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Abstract

Ideals are one of the main topics of interest when it comes to the study
of the order structure of an algebra. Due to their nice properties, ideals have
an important role both in lattice theory and semigroup theory. Two natural
concepts of ideal can be derived, respectively, from the two concepts of order
that arise in the context of skew lattices. The correspondence between the
ideals of a skew lattice, derived from the preorder, and the ideals of its
respective lattice image is clear. Though, skew ideals, derived from the
partial order, seem to be closer to the specific nature of skew lattices. In
this paper we review ideals in skew lattices and discuss the intersection of
this with the study of the coset structure of a skew lattice.
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1. INTRODUCTION

As skew lattices are a generalization of lattices, the order structure has an im-
portant role in the study of these algebras. Skew lattices can be seen as double
regular bands where two different order concepts can be defined: the natural
preorder, denoted by =<, and the natural partial order, denoted by <, one weaker
then the other and both of them motivated by analogous order concepts defined
for bands. They generalize the partial order of the correspondent lattice. Both
of these ideals are frequent in the literature. Though, unlike lattices, the admis-
sible Hasse diagram representing the order structure of a skew lattice can not
determine its algebraic structure. The study of the coset structure of skew lat-
tices began with Leech in [14] mentioned as (global) coset geometry. It derives
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from Leech’s first decomposition theorem and gives a perspective into the role
of the partitions that D-classes determine on each other providing important ad-
ditional information. Several varieties of skew lattices were characterized using
laws involving only cosets (cf. [5, 17] and [19]).

Two kinds of ideals can be naturally derived from these preorders. The
strong concept of ideal is naturally derived from the preorder and has been largely
studied having an important role in the research centered on the congruences of
skew Boolean algebras with intersections, a particular case of the Boolean version
of a skew lattice (cf. [15] and [2]). The skew ideals, on the other hand, tend to
describe the skew nature of skew lattices, having a clear relation with the natural
preorder and with the concept of normality. They were not so well explored in
the literature and are still a fresh subject of research. Our motivation is due to
the important role of ideals in the study of skew Boolean algebras. They reveal
their usefulness on the recent generalization of the Stone duality for skew lattices
in [1] where the authors denoted these two versions of ideals as <-ideals and
=<-ideals. In this paper we will name them skew ideals and ideals, respectively.
In this work we study both kinds of ideals in skew lattices and the intersections
of this theory with the coset structure of a skew lattice.

The reader that is not familiar with the theory of skew lattices can find in
[15, 14] and [12] a relevant review on the subject. For further reading on the order
structure of semigroups and lattices, two important motivations to the results in
the following discussion, the author suggests [7, 3] and [6].

2. PRELIMINARIES

A skew lattice S is a set S equipped with two associative binary operations V and
A, called meet and join, respectively. Skew lattices satisfy the absorption laws

(yhx)Ve=x=zV (xAy)

and their duals. Both A and V are idempotent. If we would admit all the possible
absorption laws we would get the commutativity of the operations and, thus,
lattices. Indeed, the commutativity of one operation implies the commutativity
of the other. Given that V and A are associative, idempotent operations, skew
lattices are characterized by the following absorption dualities: x V y = x iff
xANy=yand zVy =y iff x Ay = x (cf. [11]). Green’s relations are five
equivalence relations characterizing the elements of a semigroup in terms of the
principal ideals they generate. If S is a band, the operation D equals J and H
is the trivial equivalence. Due to this, the Green’s relations can be simplified for
bands as : 2Ry iff xzy = y and yx = x; 2Ly iff zy = = and yx = y; =Dy iff
zyr = x and yry = y. Moreover, due to the absorption dualities, the Green’s
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relations in the context of skew lattices are defined in [11] by: R = Rx = Ly;
L=Lr=TRy; D="Dx =Dy. Right-handed skew lattices are the skew lattices
for which R = D while left-handed skew lattices are determined by £ = D. Thus,
right-handed skew lattices are the ones satisfying the identity st Ay Az =y Az
or, equivalently, x Vy V x = x V y. Left-handed skew lattices can be defined by
similar identities: * Ay Az = x Ay or, equivalently, xt VyVae =y V.

