$b i-B L-A L G E B R A$

Mahdeief Abbasloo
Department of Mathematics, Science and Research Branch Islamic Azad University, Kerman, Iran
e-mail: m.abbasloo@iauba.ac.ir
AND
Arsham Borumand Saeid
Department of Mathematics Shahid Bahonar University of Kerman
Kerman, Iran
e-mail: arsham@mail.uk.ac.ir

Abstract

In this paper, we introduce the notion of a $b i$ - $B L$-algebra, $b i$-filter, $b i$ deductive system and $b i$-Boolean elements of a $b i$ - $B L$-algebra and deal with $b i$-filters in $b i-B L$-algebra. We study this structure and construct the quotient of $b i-B L$-algebra. Also present a classification for examples of proper bi-BL-algebras. Keywords: $b i$ - $B L$-algebra, bi-filter, bi-deductive system, bi-Boolean elements of a bi-BL-algebra.

2010 Mathematics Subject Classification: 03B47, 03G25, 06D99.

1. Introduction

bistructure is a tool as this answers a major problem faced by all algebraic structures - groups, semigroups, loops, groupoids etc. that is the union of two subgroups, or two subrings, or two subsemigroups etc. do not form any algebraic structure but all of them find a nice bialgebraic structure as bigroups, birings, bisemigroups etc. Except for this bialgebraic structure these would remain only as sets without any nice algebraic structure on them. Further when these bialgebraic structures are defined on them they enjoy not only the inherited qualities of the
algebraic structure from which they are taken but also several distinct algebraic properties that are not present in algebraic structures.

The study of bialgebraic structures started recently. The study of bigroups was carried out in 1994-1996. Further research on bigroups and fuzzy bigroups was published in 1998. In the year 1999, bivector spaces were introduced. In 2001, concept of free De Morgan bisemigroups and bisemilattices was studied. It is said by Zoltan Esik that these bialgebraic structures like bigroups, bisemigroups, binear rings help in the construction of finite machines or finite automaton and semi automaton. The notion of non-associative bialgebraic structures was first introduced in the year 2003, [19].
$B L$-algebra have been invented by P. Hajek [9] in order to provide an algebraic proof of the completeness theorem of "Basic Logic" ($B L$, for short) arising from the continuous triangular norms, familiar in the fuzzy Logic framework. The language of propositional Hajek basic logic [9] contains the binary connectives \odot and \rightarrow and the constant $\overline{0}$.

Axioms of $B L$ are:

$$
\begin{aligned}
& \left(A_{1}\right)(\phi \rightarrow \chi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\phi \rightarrow \psi)) \\
& \left(A_{2}\right)(\phi \odot \chi) \rightarrow \phi \\
& \left(A_{3}\right)(\phi \odot \chi) \rightarrow(\chi \odot \phi) \\
& \left(A_{4}\right)(\phi \odot(\phi \rightarrow \chi)) \rightarrow(\chi \odot(\chi \rightarrow \phi)) \\
& \left.\left(A_{5 a}\right)(\phi \rightarrow(\chi \rightarrow \psi)) \rightarrow((\phi \odot \chi) \rightarrow \psi)\right) \\
& \left(A_{5 b}\right)((\phi \odot \chi) \rightarrow \psi) \rightarrow(\phi \rightarrow(\chi \rightarrow \psi)) \\
& \left(A_{6}\right)((\phi \rightarrow \chi) \rightarrow \psi) \rightarrow(((\chi \rightarrow \phi) \rightarrow \psi) \rightarrow \psi) \\
& \left(A_{7}\right) \overline{0} \rightarrow \omega .
\end{aligned}
$$

In this paper, we generalize the notion of $B L$-algebra and introduce notion of $b i$ - $B L$-algebra and study it. The notions of $b i$-filter, $b i$-deductive system and $b i$ Boolean elements of a $b i-B L$-algebra are introduced and studied this structure in detail. We construct the quotient of $b i$ - $B L$-algebra, also present classes of examples of proper $b i$ - $B L$-algebras.

2. Preliminaries

2.1. Definitions and Theorems

Definition 2.1 [9]. A $B L$-algebra is an algebra $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operations $\wedge, \vee, \odot, \rightarrow$ and two constants 0,1 such that:
$(B L 1) \quad(A, \wedge, \vee, \rightarrow, 0,1)$ is a bounded lattice,
$(B L 2)(A, \odot, 1)$ is a commutative monoid,
$(B L 3) \odot$ and \rightarrow form an adjoint pair i.e, $a \odot b \leq c$ if and only if $a \leq b \rightarrow c$,
$(B L 4) a \wedge b=a \odot(a \rightarrow b)$,
$(B L 5)(a \rightarrow b) \vee(b \rightarrow a)=1$, for all $a, b, c \in A$.
A $B L$-algebra is called an $M V$-algebra if $x^{--}=x$, for all $x \in A$, where $x^{-}=$ $x \rightarrow 0$.

Definition 2.2 [9]. A filter of a $B L$-algebra A is a nonempty subset F of A, such that for all $x, y \in A$, we have
(1) $x, y \in F$ implies $x \odot y \in F$,
(2) $x \in F$ and $x \leq y$ imply $y \in F$.

Definition 2.3 [17]. A non-empty subset D of $B L$-algebra A is called a deductive system if
(1) $1 \in D$,
(2) If $x \in D$ and $x \rightarrow y \in D$ imply $y \in D$.

Proposition 2.4 [17]. A non-empty subset F of $B L$-algebra is a deductive system if and only if F is a filter.

Theorem 2.5 [9]. Let F be a filter of a BL-algebra A. Define: $x \equiv_{F} y$ if and only if $x \rightarrow y \in F$ and $y \rightarrow x \in F$. Then \equiv_{F} is a congruence relation on A. The set of all congruence classes is denoted by $\frac{A}{F}$, i.e., $\frac{A}{F}:=\{[x] \mid x \in A\}$, where $[x]=\left\{y \in A \mid x \equiv_{F} y\right\}$. Define $\bullet, \rightharpoonup, \sqcap, \sqcup$ on $\frac{A}{F}$ as follows:
$[x] \bullet[y]=[x \odot y],[x] \rightharpoonup[y]=[x \rightarrow y],[x] \sqcap[y]=[x \wedge y],[x] \sqcup[y]=[x \vee y]$.
Therefore $\left(\frac{A}{F}, \sqcap, \sqcup, \bullet, \rightharpoonup,[1],[0]\right)$ is a $B L$-algebra with respect to F.
Definition 2.6 [9]. Let L be a $B L$-algebra. An element $a \in L$ is called complemented if there is an $b \in L$ such that $a \vee b=1$ and $a \wedge b=0$; If such element b exists it is called a complement of a. We will denote the set of all complement in L by $B(L)$.

For any $B L$-algebra $A, B(A)$ denotes the Boolean algebra of all complement elements in $L(A)$ (hence $B(A)=B(L(A))$).

Definition 2.7 [7, 9, 18]. Let A and B are $B L$-algebras. A function $f: A \rightarrow B$ is called homomorphism of $B L$-algebras if and only if:
(1) $f(0)=0$,
(2) $f(x * y)=f(x) * f(y)$,
(3) $f(x \rightarrow y)=f(x) \rightarrow f(y)$,
for all $x, y \in A$.

