a = a3j = a∗ and thus b = a∗∗ =
ϕ(a∗) = ϕ(a), a contradiction. Similarly, we also have a contradiction for the
case a = a4j ∈ S4. Therefore b = ϕ(a) and hence L = {a, ϕ(a)}.

Proposition 25. Let S = (S; ∗) be a four-part semigroup with a∗ and a∗∗ as
constant elements and let a ∈ S. Then Ra = {a} or Ra = S1 ∪ S2.

Proof. First we show that aRb for every a, b ∈ S1 ∪ S2. Let a 6= b. If a, b ∈ S1,
then clearly aRb with c = d, b = a. If a, b ∈ S2, then with c = ϕ(b) and d = ϕ(a)
we have a ∗ c = a ∗ ϕ(b) = ϕ(ϕ(b)) = b and b ∗ d = b ∗ ϕ(a) = ϕ(ϕ(a)) = a and
hence aRb. If a ∈ S1 and b ∈ S2, then a ∗ c = b and b ∗ d = a for c = b and
d = ϕ(a) and thus aRb. Now, we show that Ra = {a} if a ∈ S3 ∪ S4. Let a ∈ S3
and assume that Ra 6= {a}, i.e., there is b ∈ Ra such that b 6= a. Hence for every
c, d ∈ S satisfying a ∗ c = b and b ∗ d = a, we obtain a∗ = a ∗ c = b and therefore
a = b ∗ d = a∗ ∗ d = a∗ = b, a contradiction. Thus there is no a 6= b ∈ S such that
b ∈ Ra. Similarly, there is no b 6= a such that aRb for a ∈ S4. Hence Ra = {a}
for a ∈ S3 ∪ S4. This completes the proof.

Proposition 26. Let S = (S : ∗) be a four-part semigroup and let a ∈ S. Then
Ha = {a, ϕ(a)} if a ∈ S1 ∪ S2 and Ha = {a} if a ∈ S3 ∪ S4.

Proof. Since H = L ∩ R, by Proposition 24 and Proposition 25, we have that
Ha = {a, ϕ(a)} if a ∈ S1 ∪ S2 and Ha = {a} for every a ∈ S3 ∪ S4.

Proposition 27. Let S = (S; ∗) be a four-part semigroup. Then Da = Ja =
{a, γa} or Da = Ja = S1 ∪ S2.

Proof. We show that aDb (aJ b) for all a, b ∈ S1 ∪ S2. If a, b ∈ S1 ∪ S2, then
by taking c = a we have aLc and cRb by Proposition 24 and Proposition 25, i.e.,
aDb. If a 6∈ S1 ∪ S2, by taking c = γa we have aLc and cRc by Proposition 24
and Proposition 25, i.e., aDγa. Now, let a, b 6∈ S1 ∪ S2 and aDb. Then there
exists c ∈ S such that aLc and cRb. By Proposition 24, we have c = a or c = γa
and by Proposition 25, we have c = b since b 6∈ S1 ∪ S2. Therefore we have two
possibilities a = c = b or b = c = γa. Thus Da = {a, γa}. By the finiteness of S,
we have D = J . This completes the proof.
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6. Representation of four-part semigroups

Theorem 28. Let S = (S; ∗) be an arbitrary four-part semigroup with the con-
stant elements a∗ and a∗∗. Then there is a natural number n ≥ 1 such that S is
isomorphic to a four-part subsemigroup of (On({0, 1}); +).

Proof. Let S be a four-part semigroup with |S1| = |S2| = nr and |S3| = |S4| =
ns. We choose a natural number n such that max(nr, ns) ≤ 22

n−2 and consider
On({0, 1}). Now, define a one-to-one mappings φ1 : S1 → Cn

4 ⊆ On({0, 1})
and φ3 : S3 → Kn

0 ⊆ On({0, 1}) such that φ3(a
∗) = cn0 and define mappings

φ2 : S2 → ¬Cn
4 ⊆ On({0, 1}) and φ4 : S4 → Kn

1 ⊆ On({0, 1}) by φ2(a2j) =
¬φ1(a1j) and φ4(a4j) = ¬φ3(a3j). It is clear that φ : S → On({0, 1}) defined by
φ(aij) = φi(aij) is a one-to-one mapping satisfying φ(ϕ(a)) = ¬φ(a) for all a ∈ S.
Therefore, ¬φ(a) ∈ φ(S) for every a ∈ S. Moreover, S′1 := φ(S1) ⊆ Cn

4 , S′2 :=
φ(S2) = ¬φ(S1) ⊆ ¬Cn

4 , S′3 := φ(S3) ⊆ Kn
0 and S′4 := φ(S4) = ¬φ(S3) ⊆ Kn

1 and
for a, b ∈ φ(S) = S′1 ∪ S′2 ∪ S′3 ∪ S′4 we have

a+ b =


b ∈ φ(S) if a ∈ S′1
¬b ∈ φ(S) if a ∈ S′2
cn0 ∈ φ(S) if a ∈ S′3
cn1 ∈ φ(S) if a ∈ S′4,

i.e., φ(S) = S′1 ∪ S′2 ∪ S′3 ∪ S′4 forms a four-part subsemigroup of (On({0, 1}); +).
Furthermore, considering the unary operation ¬ as ϕ′ in On({0, 1}), then by
Theorem 22 (ii), φ : S → On({0, 1}) is a homomorphism. Therefore S ∼= φ(S) ⊆
On({0, 1}).
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