Given nonempty sets L and R the direct product L x R together with the
operations (z,y) V (2/,y') = (2/,y) and (x,y) A (2/,y') = (z,y') forms a skew
lattice. A rectangular skew lattice is an isomorphic copy of this skew lattice.
Leech’s First Decomposition Theorem states that the Green’s relation D is a
congruence on any skew lattice S, while D-equivalence classes are exactly the
maximal rectangular subalgebras of S and S/D is the maximal lattice image
of S. Moreover, a skew lattice S may be viewed as the conjugation of its pair
of regular band reducts (S, A) and (S, V) whose binary operations dualize each
other as described, that is, Ay = y V « holds for every =,y € S. Leech’s Second
Decomposition Theorem states that both reducts (S;A) and (S;V) are regular
bands and that every skew lattice factors as the fibred product of a right-handed
skew lattice with a left-handed skew lattice over their common maximal lattice
image S/D, with both factors being unique up to isomorphism (cf. [11]).

A primitive skew lattice is a skew lattice composed by two comparable D-
classes A and B such that A > B, denoted by { A > B}. A skew diamond is
a skew lattice composed by two incomparable D-classes, A and B, a join class
J = AVB and ameet class M = AAB. It is usually denoted by { J > A, B > M }.
Moreover, {J > A}, {J>B}, {A>M} and { B> M} are primitive skew
lattices. Recall that a chain (or totally ordered set) is a set where each two
elements are (order) related, and an antichain is a set where no two elements are
(order) related. We call S a skew chain whenever S/D is a chain. Any sub lattice
T of S intersects each D-class of S in at most one point. If T meets each D-class
of S in exactly one point, then S is called a lattice section of S. As such, it is a
maximal sub lattice that is also an internal copy inside S of the maximal lattice
image S/D (cf. [14]). Each lattice section of S is isomorphic to S/D.

A skew lattice is said to be symmetric if it is biconditionally commutative,
that is if it satisfies: x Ay =y Az iff zVy =y V x. Most of the “well behaved”
skew lattices considered are symmetric. All skew chains are symmetric (cf. [13]).
Another relevant property, extensively studied in skew lattices is normality. A
skew lattice S is said to be normal if it satisfies tAyAzAw = zAzAyAw. Dually,
skew lattices that satisfy xVyVzVw =2V zVyVw are named conormal. Skew
lattices that are simultaneously normal and conormal, are called binormal. Schein
described in [20] binormal skew lattices as algebras that factor as the product of a
lattice with a rectangular skew lattice. When S/D is a distributive lattice we say
that S is a quasi-distributive skew lattice. If S/D is finite and quasi-distributive,
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then S has a lattice section which is naturally isomorphic to S/D (cf. [10]). A
skew lattice is distributive if it satisfies t A (yVz)Ax = (xAyAz)V(z Az Ax)
and zV(yAz)Ve = (xVyVz)A(xVzVe). Al distributive skew lattices
are quasi-distributive. Moreover, in the presence of normality, distributivity is
equivalent to quasi-distributivity (cf. [15]).

A skew Boolean algebra is an algebra S = (S;V, A, \,0) of type < 2,2,2,0 >
such that (S;V,A,0) is a distributive, normal and symmetric skew lattice with
0, and \ is a binary operation on S satisfying (z Ay A z) V (z\y) = = and
(x Ay Ax)A(x\y) = 0. Skew Boolean algebras form a variety of skew lattices
(cf. [12]).

3. ORDER STRUCTURE

Influenced by the natural preorders defined for bands of semigroups in [7], we
define in a skew lattice S the following distinct generalizations for the lattice
order:

the natural partial order by x > yif e Ay=y =y Az or dually, x Vy =
r=yVuz,

the natural preorder by x = yif y Az Ay =y or, dually, xt Vy Ve =zx.

Observe that Dy iff x > y and y > x. Furthermore, the following technical
result will be useful for understanding the theorems ahead.

Proposition 1 [11]. Let S be a skew lattice and x,y,z € S. Then,

(i) ANy 2z,y and z,y S x Vy;
(i) zAyAx <z <zVyVuz;
i) Ay <yVez.

yxy

It is well known the relation between the algebraic structure and the order struc-
ture of a lattice. Analogously to what occurs in lattice theory, the partial order
defined in a skew lattice has an important role in the study of these algebras
(cf. [8, 4] or [12]). Though, the natural partial order doesn’t always determine a
skew lattice, as we shall see. The following characterization of the natural partial
order for skew lattices is an easy but useful observation.