3. $b i-B L$-ALGEBRA

3.1. Definition and some examples

Definition 3.1. A $b i$ - $B L$-algebra is an algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operations and two constants if $L=L_{1} \cup L_{2}$ where L_{1} and L_{2} are proper subsets of L and
(i) $\left(L_{1}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a non-trivial $B L$-algebra,
(ii) $\left(L_{2}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a non-trivial $B L$-algebra.

Definition 3.2. If L is a $b i$ - $B L$-algebra and also a $B L$-algebra, then we say that L is a super $B L$-algebra.

Definition 3.3. A bi-BL-algebra $L=L_{1} \cup L_{2}$ is said to be finite if it has a finite number of elements and if L has infinite number of elements, then L is said to be infinite $b i$ - $B L$-algebra.

Example 3.4. Let $L_{1}=\{0, a, c, 1\}$ and $L_{2}=\{0, b, c, 1\}$. Define \odot and \rightarrow as follow:

L_{1}	\odot	0	a	c	1
	0	0	0	0	0
	a	0	a	a	a
	c	0	a	c	c
	1	0	a	c	1

\rightarrow	0	a	c	1
0	1	1	1	1
a	0	1	1	1
c	0	a	1	1
1	0	a	c	1

$*$

$L_{2}$$\quad$| | 0 | b | c | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| b | 0 | b | b | b |
| c | 0 | b | c | c |
| 1 | 0 | b | c | 1 |

\rightarrow	0	b	c	1
0	1	1	1	1
b	0	1	1	1
c	0	b	1	1
1	0	b	c	1

For L, whose tables are the following:

$$
L \quad \begin{array}{c|ccccc}
\odot & 0 & a & b & c & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & 0 & a & a \\
b & 0 & 0 & b & b & b \\
c & 0 & a & b & b & b \\
1 & 0 & a & b & c & 1
\end{array}
$$

\rightarrow	0	a	b	c	1
1	1	1	1	1	1
a	b	1	b	1	1
b	a	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

Then L_{1} and L_{2} are $B L$-algebras and $L=L_{1} \cup L_{2}$ is a bi-BL-algebra but L is not a $B L$-algebra since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$. In this example $L_{1} \cap L_{2} \neq\{0,1\}$.

Example 3.5. Let $L_{1}=\{0, a, b, c, d, 1\}$ and $L_{2}=\{0, d, e, 1\}$. Define \odot and \rightarrow as follow:

$$
\begin{aligned}
& L_{2} \quad \begin{array}{c|cccc}
\odot & 0 & d & e & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
d & 0 & 0 & d & d \\
e & 0 & d & e & e \\
1 & 0 & d & e & 1
\end{array}
\end{aligned}
$$

For L, whose tables are the following:

Then L_{1} and L_{2} are $B L$-algebras and $L=L_{1} \cup L_{2}$ is a bi-BL-algebra but L is not a $B L$-algebra since $(a \rightarrow e) \vee(e \rightarrow a)=e \vee d=e \neq 1$. In this case, $L_{1} \cap L_{2} \neq\{0,1\}$.
Example 3.6. Let $L_{1}=\{0, a, c, 1\}$ and $L_{2}=\{0, b, c, d, 1\}$. Define \odot and \rightarrow as follow:

$$
L_{1} \quad \begin{array}{c|cccc}
\odot & 0 & a & c & 1 \\
\hline 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & a & a \\
c & 0 & a & a & c \\
1 & 0 & a & c & 1
\end{array}
$$

\rightarrow	0	a	c	1
0	1	1	1	1
a	0	1	1	1
c	0	c	1	1
1	0	a	c	1

$$
\begin{array}{cc|ccccc|cccc}
& \odot & 0 & b & d & 1 \\
& L_{2} & 0 & 0 & 0 & 0 & 0 \\
b & 0 & 0 & b & b & \rightarrow & 0 & b & d & 1 \\
\hline & d & 0 & b & d & d
\end{array} \quad 0 \begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & b & d \\
b & 1 & b & 1 \\
1 & 1 \\
& 1 & d & 0 \\
b & 1 & 1 \\
& 1 & 0 & b \\
d & d
\end{array}
$$

For L, whose tables are the following:

Then L_{1} and L_{2} are $B L$-algebras. $L=L_{1} \cup L_{2}$ is a bi-BL-algebra also L is a super $B L$-algebra. In this case, $L_{1} \cap L_{2} \neq\{0,1\}$.

Remark 3.7. Special case of $b i-B L$-algebra:
A non-empty set $(\mathrm{L}, \wedge, \vee, \odot, \rightarrow, 0,1)$ is called a bi-BL-algebra if $L=L_{1} \cup L_{2}$ where L_{1} and L_{2} are proper subsets of L (denote the least element by 0 and the greatest element by 1) and
(i) $\left(L_{1}, \wedge, \vee, \odot, \rightarrow, 0_{1}, 1_{1}\right)$ is non-trivial a $B L$-algebra,
(ii) $\left(L_{2}, \wedge, \vee, \odot, \rightarrow, 0_{2}, 1_{2}\right)$ is a non-trivial $B L$-algebra.

Now, we present classes of examples of proper bi-BL-algebras which is similar to $B L$-algebras [11]:

3.2. Classes of examples of $b i-B L$-algebras

We start details with the linearly ordered set(chain).

$$
L_{n+1}=\{0,1,2, \ldots, n\}
$$

$(n \geq 1)$, organized as a lattice with $\wedge=\min$ and $\vee=\max$, and organized term equivalent:

$$
\mathcal{L}_{n+1}=\left(L_{n+1}, \odot,{ }^{-}, n\right)
$$

with:

$$
x \odot y=\max (0, x+y-n), x^{-}=x \rightarrow 0, \quad\left(0=n^{-}\right)
$$

hence $x \rightarrow y=\max \{z \mid x \odot z \leq y\}=\left(x \odot y^{-}\right)^{-}=\min (n, y-x+n)$. Hence, for $n=1, \ldots, 6$, we have the linearly ordered $M V$-algebras $\mathcal{L}_{1}, \mathcal{L}_{2}, \mathcal{L}_{3}, \mathcal{L}_{4}, \mathcal{L}_{5}, \mathcal{L}_{6}$, [11].

3.2.1. Classes of examples of finite, linearly ordered bi-BL-algebras

The examples are one of the following forms:

1. Linearly ordered $M V \cup$ linearly ordered $M V$,
2. Linearly ordered $M V \cup$ linearly ordered $B L$ or linearly ordered $B L \cup$ linearly ordered $M V$,
3. Linearly ordered $B L \cup$ linearly ordered $B L$.

- (1) Examples of the form: Linearly ordered $M V \cup$ linearly ordered $M V$.

Denote $\mathcal{H}_{m+1, n+1}=\mathcal{L}_{m+1} \cup \mathcal{L}_{n+1}$, for $m, n \geq 1$.