Lemma 2 [18]. Let S be a skew lattice and x,y € S. Thenx >y iff y =xAyAx
or, dually, t=yVxVy.
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Usually D is referred in the available literature as the natural equivalence although
we know it to be a congruence in any skew lattice. A D-class containing an
element z shall be denoted by D,.

Proposition 3 [11]. Let S be a skew lattice with D-classes A > B. For all
x,y €8, x <y implies x < y. Furthermore, whenever xz € A, y € B,

B < Aiffx=<y.

Proposition 4 [11]. Let A and B be comparable D-classes in a skew lattice S
such that A > B. Then, for each a € A, there exists b € B such that a > b, and
dually, for each b € B, there exists a € A such that a > b.

Proposition 5 [11]. Let {J > A, B > M } be a skew diamond. Then, for every
a € A there exists b € B such that aVb=bVainJ andaANb=bANa in M.
Moreover,

J={avblac A,be BandaVb=>bVa} and
M ={aAblac A beBandaNb=bAa}.

Proposition 6 [11]. Let S be a skew lattice and z,y € S. Then x > y together
with xDy implies y = x. In other words, all D-classes are antichains.

The latter result clarifies the relation between the rectangular structure and the
order structure of a skew lattice. On the other hand, Proposition 3 expresses that
the natural preorder is admissible, in the sense of Wechler (cf. [22]), with respect
to the natural partial order. The fact that D can be expressed by the natural
preorder =< allows us to draw diagrams that are capable of representing skew
lattices, named admissible Hasse diagrams, where the natural partial order is
indicated by full edges and the congruence D is indicated by dashed edges. Skew
lattice operations are not uniquely defined by the natural partial order, unlike
what happens in the lattice case. Hence, the admissible Hasse diagram expresses
partial information of the skew lattice. The admissible Hasse diagram in Figure 1
represents both the right-handed skew lattice determined by the following Cayley
tables that define the operations in each sided case:

Right-handed skew lattice NCZ:

AlO a b ¢ 1 VIO a b ¢ 1
0j]0 0 O 0 O 010 a b ¢ 1
al0 a b 0 a ala a a 1 1
b |0 a b 0 b bbb b b 1 1
cl|0 0 0 ¢ ¢ clec 1 1 ¢ 1
110 a b ¢ 1 111 1 1 1 1
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Left-handed skew lattice NCE:

AlO a b ¢ 1 VIO a b ¢ 1
0/0 0 O O O 010 a b ¢ 1
a|l0 a a 0 a ala a b 1 1
b 10 b b 0 b b|b a b 1 1
c |0 0 0 ¢ ¢ clec 1 1 ¢ 1
110 a b ¢ 1 1 /1 1 1 1 1

The Cayley tables completely determine the skew lattice but the diagram itself
could represent two different skew lattices: one left-handed skew lattice and other
right-handed skew lattice.

Figure 1. The admissible Hasse diagram of both the skew lattices NCE and NCE.

4. CLASSICAL IDEALS AND SKEW IDEALS

A preordered set S = (5,=) (or S = S<) is a nonempty set S endowed with a
preorder <. When the preorder is a partial order < we call S a partially ordered
set (or poset) and write S = (5,<) (or S = S<), instead. All skew lattices
are preordered by < and partially ordered by <. A nonempty subset I [F] of
a preodered set P is downwards [upwards] -directed if, whenever x € S, y € I
[z€ Fland x <y [y < x|, then x € I [x € F]. A poset lattice ideal I [filter F] of
a poset P is any nonempty downwards [upwards] -directed subset of P . When I
[F] is also closed under the join operation, V [meet operation, A, then it is called
an lattice ideal [filter]. Filters are often regarded as dual ideals (cf. [6]).

In the following paragraphs we present the classical ideals of a skew lattice,
derived from the natural preorder <.