1. Example of the form: $\mathcal{H}_{2, n+1}=\mathcal{L}_{2} \cup \mathcal{L}_{n+1}$ for $n \geq 1$.

Denote $H_{2, n+1}=L_{2} \cup L_{n+1}=\{-1,0\} \cup\{0,1,2, \ldots, n\}=\{-1,0,1,2, \ldots, n\}$.
For $n=1,2,3,4,5$, since elements are from integer numbers then we have the linearly ordered bi-BL-algebras $\mathcal{H}_{2,2}=\mathcal{L}_{2} \cup \mathcal{L}_{2}, \mathcal{H}_{2,3}=\mathcal{L}_{2} \cup \mathcal{L}_{3}, \mathcal{H}_{2,4}=\mathcal{L}_{2} \cup \mathcal{L}_{4}$, $\mathcal{H}_{2,5}=\mathcal{L}_{2} \cup \mathcal{L}_{5}, \mathcal{H}_{2,6}=\mathcal{L}_{2} \cup \mathcal{L}_{6}$, whose tables are the following:

$$
\begin{aligned}
& \begin{array}{cr|rrrrr|rrr}
& \odot & -1 & 0 & 1 \\
\mathcal{H}_{2,2} & -1 & -1 & -1 & -1 & & \rightarrow & -1 & 0 & 1 \\
\cline { 2 - 8 } & 0 & -1 & 0 & 0 & & 0 & 1 & 1 & 1 \\
& 1 & -1 & 0 & 1 & & 1 & -1 & 1 & 1 \\
& 1 & & 0 & 1
\end{array} \\
& \begin{array}{rr|rrrrr|rrrr}
& \odot & -1 & 0 & 1 & 2 \\
\mathcal{H}_{2,3} & -1 & -1 & -1 & -1 & -1 & & \rightarrow & -1 & 0 & 1 \\
& 0 & -1 & 0 & 0 & 0 & & 2 \\
\cline { 2 - 8 } & 1 & -1 & 0 & 0 & 1 & & 1 & -1 & 2 & 2 \\
\hline
\end{array}
\end{aligned}
$$

2. Example of the form: $\mathcal{H}_{3, n+1}=\mathcal{L}_{3} \cup \mathcal{L}_{n+1}$ for $n \geq 1$.

Denote $H_{3, n+1}=L_{3} \cup L_{n+1}=\{-2,-1,0\} \cup\{0,1, \ldots, n\}=\{-2,-1,0$, $1,2, \ldots, n\}$. For $n=1,2$, since elements are from integer numbers then we have the linearly ordered bi-BL-algebras $\mathcal{H}_{3,2}=\mathcal{L}_{3} \cup \mathcal{L}_{2}, \mathcal{H}_{3,3}=\mathcal{L}_{3} \cup \mathcal{L}_{3}$, whose tables are:

$$
\begin{aligned}
& \begin{array}{cr|rrrrr|rrrr}
* & \odot & -2 & -1 & 0 & 1 & & \rightarrow & -2 & -1 & 0 \\
\cline { 3 - 9 } & \mathcal{H}_{3,2} & -2 & -2 & -2 & -2 & -2 & & -2 & 1 & 1 \\
1 & 1 & 1 \\
\cline { 2 - 9 } & -1 & -2 & -2 & -1 & -1 & & -1 & -1 & 1 & 1 \\
1 \\
& 0 & -2 & -1 & 0 & 0 & & 0 & -2 & -1 & 1 \\
1 & 1 \\
& 1 & -2 & -1 & 0 & 1 & & 1 & -2 & -1 & 0 \\
& & & &
\end{array} \\
& \begin{array}{r|rrrrrrrrrrrr}
\odot & -2 & -1 & 0 & 1 & 2 \\
& -2 & -2 & -2 & -2 & -2 & & \rightarrow & -2 & -1 & 0 & 1 & 2 \\
-1 & -2 & -2 & -1 & -1 & -1 & & -1 & -1 & 2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 & 2 \\
0 & -2 & -1 & 0 & 0 & 0 & & 0 & -2 & -1 & 2 & 2 & 2 \\
1 & -2 & -1 & 0 & 0 & 1 & & 1 & -2 & -1 & 1 & 2 & 2 \\
2 & -2 & -1 & 0 & 1 & 2 & & 2 & -2 & -1 & 0 & 1 & 2
\end{array}
\end{aligned}
$$

Remark 3.8. The examples of the forms $\mathcal{H}_{m+1, n+1}$, for $m, n \geq 1$ are $B L$-algebras thus are super $B L$-algebras.

- (2) Examples of the form: Linearly ordered $M V \cup$ linearly ordered $B L$ or linearly ordered $B L \cup$ linearly ordered $M V$.

Denote $\mathcal{H}_{m+1, n+1, p+1}=\mathcal{L}_{m+1} \cup \mathcal{H}_{n+1, p+1}=\mathcal{L}_{m+1} \cup\left(\mathcal{L}_{n+1} \cup \mathcal{L}_{p+1}\right)=\left(\mathcal{L}_{m+1} \cup\right.$ $\left.\mathcal{L}_{n+1}\right) \cup \mathcal{L}_{p+1}=\mathcal{H}_{m+1, n+1} \cup \mathcal{L}_{p+1}$, by associativity of \cup.

Example. The set $H_{2,2,2}=L_{2} \cup H_{2,2}=\{-1,0\} \cup\{0,1,2\}=H_{2,2} \cup L_{2}=$ $\{-1,0,1\} \cup\{1,2\}=\{-1,0,1,2\}$, organized as a lattice in a obvious way and as bi-BL-algebra $\mathcal{H}_{2,2,2}=\mathcal{H}_{2,2} \cup \mathcal{L}_{2}$ with the following tables:

$$
\begin{array}{lr|rrrrr|rrrr}
& \odot & -1 & 0 & 1 & 2 & \rightarrow & -1 & 0 & 1 & 2 \\
\cline { 2 - 3 } & \mathcal{H}_{2,2,2} & -1 & -1 & -1 & -1 & -1 & & -1 & 2 & 2 \\
2 & 2 \\
& 0 & -1 & 0 & 0 & 0 & & 0 & -1 & 2 & 2 \\
2 \\
1 & -1 & 0 & 1 & 1 & & 1 & -1 & 0 & 2 & 2 \\
& 2 & -1 & 0 & 1 & 2 & & -1 & 0 & 1 & 2
\end{array}
$$

Remark 3.9. The examples of the forms $\mathcal{H}_{m+1, n+1, p+1}$, for $m, n, p \geq 1$ are $B L$ algebras thus become a super $B L$-algebras.

- (3) Examples of the form: Linearly ordered $B L \cup$ linearly ordered $B L$ or equivalent forms.

Denote $\mathcal{H}_{m+1, n+1, p+1, q+1}=\mathcal{H}_{m+1, n+1} \cup \mathcal{H}_{p+1, q+1}=\left(\mathcal{L}_{m+1} \cup \mathcal{L}_{n+1}\right) \cup\left(\mathcal{L}_{p+1} \cup\right.$ $\left.\mathcal{L}_{q+1}\right)=\mathcal{H}_{m+1, n+1, p+1} \cup \mathcal{L}_{q+1}=\mathcal{L}_{m+1} \cup \mathcal{H}_{n+1, p+1, q+1}$, by associativity of \cup.

Example. The set $H_{2,2,2,2}=H_{2,2} \cup H_{2,2}=H_{2,2,2} \cup L_{2}=\{-1,0,1,2\} \cup\{2,3\}=$ $\{-1,0,1,2,3\}=L_{2} \cup H_{2,2,2}=\{-1,0\} \cup\{0,1,2,3\}$, organized as a lattice in a obvious way and as bi-BL-algebra $\mathcal{H}_{2,2,2}=\mathcal{H}_{2,2} \cup \mathcal{L}_{2}$ with the following tables:

Remark 3.10. The examples of the forms $\mathcal{H}_{m+1, n+1, p+1, q+1}$, for $m, n, p, q \geq 1$ are $B L$-algebras thus become a super $B L$-algebras.

3.3. Classes of examples of finite, non-linearly ordered $b i-B L$-algebras

The examples are one of the following forms:

1. Linearly ordered $M V \cup$ non-linearly ordered $M V$,
2. Linearly ordered $M V \cup$ non-linearly ordered $B L$ or linearly ordered $B L \cup$ non-linearly ordered $M V$,
3. Linearly ordered $B L \cup$ non-linearly ordered $B L$.

- (1) Examples of the form: Linearly ordered $M V \cup$ non-linearly ordered $M V$.

Denote $\mathcal{H}_{p+1,(n+1) \times(m+1)}=\mathcal{L}_{p+1} \cup \mathcal{L}_{(n+1) \times(m+1)}$, for $p, m, n \geq 1$.

We present two families of examples.

1. Examples of the form: $\mathcal{H}_{2,(n+1) \times(m+1)}=\mathcal{L}_{2} \cup \mathcal{L}_{(n+1) \times(m+1)}$ for $n, m \geq 1$.

Denote $H_{2,(n+1) \times(m+1)}=L_{2} \cup L_{(n+1) \times(m+1)}$, with $n, m \geq 1$.

We present four examples.

Example 1. The set $H_{2,2 \times 2}=L_{2} \cup L_{2 \times 2}=\{-1,0\} \cup\{0, a, b, 1\}=$ $\{-1,0, a, b, 1\}$, organized as a lattice as and with operations \rightarrow and \odot in the following tables, is a non-linearly ordered bi-BL-algebra, denoted by $\mathcal{H}_{2,2 \times 2}=$ $\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}$.

$$
\begin{array}{cr|rrrrrrr|rrrrr}
& \odot & -1 & 0 & a & b & 1 & & \rightarrow & -1 & 0 & a & b & 1 \\
\cline { 2 - 6 } \mathcal{H}_{2,2 \times 2} & -1 & -1 & -1 & -1 & -1 & -1 & & -1 & 1 & 1 & 1 & 1 & 1 \\
& 0 & -1 & 0 & 0 & 0 & 0 & & 0 & -1 & 1 & 1 & 1 & 1 \\
a & -1 & 0 & a & 0 & a & & a & -1 & b & 1 & b & 1 \\
b & -1 & 0 & 0 & b & b & & b & -1 & a & a & 1 & 1 \\
1 & 1 & -1 & 0 & a & b & 1 & & 1 & -1 & 0 & a & b & 1
\end{array}
$$

Example 2. The set $H_{2,3 \times 2}=L_{2} \cup L_{3 \times 2}=\{-1,0\} \cup\{0, a, b, c, d, 1\}=\{-1,0, a, b, c, d, 1\}$, organized as a lattice as and with operations \rightarrow and \odot in the following tables, is a non-linearly ordered $B L$-algebra, denoted by $\mathcal{H}_{2,3 \times 2}=\mathcal{L}_{2} \cup \mathcal{L}_{3 \times 2}$.

Example 3. The set $H_{2,3 \times 2}=L_{2} \cup L_{3 \times 2}=\{-1,0\} \cup\{0, a, b, c, d, e, f, g, 1\}$ $=\{-1,0, a, b, c, d, e, f, g, 1\}$, organized as a lattice as and with operations \rightarrow and \odot in the following tables, is a non-linearly ordered $B L$-algebra, denoted by $\mathcal{H}_{2,3 \times 3}=\mathcal{L}_{2} \cup \mathcal{L}_{3 \times 3}$.

$$
\begin{aligned}
& \begin{array}{r|rrrrrrrrrr}
\rightarrow & -1 & 0 & a & b & c & d & e & f & g & 1 \\
\hline-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & -1 & g & 1 & 1 & g & 1 & 1 & g & 1 & 1 \\
b & -1 & f & g & 1 & f & g & 1 & f & g & 1 \\
c & -1 & e & e & e & 1 & 1 & 1 & 1 & 1 & 1 \\
d & -1 & d & e & e & g & 1 & 1 & g & 1 & 1 \\
e & -1 & c & d & e & f & g & 1 & f & g & 1 \\
f & -1 & b & b & b & e & e & e & 1 & 1 & 1 \\
g & -1 & a & b & b & d & e & e & g & 1 & 1 \\
1 & -1 & 0 & a & b & c & d & e & f & g & 1
\end{array}
\end{aligned}
$$

Example 4. The set $H_{2,4 \times 2}=L_{2} \cup L_{4 \times 2}=\{-1,0\} \cup\{0, a, b, c, d, e, f, 1\}=$ $\{-1,0, a, b, c, d, e, f, 1\}$ is a $b i$ - $B L$-algebra.
2. Examples of the form: $\mathcal{H}_{3,(n+1) \times(m+1)}=\mathcal{L}_{3} \cup \mathcal{L}_{(n+1) \times(m+1)}$ for $n, m \geq 1$.

We present here only one example.
The set $H_{3,2 \times 2}=L_{3} \cup L_{2 \times 2}=\{-2,-1,0\} \cup\{0, a, b, 1\}=\{-2,-1,0, a, b, 1\}$, organized as a lattice as and with operations \rightarrow and \odot in the following tables, is a non-linearly ordered bi-BL-algebra, denoted by $\mathcal{H}_{3,2 \times 2}=\mathcal{L}_{3} \cup \mathcal{L}_{2 \times 2}$.

Remark 3.11. The examples of forms $\mathcal{H}_{p+1,(n+1) \times(m+1)}$, for $p, n, m \geq 1$ are $B L$-algebras thus are super $B L$-algebras.

- (2) Examples of the form: Linearly ordered $M V \cup$ non-linearly ordered $B L$ or linearly ordered $B L \cup$ non-linearly ordered $M V$.

Denote for $u, v, n, m \geq 1$, the bi-BL-algebras: $\mathcal{H}_{u+1, v+1,(n+1) \times(m+1)}=\mathcal{L}_{u+1} \cup$ $\mathcal{L}_{v+1} \cup \mathcal{L}_{(n+1) \times(m+1)}=\mathcal{L}_{u+1} \cup \mathcal{H}_{v+1,(n+1) \times(m+1)}=\mathcal{H}_{u+1, v+1} \cup \mathcal{L}_{(n+1) \times(m+1)}$, by the associativity of \cup.

We present two examples.