A nonempty subset I of a skew lattice S closed under V is an ideal of S if,
forallz € Sand y € I, x X y implies « € I. Regarding that D is a congruence in
any skew lattice S, whenever [ is a sub skew lattice of S, we will use the following
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notation:

I/D={Dy:zel}.

As lattices are skew lattices that coincide with its lattice image, we always look
at a lattice as the lattice image of a skew lattice. Thus, whenever [ is a lattice
ideal, JI/D = 1.

Proposition 7. Let S be a skew lattice and I a subset of S closed under V. The
following statements equivalently define an ideal:

(i) forallz € S andy € I, x <y implies x € I;
(ii) forallz € Sandy eI, yNz,x Ny € I;

(iii) for allx € S andye I, xANyAz€el.

Proof. Let us show that (i) = (ii) = (iii) = (i). Let x € S and y € I. If (i)
holds, Proposition 1 implies that y Ax,z Ay <y so that yAx,z Ay € I. Now,
assuming (ii) we get tAyAz = (xAy)A(yAz) € I. Finally, from the assumptions
in (ii) follows that t Ay Ax € I and t Ay Az <y. Thus, x =xAyAzx €I,
completing the proof. [

Analogously, a nonempty subset F' closed under V of a skew lattice S is a filter
of S if one of the following equivalent statements holds:

(i) for all z € F and y € S, z < y implies y € F}
(ii) forallz € Fandy € S, yVz,xVy € F;

(iii) forallz € Fandye S, yvVaVy € F.

The notion of ideals of skew lattices was first mentioned in [2] where (ii) is used,
and defined in [16] using (iii) in the context of skew Boolean algebras. Later
was defined in [1] using (i) and mentioned as a subset that is lower with respect
to <. In this last paper the theory of ideals of skew lattices revealed to be a
relevant tool to reach the Stone duality variation for skew Boolean algebras with
intersections (that is, skew Boolean algebras with finite greatest lower bound with
respect to the partial order <) for which this theory is fairly “well-behaved” (cf.
[1]). Motivated by the definition of lattice ideals in [6] we present an alternative
characterization of ideals and filters.

Proposition 8. Let S be a skew lattice and I a nonempty subset of S. Then I
is an ideal iff the following equivalence holds for all a,b € S

a,bel<aVvbVvacel.
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Analogously, a nonempty subset F' of S is a filter iff for all a,b € S,
a,be F&aNbAa € F.

Proof. Let us suppose that I is an ideal of S. The direct implication is obvious.
Let a,b € S such that avbVvaéel. Asa,b<aVbVathena,bel.
Conversely suppose that the equivalence holds. Thus, I is closed under V.
Let a € I and b € S such that b <a. Then aVbVa = a € I and therefore b € I.
The proof regarding filters is similar. |

Corollary 9. All ideals and filters in a skew lattice are sub skew lattices.

Proof. Let I be an ideal of a skew lattice S. I is a subset of S closed under the
operation V, by definition. On the other hand, if ,y € I then x A y =< x implies
x Ay € I. The proof regarding filters is similar. [

Proposition 10. Let S be a skew lattice, I an ideal of S and F a filter of S. If
x €S8,y el and 2Dy, then x € I. Similarly, if v € S, y € F and =Dy, then
rzeF.

Proof. If I is an ideal and = € S, whenever y € [ is such that 2Dy, then z < y
implying that « € I. The proof for filters is analogous. [

Corollary 11. Let S be a skew lattice and I, F C S being unions of D-classes
of S. Then, I/D is a lattice ideal of S/D iff I is an ideal of S; dually, F/D is a
lattice filter of S/D iff F is a filter of S.

Proof. This result is a direct consequence of Propositions 8 and 10. [

Let us denote by I(S) the set of all ideals and by F(S) the set of all filters of a
skew lattice S. The result bellow was proved in [21] for Slavik’s version of skew
lattices and also holds in Leech’s version studied in this dissertation.

Theorem 12 [2]. Let S be a skew lattice. Then, (I(S);N,U) and (F(S);N,U) are
complete lattices (with respect to the set inclusion) isomorphic to the lattices of
all ideals and the lattice of all filters of the lattice S/D, respectively.