Example 1. Consider the bi-BL-algebra $\mathcal{H}_{2,2,2 \times 2}=\mathcal{L}_{2} \cup \mathcal{H}_{2,2 \times 2}=\mathcal{H}_{2,2} \cup \mathcal{L}_{2 \times 2}$ the underline set, $\{-2,-1,0, a, b, 1\}$ can be considered either as the union of sets: $H_{(2,2), 2 \times 2)}=[\{-2,1\} \cup\{-1,0\}] \cup\{0, a, b, 1\}=\left[L_{2} \cup L_{2}\right] \cup L_{2 \times 2}$ or as the union
$H_{2,(2,2 \times 2)}=\{-2,-1\} \cup[\{-1,0\} \cup\{0, a, b, 1\}]=L_{2} \cup\left[L_{2} \cup L_{2 \times 2}\right]=L_{2} \cup H_{2,2 \times 2}$. It has the following tables:

Example 2. Consider the bi-BL-algebra $\mathcal{H}_{2,(2,2) \times 2}=\mathcal{L}_{2} \cup \mathcal{H}_{(2,2) \times 2}$. The set $H_{2,(2,2) \times 2}=L_{2} \cup H_{(2,2) \times 2}=\{-1,0\} \cup\{0, a, b, c, d, 1\}=\{-1,0, a, b, c, d, 1\}$, organized as a lattice and a bounded lattice with the operations \rightarrow and \odot form the following tables is a $b i$ - $B L$-algebra, denoted by $\mathcal{H}_{2,(2,2) \times 2}$.

Remark 3.12. The examples of forms $\mathcal{H}_{u+1, v+1,(n+1) \times(m+1)}$, for u, v, n, $m \geq 1$ are $B L$-algebras thus become a super $B L$-algebras.

- (3) Examples of the form: Linearly ordered $B L \cup$ non-linearly ordered $B L$ or equivalent forms.

Denote for $u, v, n, m, p \geq 1$, the $b i$ - $B L$-algebras: $\mathcal{H}_{u+1, v+1,(n+1, m+1) \times(p+1)}=$ $\mathcal{H}_{u+1, v+1} \cup \mathcal{L}_{(n+1, m+1) \times(p+1)}$.

Example. Consider the bi-BL-algebra $\mathcal{H}_{2,2,(2,2) \times 2}=\mathcal{H}_{2,2} \cup \mathcal{H}_{(2,2) \times 2}=$ $\left(\mathcal{L}_{2} \cup \mathcal{L}_{2}\right) \cup \mathcal{H}_{(2,2) \times 2}=\mathcal{L}_{2} \cup \mathcal{H}_{2,(2,2) \times 2}$ with the underline set $H_{2,2,(2,2) \times 2}=$ $H_{2,2} \cup H_{(2,2) \times 2}=\{-2,-1,0\} \cup\{0, a, b, c, d, 1\}=\{-2,-1,0, a, b, c, d, 1\}$, organized as a lattice, with the operations \rightarrow and \odot in the following tables:

\odot	-2 -1	0	a	b	c d	1	\rightarrow	-2	-1	0	a	b	c	d		
-2	-2 -2	-2	-2	-2 -	-2 -2	-2	-2	1	1	1	1	1	1	1	1	
-1	-2 -1	-1 -	-1	-1 -	-1-1	-1	-1	-1	1	1	1	1	1	1	1	
0	-2 -1	0	0	0	00	0	0	-2	-1	1	1	1	1	1	1	
a	-2 -1	0	a	0	$a \quad 0$	a	a	-2	-1	d	1	d	1	d	1	
b	-2 -1	0	0	b	$b \quad b$	b	b	-2	-1	a	a	1	1	1	1	
c	-2 -1	0	a	b	c	c	c	-2	-1	0	a	d	1	d		
d	-2 -1	0	0	b	b		d	-2	-1	a	a	c	c	1		
1	-2 -1	0	a	b	$c \quad c$			-2	-1	0	a	b	c	d		

Remark 3.13. The examples of forms $\mathcal{H}_{u+1, v+1,(n+1, m+1) \times(p+1)}$, for u, v, n, $m, p \geq 1$ are $B L$-algebras thus become a super $B L$-algebras.

3.3.1. Example of infinite $b i-B L$-algebras

By [11] we present example of infinite, linearly ordered bi-BL-algebra.
Example. The linearly ordered set(chain) $H_{P(\mathbb{Z}), 2}=P(\mathbb{Z}) \cup L_{2}=\left(\mathbb{Z}^{-} \cup-\infty\right) \cup$ $L_{2}=\{-\infty, \ldots,-3,-2,-1,0\} \cup\{0,1\}=\{-\infty, \ldots,-3,-2,-1,0,1\}$ with the operations \rightarrow and \odot defined by the following tables, is a linearly ordered $b i-B L$ algebra, denoted by $\mathcal{H}_{\mathcal{P}(\mathbb{Z}), 2}=\mathcal{P}(\mathbb{Z}) \cup \mathcal{L}_{2}$.

$$
\begin{array}{rr|rlrrrrr}
& \odot & -\infty & \cdots & -3 & -2 & -1 & 0 & 1 \\
\cline { 2 - 9 } & -\infty \\
\mathcal{H}_{\mathcal{P}(\mathbb{Z}), 2} & \vdots & \cdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& -3 & -\infty & \cdots & -6 & -5 & -4 & -3 & -3 \\
-2 & -\infty & \cdots & -5 & -4 & -3 & -2 & -2 \\
-1 & -\infty & \cdots & -4 & -3 & -2 & -1 & -1 \\
0 & -\infty & \cdots & -3 & -2 & -1 & 0 & 0 \\
1 & -\infty & \cdots & -3 & -2 & -1 & 0 & 1 \\
\rightarrow & -\infty & \cdots & -3 & -2 & -1 & 0 & 1 & \\
\hline-\infty & 1 & \cdots & 1 & 1 & 1 & 1 & 1 & \\
\hline & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots & \\
\hline-3 & -\infty & \cdots & 1 & 1 & 1 & 1 & 1 & \\
-2 & -\infty & \cdots & -1 & 1 & 1 & 1 & 1 & \\
-1 & -\infty & \cdots & -2 & -1 & 1 & 1 & 1 & \\
0 & -\infty & \cdots & -3 & -2 & -1 & 1 & 1 & \\
1 & -\infty & \cdots & -3 & -2 & -1 & 0 & 1 &
\end{array}
$$

3.3.2. Classes of finite $b i-B L$-algebras such that are not super $B L$ algebras

The examples will be of the form: non-linearly ordered $M V / B L$-algebra $\cup M V / B L$ algebra, more precisely of one of the following forms:
(1) non-linearly ordered $M V \bigcup$ linearly ordered $M V$,
(2) non-linearly ordered $M V \bigcup$ non-linearly ordered $M V$,
(3) non-linearly ordered $M V \bigcup$ linearly ordered $B L$,
(4) non-linearly ordered $M V \bigcup$ non-linearly ordered $B L$,
(5) non-linearly ordered $B L \bigcup$ linearly ordered $M V$,
(6) non-linearly ordered $B L \bigcup$ non-linearly ordered $M V$,
(7) non-linearly ordered $B L \bigcup$ linearly ordered $B L$,
(8) non-linearly ordered $B L \bigcup$ non-linearly ordered $B L$.

- (1) Examples of the form: non-linearly ordered $M V \cup$ linearly ordered $M V$.

Denote, for $p, q, n \geq 1$

$$
\mathcal{D}_{(p+1) \times(q+1), n+1}=\mathcal{L}_{(p+1) \times(q+1)} \cup \mathcal{L}_{n+1} .
$$

We present three examples of above form.