A nonempty subset I of S closed under V is a skew ideal of S if, for all x € S and
y € I, z < y implies x € I. Dually, a nonempty subset F' of S closed under A is
a skew filter of S if, for all z € S and y € F, x > y implies « € F.

Observation 13. Due to Proposition 3, all ideals are examples of skew ideals.
The set {0,a,c} in Figure 1 is also an example of a skew ideal that is not an
ideal, illustrating that not all skew ideals are ideals.
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Proposition 14. All skew ideals [filters] are sub skew lattices.

Proof. Let S be a skew lattice and I a skew ideal of S. By definition, I is
closed under V. We shall see that I is also closed under A. Let z,y € I. As
cAyAz <zand yAx Ay <y, bothzAyAxzand y ANz Ay arein I. But
zAy = (xzAyAx)AN(yAxAy) = (yAzAy)V (x Ay Az) where the second equality
follows from the fact that (z Ay Ax)D(y Az Ay). Hence, x Ay € I as required.
The proof for y A x € I is similar. The case of skew filters is analogous. [

Based on the order characterization for the partial order described in Proposition
2 we characterize skew ideals and filters of a skew lattice as follows:

Proposition 15. A nonempty subset I of S is a skew ideal of S iff
(i) forallz,ye I, xVye€l;
(ii) forallz € Sandy eI, yNzANy€el.

Proof. Let x € Sandye I. AsyAz Ay <y and I is a skew ideal containing
y it follows that y Ax Ay € I. Conversely, let x € S and y € I be such that
yAxANyeland x <y. Then x =y Az Ay € I as required. [

An analogous proof verifies the following characterization of skew filters.

Proposition 16. A nonempty subset F' of S is a skew filter of S iff
(i) forallz,yel, x Ny € F;
(ii) forallz € S andy € F,yVaxVyeF.

Denote by I*(S) [F*(S)] the set of all skew ideals [filters| of a skew lattice S.

Proposition 17. Let S be a skew lattice. Then, (I*(S), A, V) and (F*(S),A, V)
are complete lattices considering the A operation to be the usual intersection of
sets.

Proof. S is an ideal and, therefore, a skew ideal. Let us show that the intersec-
tion of skew ideals is a skew ideal. Let { I : k € K } be a class of skew ideals of
a skew lattice S. Clearly (¢ Ik is closed under V. Let z € S and y € (o Ik
such that x < y. The fact that y is simultaneously a member of all skew ideals
I}, ensures that € (¢ I The result then follows. The proof regarding filters
is analogous. [

Observation 18. In the case of skew ideals one can easily see that, in general,
the skew ideal does not cover the D-classes it intersects, that is, x Dy with x € S
and y € I does not necessarily imply that x € I. To see that just consider the
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left-handed skew lattice NCE given by the Cayley tables in Figure 1. For instance,
in that ezample, a Db and a ¢ I = {0,b}. Moreover, NC¥ has 9 skew ideals
while its lattice tmage has only 4 ideals.

5. PRINCIPAL IDEALS AND NORMALITY

Let X be a nonempty subset of a lattice S. Let Y be the set of all [skew] ideals
of S containing X. The intersection M of all elements in Y is also a [skew] ideal
of S that contains X is called the [skew]| ideal generated by X, denoted by X +
[X¥']. If X is a singleton and x € X, then M is said to be a principal [skew]
ideal generated by z, written x*+ [#+']. Principal [skew] filters have an analogous
definition and are denoted by x' [z17].

Proposition 19. Let S be a skew lattice and x € S. Then,

(i) 2¥=SAzAS={yeS:y=ar}landz’ =SvavS={yeS:z=<y}
(i) ¥ =xASAz={ycS:y<zlandz’ =xvSvae={ycS:z<y}.

Proof. (i) Let us first show that SAzAS={yeS:y <z}. Fixa e S. Thus,
aANx Ab =z due to regularity: a A\x AbAzAaAxANb=aANxANbNaANTANb=
a ANz Ab Conversely, if a < x thena =aAxANa € SAxAS. The equality
SvaVvS={yeS:z =<y} has an analogous proof.

Now we will show that 2+ = SAzAS. Let y, 2 € SAxzAS, that is, y, 2z < .
Then zVyVe=zandzVzVez=xsothat r=zVer=axVyVaeVaeVzVer=
xVyVzVzVe =xVyVzVz due to regularity. Similarly, t = zVzVyVz. Hence,
yVz,2Vy =z and therefore yVz,zVy e SAzAS. Letye Sand z€ SAzAS
such that y < z. Fix a,b € S such that z =aAx Ab. Thus, y X a Az Abso that
y=yANaAxzANbAy € SAxAS. By idempotency, t =z AxAx € SAxAS. Let
I be an ideal of S such that x € I. Let a,b € S. Then, a Ax Ab <z € I so that
aANx ANb€ I and, therefore, S Az AS C I. The proof regarding principal filters
is analogous.

(ii) Let us first show that t ASAx ={ye S:y<z}. Fixae S Thus,
xAaNzx < z. Conversely, let a € S such that a < x. Then a = xAaAx € tASAzx.
The proof of z VSVaz={yeS:z <y} is analogous.

Now we will show that 2+" = 2 ASAz. Lety,2 € tASAz. Let a,b € S such
that y =z AaAx and z =z AbAz. By absorption, yVzVa = (zAaAz)V(zA
bAz)Vx = (xAaAzx)Ve=x. Similarly tVyVz = z. Hence yVz < x and its an
analogous proof to show that z V y < x. Therefore yV z,zVy €  AS A z. Now
let a,b € S such that a <z AbAx. Thena=xAbAzAaAzANbANx EX NS Ax.
By idempotency, z = x Ax Ax € £ A S Az. Let I be an ideal of S such that
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vel LetaeS. AszAhaNx<zxelthenzAaANxelsothatzANAANz CI.
The proof regarding principal skew filters is analogous. [

Corollary 20. Let S be a skew lattice and x € S. Then, t A\SAx CSAxzAS
and, dually, tvV SV CSVzxVS.

The following result show us how principal ideals and principal skew ideals of a
skew lattice S relate with the decomposition in D-classes of S.

Proposition 21. Let S be a skew lattice X a nonempty subset of S and a,b € S.
Then,

() X} =U{Di:ze X} and X =J{D}:z € X}.

Proof. (i) This is a direct consequence of Proposition 10: as the ideals in S are
just the unions of the D-classes that constitute the elements of the ideals of S/D,
then the principal ideals are just unions of blocks constituting the correspondent
principal lattice ideal.

(ii) is due to the fact that when x and y generate the same ideal, z < y and
y = x, that is, x € D,. The converse is a direct consequence of Proposition 10 as
Dy implies z+ C y*. [

Such a characterization for skew ideals analogous to the one in Proposition 21 (i) is
a much more difficult aim regarding the nature of such algebras. The recent work
on a generalization of Stone duality for skew Boolean algebras with intersections
brought up a characterization of skew ideals generated by a nonempty set X
recurring to the closure of finite joins of the downward closure of X:

Proposition 22 [1]. Let S be a A-distributive skew lattice and ) # X C S. Then,
X+ = {x1V---Vax, : forali<n3Iy € X such that z; < y; }.
Corollary 23. Let S be a A-distributive skew lattice and x € S. Then,
ol ={x1V---Va,: foralli<n andz;, <z}.

Proposition 24. Let S be a skew lattice X a nonempty subset of S and x,y € S.
Then,

(i) 2¥"' ND,={x} and 2" ND, = {z}.

(i) 2¥" =yt erx=yada =y 2 =y.
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Proof. (i) Let a € z+" N D,. Then, a < z and a D = so that a = .
(ii) Suppose that z+" = y+". Then, 2 <y, y < 2 from which we get = = y. [

Proposition 25. Let S be a skew lattice. For all x € S, the principal ideal ¥ is
the union of all principal skew ideals y** such that y € D,.