Example 1. The $b i$ - $B L$-algebra

$$
\mathcal{D}_{2 \times 2,2}=\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2},
$$

with the underline set

$$
D_{2 \times 2,2}=L_{2 \times 2} \cup L_{2}=\{0, a, b, c\} \cup\{c, 1\}=\{0, a, b, c, 1\},
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{2 \times 2,2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$ thus $\mathcal{D}_{2 \times 2,2}$ is not a super $B L$-algebra.

Example 2. The $b i-B L$-algebra

$$
\mathcal{D}_{2 \times 2,3}=\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{3},
$$

with the underline set

$$
D_{2 \times 2,3}=L_{2 \times 2} \cup L_{3}=\{0, a, b, c\} \cup\{c, d, 1\}=\{0, a, b, c, d, 1\}
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{2 \times 2,3}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$ thus $\mathcal{D}_{2 \times 2,3}$ is not a super $B L$-algebra.

Example 3. The $b i-B L$-algebra

$$
\mathcal{D}_{2 \times 3,2}=\mathcal{L}_{2 \times 3} \cup \mathcal{L}_{2}
$$

with the underline set

$$
D_{2 \times 3,2}=L_{2 \times 3} \cup L_{2}=\{0, a, b, c, d, n\} \cup\{n, 1\}=\{0, a, b, c, d, n, 1\}
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{2 \times 3,2}$ is not a $B L$-algebra, since $(b \rightarrow d) \vee(d \rightarrow b)=d \vee b=n \neq 1$ thus $\mathcal{D}_{2 \times 3,2}$ is not a super $B L$-algebra.

- (2) Examples of the form: non-linearly ordered $M V \cup$ non-linearly ordered $M V$.
For $n, m, u, v \geq 1$, denote,

$$
\mathcal{D}_{(n+1) \times(m+1),(u+1) \times(v+1)}=\mathcal{L}_{(n+1) \times(m+1)} \cup \mathcal{L}_{(u+1) \times(v+1)} .
$$

Example. The bi-BL-algebra

$$
\mathcal{D}_{2 \times 2,2 \times 2}=\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2 \times 2},
$$

with the underline set

$$
D_{2 \times 2,2 \times 2}=L_{2 \times 2} \cup L_{2 \times 2}=\{0, a, b, n\} \cup\{n, c, d, 1\}=\{0, a, b, n, c, d, 1\},
$$

is organized as a lattice with the following tables:

$$
\begin{array}{rl|llllllll|lllllll}
\\
\mathcal{D}_{2 \times 2,2 \times 2} & \odot & 0 & a & b & n & c & d & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \rightarrow & 0 & a & b & n & c & d & 1 \\
\hline & b & 0 & a & 0 & a & a & a & a & & 1 & 1 & 1 & 1 & 1 & 1 \\
b & 0 & 0 & b & b & b & b & b & & & b & b & a & a & 1 & 1 & 1 \\
& 1 & 1 \\
a & a & a & 1 \\
n & 0 & a & b & n & n & n & n & & n & 0 & a & b & 1 & 1 & 1 & 1 \\
c & 0 & a & b & n & c & n & c & & c & 0 & a & b & d & 1 & d & 1 \\
d & 0 & a & b & n & n & d & d & & d & 0 & a & b & c & c & 1 & 1 \\
1 & 0 & a & b & n & c & d & 1 & & 1 & 0 & a & b & n & c & d & 1
\end{array}
$$

note that $D_{2 \times 2,2 \times 2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=n \neq 1$, thus $\mathcal{D}_{2 \times 2,2 \times 2}$ is not a super $B L$-algebra.

- (3) Examples of the form: non-linearly ordered $M V \bigcup$ linearly ordered $B L$ or equivalent forms.

Denote, for $p, q, n, m \geq 1$,

$$
\mathcal{D}_{(p+1) \times(q+1), n+1, m+1}=\mathcal{L}_{(p+1) \times(q+1)} \cup \mathcal{H}_{n+1, m+1} .
$$

Example. The $b i-B L$-algebra

$$
\mathcal{D}_{2 \times 2,2,2}=\mathcal{L}_{2 \times 2} \cup \mathcal{H}_{2,2}=\mathcal{L}_{2 \times 2} \cup\left(\mathcal{L}_{2} \cup \mathcal{L}_{2}\right)=\mathcal{D}_{2 \times 2,2} \cup \mathcal{L}_{2},
$$

with the underline set

$$
D_{2 \times 2,2,2}=L_{2 \times 2} \cup H_{2,2}=\{0, a, b, c\} \cup\{c, d, 1\}=\{0, a, b, c, d, 1\},
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{2 \times 2,2,2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$, thus $\mathcal{D}_{2 \times 2,2,2}$ is not a super $B L$-algebra.

- (4) Examples of the form: non-linearly ordered $M V \bigcup$ non-linearly ordered $B L$ or equivalent forms.

Denote, for $m, n, p, u, v \geq 1$,

$$
\mathcal{D}_{(m+1) \times(n+1), p+1,(u+1) \times(v+1)}=\mathcal{L}_{(m+1) \times(n+1)} \cup \mathcal{H}_{p+1,(u+1) \times(v+1)}
$$

Example. The bi-BL-algebra:

$$
\begin{aligned}
\mathcal{D}_{2 \times 2,2,2 \times 2} & =\mathcal{L}_{2 \times 2} \cup H_{2,2 \times 2}=L_{2 \times 2} \cup\left(L_{2} \cup \mathcal{L}_{2 \times 2}\right)=\left(\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2}\right) \\
& =\mathcal{D}_{2 \times 2,2} \cup \mathcal{L}_{2 \times 2},
\end{aligned}
$$

with the underline set

$$
\begin{aligned}
D_{2 \times 2,2,2 \times 2} & =L_{2 \times 2} \cup H_{2,2 \times 2}=\{0, a, b, p\} \cup\{p, n\} \cup\{n, c, d, 1\} \\
& =\{0, a, b, p, n, c, d, 1\},
\end{aligned}
$$

is organized as a lattice as with the following tables:
note that $D_{2 \times 2,2,2 \times 2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=p \neq 1$ thus $\mathcal{D}_{2 \times 2,2,2 \times 2}$ is not a super $B L$-algebra.

- (5) Examples of the form: non-linearly ordered $B L \bigcup$ linearly ordered $M V$ or equivalent forms.

We consider here only two examples among all possible examples.
Example 1. The bi-BL-algebra

$$
\mathcal{D}_{2,2 \times 2,2}=\mathcal{H}_{2,2 \times 2} \cup \mathcal{L}_{2}=\left(\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}\right) \cup \mathcal{L}_{2}=\mathcal{L}_{2} \cup\left(\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2}\right)=\mathcal{L}_{2} \cup \mathcal{D}_{2 \times 2,2},
$$

with the underline set

$$
D_{2,2 \times 2,2}=H_{2,2 \times 2} \cup L_{2}=\{0, n, a, b, m\} \cup\{m, 1\}=\{0, n, a, b, m, 1\},
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{2,2 \times 2,2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=m \neq 1$ thus $\mathcal{D}_{2,2 \times 2,2}$ is not a super $B L$-algebra.

Example 2. The bi-BL-algebra

$$
\mathcal{D}_{3,2 \times 2,2}=\mathcal{H}_{3,2 \times 2} \cup \mathcal{L}_{2}=\left(\mathcal{L}_{3} \cup \mathcal{L}_{2 \times 2}\right) \cup \mathcal{L}_{2}=\mathcal{L}_{3} \cup\left(\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2}\right)=\mathcal{L}_{3} \cup \mathcal{D}_{2 \times 2,2},
$$

with the underline set

$$
D_{3,2 \times 2,2}=H_{3,2 \times 2} \cup L_{2}=\{-2,-1,0, a, b, c\} \cup\{c, 1\}=\{-2,-1,0, a, b, c, 1\}
$$

is organized as a lattice with the following tables:
note that $\mathcal{D}_{3,2 \times 2,2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$ thus $\mathcal{D}_{3,2 \times 2,2}$ is not a super $B L$-algebra.

- (6) Examples of the form: non-linearly ordered $B L \bigcup$ non-linearly ordered $M V$ or equivalent forms.

Example. The bi-BL-algebra

$$
\begin{aligned}
\mathcal{D}_{2,2 \times 2,2 \times 2} & =\mathcal{H}_{2,2 \times 2} \cup \mathcal{L}_{2 \times 2}=\left(\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}\right) \cup \mathcal{L}_{2 \times 2} \\
& =\mathcal{L}_{2} \cup\left(\mathcal{L}_{2 \times 2} \cup \mathcal{L}_{2 \times 2}\right)=\mathcal{L}_{2} \cup \mathcal{D}_{2 \times 2,2 \times 2}
\end{aligned}
$$

with the support set

$$
\begin{aligned}
D_{2,2 \times 2,2 \times 2} & =H_{2,2 \times 2} \cup L_{2 \times 2}=\{-1,0, a, b, n\} \cup\{n, c, d, 1\} \\
& =\{-1,0, a, b, n, c, d, 1\}
\end{aligned}
$$

is organized as a lattice with the following tables:

\odot	-1	0	a	b	n	c	d	1	\rightarrow	-1	0	a	b	n	c	d	1
-1	-1	-1	-1	-1	-1	-1	-1		-1	1	1	1	1	1	1	1	1
0	-1	0	0	0	0	0	0	0	0	-1	,	1	1	1	1	1	1
a	-1	0	a	0	a	a	a	a	a	-1	b	1	b	1	1	1	1
b	-1	0	0	b	b	b	b	b	b	-1	a	a	1	1	1	1	1
n	-1	0	a	b	n	n	n	n	n	-1	0	a	b	1	1	1	1
c	-1	0	a	b	n	c	n	c	c	-1	0	a	b	d	1	d	1
d	-1	0	a	b	n	n	d	d	d	-1	0	a	b	c	c	1	1
1	-1	0	a	b	n	c	d	1	1	-1	0	a	b	n	c	d	

note that $\mathcal{D}_{2,2 \times 2,2 \times 2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=n \neq 1$ thus $\mathcal{D}_{2,2 \times 2,2 \times 2}$ is not super $B L$-algebra.

- (7) Examples of the form: non-linearly ordered $B L \bigcup$ linearly ordered $B L$ or equivalent forms.

Example. The $b i-B L$-algebra

$$
\mathcal{D}_{2,2 \times 2,2,2}=\mathcal{H}_{2,2 \times 2} \cup \mathcal{H}_{2,2}=\left(\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}\right) \cup\left(\mathcal{L}_{2} \cup \mathcal{L}_{2}\right)=\mathcal{L}_{2} \cup \mathcal{D}_{2 \times 2,2} \cup \mathcal{L}_{2}
$$

with the underline set

$$
D_{2,2 \times 2,2,2}=H_{2,2 \times 2} \cup H_{2,2}=\{-1,0, a, b, c\} \cup\{c, d, 1\}=\{-1,0, a, b, c, d, 1\}
$$

is organized as a lattice as with the following tables:

\odot	-1	0	a	b	c	d	1								
-1	-1	-1	-1	-1	-1	-1	-1		\rightarrow	-1	0	a	b	c	d

note that $\mathcal{D}_{2,2 \times 2,2,2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=c \neq 1$ thus $\mathcal{D}_{3,2 \times 2,2}$ is not a super $B L$-algebra.

- (8) Examples of the form: non-linearly ordered $B L \cup$ non-linearly ordered $B L$ or equivalent forms.

Example. The $b i$ - $B L$-algebra

$$
\begin{aligned}
\mathcal{D}_{2,2 \times 2,2,2 \times 2} & =\mathcal{H}_{2,2 \times 2} \cup \mathcal{H}_{2,2 \times 2}=\left(\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}\right) \cup\left(\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}\right) \\
& =\mathcal{L}_{2} \cup \mathcal{D}_{2 \times 2,2} \cup \mathcal{L}_{2 \times 2}=\mathcal{D}_{2,2 \times 2,2} \cup \mathcal{L}_{2 \times 2},
\end{aligned}
$$

with the underline set

$$
\begin{aligned}
D_{2,2 \times 2,2,2 \times 2} & =H_{2,2 \times 2} \cup H_{2,2 \times 2}=\{0, m, a, b, p\} \cup\{p, n, c, d, 1\} \\
& =\{0, m, a, b, p, n, c, d, 1\}
\end{aligned}
$$

is organized as a lattice as with the following tables:

$$
\begin{array}{r|cccccccccc|ccccccccc}
\odot & 0 & m & a & b & p & n & c & d & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \rightarrow & 0 & m & a & b & p & n & c & d \\
& 0 & m & m & m & m & m & m & m & m & & m & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & m & a & m & a & a & a & a & a & & a & 0 & b & 1 & b & 1 & 1 & 1 & 1 \\
& 1 \\
b & 0 & m & m & b & b & b & b & b & b & & b & 0 & a & a & 1 & 1 & 1 & 1 & 1 \\
p & 0 & m & a & b & p & p & p & p & p & & p & 0 & m & a & b & 1 & 1 & 1 & 1 \\
n & 1 \\
n & 0 & m & a & b & p & n & n & n & n & & n & 0 & m & a & b & p & 1 & 1 & 1 \\
c & 1 \\
c & 0 & m & a & b & p & n & c & n & c & & c & 0 & m & a & b & p & d & 1 & 1 \\
n & 0 & m & a & b & p & n & n & d & d & & n & 0 & m & a & b & p & c & c & 1 \\
1 \\
1 & 0 & m & a & b & p & n & c & d & 1 & & 1 & 0 & m & a & b & p & n & c & d \\
1
\end{array}
$$

note that $\mathcal{D}_{2,2 \times 2,2,2 \times 2}$ is not a $B L$-algebra, since $(a \rightarrow b) \vee(b \rightarrow a)=b \vee a=p \neq 1$ thus $\mathcal{D}_{2,2 \times 2,2,2 \times 2}$ is not a super $B L$-algebra.

3.4. $b i$-Homomorphisms, $b i$-Filters and $b i$-Boolean center

Definition 3.14. Let $L=\left(L_{1} \cup L_{2}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ and $K=\left(K_{1} \cup K_{2}, \wedge, \vee, \odot, \rightarrow\right.$ $, 0,1)$ be two $b i$ - $B L$-algebras. We say a map ϕ from L to K is a $b i$-homomorphism of $b i$ - $B L$-algebras. If $\phi=\phi_{1} \cup \phi_{2}$ where $\phi_{1}=\left.\phi\right|_{L_{1}}$ from L_{1} to K_{1} and $\phi_{2}=\left.\phi\right|_{L_{2}}$ from L_{2} to K_{2} are $B L$-homomorphisms.