Proof. Let z € S. Due to Proposition 21 (i), z+ = |JD}. Whenever a € z* and
a ¢ D,, then D, < D,. Proposition 4 implies the existence of y € D, such that
y > a. Thus, a € y*". On the other hand, if a € y** with yDz, then a <y < z
so that a € a+. ]

Proposition 26. Let S be a skew lattice and x,y € S such that x Dy. Then,
|2V [ = |y

Proof. Consider the maps ¢ : ¢ [*— y [* and ¢ : y |*— x |* defined by
¢(a) =yANaAyand (b) =x AbAx, for every a € x |* and b € y |*. Both of
these maps are clearly well defined. Let us see that they are the inverse of each
other. Let ¢ € y |*. Then,

poplc)=yANzANchzANy=yANxAyANcANyAzAy=yAcAy=c

due to regularity and the assumption that xDy.
Thus, ¢ 0 p = Ay« and, similarly, p o ¢ = Ay «. [

Corollary 27. Let S be a skew lattice and x € S. Then,
ja¥] < [ Dyl [,

The following results show us how principal ideals and principal skew ideals are
familiar algebras and strengthen the relation between the study of ideals and the
study of normality.

Proposition 28 [13]. A skew lattice S is normal iff each sub skew lattice x*" is
a sub lattice of S. Dually, S is conormal iff each sub skew lattice ' is a sub
lattice of S.

Corollary 29 [13]. Let S be a normal skew lattice. Then, S is quasi-distributive
if, and only if, for all x € S, ¥ is distributive.

Normal skew lattices were further studied in [12] and [13] and, due to Proposition
28, are sometimes cited as local lattices [14] or as mid commutative skew lattices
[13]. The center of S is the sub skew lattice Z(S) formed by the union of all its
singleton D-classes. Z(S) is always a normal sub skew lattice of S. Moreover, the
center Z(S) of a normal skew lattice S, if nonempty, corresponds to an ideal in
S/D. In particular, whenever the lattice image S/D of S has minimal elements,
Z(S) is empty precisely when those minimal classes of S are nontrivial.s [13].
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Proposition 30 [12]. If a normal skew lattice S has top D-class with mazimal
element m, then S = m*. Furthermore, the sub lattice m*" is a lattice section of
the underlying lattice S/D in S.

In the beginning of the nineties, Leech used principal skew ideals when defining a
skew Boolean algebra in his review paper [15] as follows: a skew Boolean algebra
is any symmetric skew lattice with zero (S; A, V,0) such that, for all z € S, 2+
is a Boolean algebra.

6. IDEALS AND COSETS

Consider a skew lattice S consisting of exactly two D-classes A > B. Given
b€ B, the subset ANODAA={aANbAa|a e A} of B is said to be a coset of A in
B (or A-coset in B). Similarly, a coset of B in A (or B-coset in A) is the subset
BVvavB={bVvaVvb|be B} of A, for a fixed a € A. Given a € A, the image
set of a in B is the set

aANBANa={aANbNa |beB}={beB|b<a}.

Dually, given b € B the set bV AVb={a € A:b < a} is the image set of b in A.

Cosets are irrelevant in both the context of semigroup theory or lattice theory
being something very specific to skew lattices. In fact, the coset structure reveals
a new perspective that does not have a counterpart either in the theory of lattices
or in the theory of bands of semigroups (cf. [18]). The following theorem gives
us a further perspective on this decomposition.

Theorem 31 [14]. Let S be a skew lattice with comparable D-classes A > B.
Then, B is partitioned by the cosets of A in B and, dually, A is partitioned by
the cosets of B in A. The image set of any element a € A in B b€ B in A] is a
transversal of the cosets of A in B [B in A]. Furthermore, any coset BV aV B of
B in A is isomorphic to any coset ANbAN A of A in B under a natural bijection
@ defined implicitly by:

re€BVaVB—ye ANOANA if and only if x > y.

The operations A\ and \V in AU B are determined jointly by these coset bijections
and the rectangular structure of each D-class.

As a consequence of Theorem 31 that describes the image set of any element
b € B as a transversal of cosets of B in A, for any b,b’ € B,

B =
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Dually, given any a,a’ € A, their images in B have equal powers. This allows us
to define the index of B in A, denoted by [A : B], as the cardinality of the image
set bV AV b, for any b € B. Dually, we define the index of A in B, denoted by
[B : A], as the cardinality of the image set a A B A a, for any a € A. The index
[A : B] equals the cardinality of the set of all B-cosets in A, and [B : A] equals
the cardinality of the set of all A-cosets in B.

Proposition 32 [14]. Let S be a skew lattice. Then, S is normal iff for each
comparable pair of D-classes A > B in S, B is the entire coset of A in B. That
is, for all z,2' € B,

ANz ANA=ANT NA.
Dually, S is conormal iff for all comparable pair of D-classes A > B in S and all
z, ¥’ € A, BVxNVN B=BV12VB.

A skew lattice is categorical if nonempty composites of coset bijections are coset
bijections. Skew Boolean algebras are examples of categorical skew lattices [14].

Proposition 33 [18]. Let S be a categorical skew lattice and A > B comparable
D-classes. Then,

U{fba,b:aeA;bEB}:ZAva

where each ¢qy is the coset bijection from BV aV B to ANbA A.

A categorical skew lattice is strictly categorical if the compositions of coset bijec-
tions between comparable D-classes A > B > C are never empty. Normal skew
lattices are strictly categorical [9].

Proposition 34 [9]. Let S be a skew lattice. Then, S is strictly categorical if,
and only if, given any x € S, 21 is a normal sub skew lattice of S and z¥ is a
conormal sub skew lattice of S.

In particular, sub skew lattices of strictly categorical skew lattices are also strictly
categorical. Furthermore,

Theorem 35 [17]. Given any skew chain A > B > C in a skew lattice S,
[C: Al <[C:B][B:A] IfS is a strictly categorical skew lattice and both A and
C are finite, then so is B and

[C:A]=][C:B|B:A.

In general, consider any skew chain A1 < Ay < --- < A, for somen € N,
in a strictly categorical skew lattice S. If A1 and A, are finite, then so are all
intermediate D-classes and

[A1: Ay] = Wz;ll [Ag © Agta]-
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Let S be a skew lattice and z,y € S. We denote x <1y whenever = < y and there
is no w € S such that ¢ < w < y. The following results show how skew ideals
are related with the coset structure of a skew lattice.

Proposition 36. Let S be a skew lattice and x,y € S such thaty < x. Then, z*"
intersects all cosets of Dy in Dy. Dually, y1" intersects all cosets of Dy in D,.

Proof. This is a consequence of the existence of the family of coset bijections
between D, V x VD, and D, A z A D,, guaranteed by Theorem 31, for all z € D,,.
The dual case is similar. [

Proposition 37. Let S be a primitive skew lattice with comparable D-classes
A>B. Forallae A and b € B,

at" =(aABAa)U{a} and b = (bVAVD)U{b}.

Proof. This result is a direct consequence of Proposition 4 considering the image
set of a € A as a transversal of cosets of B in the context of S = AU B. |

The description of a principal skew ideal of a finite skew lattice comes as a direct
consequence of Theorem 31 together with Proposition 37. Observe that the case
of primitive skew lattices is described in Proposition 37 by the existence of b € B
such that b <t a for all @ € A. The general case is described as follows:

Proposition 38. Let S be a finite skew lattice and x € S. Then, z+ = U, z

where a3, is defined recursively as follows:

Ty = {.73 };
xf;l :U{z/\Dy/\z:ZE:z:%* andy <z }.
A similar result can be stated for skew filters.

Proof. Let a € 2¥". If a = z then Proposition 24 (i) implies that a € zt .
If not, then a € S such that a < x. In the case that a <t x, Theorem 31 and
Proposition 37 imply that a € £ A Dy Ax C xé*. In the case that z exists such
that a < z <z, considering D, UD, we get a € (z ADy Az). As z € x% then
(zADg N 2z) C 2 C 33#*; and so on. Due to the finitude of S these iterations
must finnish at some point. Hence, a € x%, for some m € N.

Conversely, Proposition 21(i) implies that :l%* C 2%, Fix 2z € o, and let
a,y € S such that y <z and a € zADy Az, that is,a < z. As z <z thena <z
so that y € . [
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Corollary 39. Let S be a finite skew lattice and x € S. If x¥° is finite, then
‘xi*‘ < 14Dy : Doy | +[Dag : Day][Day : Day]++++[Dag : Day] - - - [Da,_y : Dy,

forx=xo<x1 < <xp_1 Ty inS. Moreover, if S is strictly categorical, then

n
‘m*‘ <1+ Z[on : Dg,]-
k=0

Proof. A direct consequence of Propositions 38 and 35. [
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