Definition 3.15. Let $\phi: L \rightarrow K$ be a bi-homomorphism, where $L=L_{1} \cup L_{2}$ and $K=K_{1} \cup K_{2}$ are bi-BL-algebras the kernel of the bi- homomorphism ϕ as $\operatorname{Ker}(\phi)=\operatorname{Ker}\left(\phi_{1}\right) \cup \operatorname{Ker}\left(\phi_{2}\right) ;$ here $\operatorname{Ker}\left(\phi_{1}\right)=\left\{a_{1} \in L_{1} \mid \phi_{1}\left(a_{1}\right)=1\right\}$ and $\operatorname{Ker}\left(\phi_{2}\right)=\left\{a_{2} \in L_{2} \mid \phi_{2}\left(a_{2}\right)=1\right\}$, i.e., $\operatorname{Ker}(\phi)=\left\{a_{1} \in L_{1}, a_{2} \in L_{2} \mid \phi_{1}\left(a_{1}\right)=1\right.$, $\left.\phi_{2}\left(a_{2}\right)=1\right\}$.

Example 3.16. Let $L=\mathcal{D}_{2 \times 2,2}$ and $K=\mathcal{D}_{2 \times 2,3}$. Define $\phi=\phi_{1} \cup \phi_{2}$ as follow: $\phi_{1}: \mathcal{L}_{2 \times 2} \rightarrow \mathcal{L}_{2 \times 2}$ where ϕ_{1} is a identity map and $\phi_{2}: \mathcal{L}_{2} \rightarrow \mathcal{L}_{3}$ where $\phi_{2}(c)=c$ and $\phi_{2}(1)=1$, then ϕ is a bi-homomorphism from L to K and $\operatorname{Ker}\left(\phi_{1}\right)=\{c\}$ and $\operatorname{Ker}\left(\phi_{2}\right)=\{1\}$, so $\operatorname{Ker}(\phi)=\{c, 1\}$.

Definition 3.17. Let $L=L_{1} \cup L_{2}$ be a $b i$ - $B L$-algebra. We say that subset $S=S_{1} \cup S_{2}$ of L is a sub bi-BL-algebra of L if $L_{1} \cap S=S_{1}$ and $L_{2} \cap S=S_{2}$ are subalgebra of L_{1} and L_{2} respectively.

Example 3.18. In the Example 3.2, consider $S_{1}=\{0, a, c, 1\}$ and $S_{2}=\{0, e, 1\}$, then $S=S_{1} \cup S_{2}=\{0, a, c, e, 1\}$ is a sub bi-BL-algebra of L, since $S \cap L_{1}=S_{1}$ and $S \cap L_{2}=S_{2}$ are subalgebras of L_{1} and L_{2} respectively.

Definition 3.19. Let $L=L_{1} \cup L_{2}$ be a $b i$ - $B L$-algebras. We say the subset $F=F_{1} \cup F_{2}$ of L is a $b i$-filter of L if F_{i} is a filter of L_{i}, where $i=1,2$ respectively.

Theorem 3.20. Let $L=L_{1} \cup L_{2}$ and $K=K_{1} \cup K_{2}$ are bi-BL-algebras and $\phi: L \rightarrow K$ is a bi-BL-algebra homomorphism. Then $\operatorname{Ker}(\phi)$ is a bi-filter of L.

Example 3.21. In Example 3.2, consider $F_{1}=\{a, 1\}$ and $F_{2}=\{e, 1\}$. Then $F=F_{1} \cup F_{2}=\{a, e, 1\}$ is a bi-filter of L.

Theorem 3.22. Let $F=F_{1} \cup F_{2}$ be a bi-filter of a bi-BL-algebra $L=L_{1} \cup L_{2}$ such that F_{i} is a filter of L_{i} where $i=1,2$. Then $\frac{\mathcal{L}}{\mathcal{F}}:=\frac{L_{1}}{F_{1}} \cup \frac{L_{2}}{F_{2}}$ is a bi-BL-algebra where $\frac{L_{i}}{F_{i}}=\left\{[x]_{F_{i}} \mid x \in L_{i}\right\}$ and $[x]_{F_{i}}=\left\{y \in L_{i} \mid x \rightarrow y \in F_{i}, y \rightarrow x \in F_{i}\right\}$, where $x \in L_{i}$ and $i=1,2$.

Definition 3.23. Let $F=F_{1} \cup F_{2}$ be a $b i$-filter of a super $B L$-algebra $L=L_{1} \cup L_{2}$. If F is a filter of L, then we say that F is a super filter of L.

Example 3.24. Let $L_{1}=\{0, a, c, 1\}$ and $L_{2}=\{0, b, c, d, 1\}$. Define \odot and \rightarrow as follow:

$$
\begin{array}{cc|ccccc|cccc}
& L_{1} & \odot & 0 & a & c & 1 \\
& 0 & 0 & 0 & 0 & 0 & & \rightarrow \mid c c c c c \\
& a & 0 & a & c & a \\
& c & & 0 & 1 & 1 & 1 & 1 \\
& c & 0 & c & c & c & & c & 0 & 1 & c \\
& 1 \\
1 & 0 & a & c & 1 & & 1 & 0 & 1 & 1 & 1 \\
& 1 & & 1 & & 1 & c & 1
\end{array}
$$

For L, whose tables are the following:

$$
\begin{array}{c|ccccccc|cccccc}
\odot & 0 & a & b & c & d & 1 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & & \rightarrow & 0 & a & b & c & d \\
& 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & a & c & c & d & a & & a & 0 & 1 & b & b & d \\
& 1 \\
b & 0 & c & b & c & d & b & & b & 0 & a & 1 & a & d \\
c & 1 \\
c & 0 & c & c & c & d & c & & c & 0 & 1 & 1 & 1 & d \\
1 \\
d & 0 & d & d & d & 0 & d & & d & d & 1 & 1 & 1 & 1 \\
1 \\
1 & 0 & a & b & c & d & 1 & & 1 & 0 & a & b & c & d \\
1
\end{array}
$$

Then $L 1$ and L_{2} are $B L$-algebras and $L=L_{1} \cup L_{2}$ is a $b i$ - $B L$-algebra and also L is a super $B L$-algebra, consider $F_{1}=\{a, 1\}$ and $F_{2}=\{b, c, 1\}$ are filters of L_{1} and L_{2}, respectively. Also $F=F_{1} \cup F_{2}=\{a, b, c, 1\}$ is super filter of L.
Corollary 3.25. In a super BL-algebra, any super filter is a filter.
In the following example we show that converse of above corollary is not true.
Example 3.26. In super $B L$-algebra $\mathcal{H}_{2,2 \times 2}$, we consider $F=\{a, 1\}$. Then F is a filter of $\mathcal{H}_{2,2 \times 2}$ but is not a super filter of $\mathcal{H}_{2,2 \times 2}$, since F is not union each pair filters such that $F=F_{1} \cup F_{2}$ and F_{i} is filter of L_{i}, respectively.
Proposition 3.27. Let $L=L_{1} \cup L_{2}$ be a super BL-algebra and $F=F_{1} \cup F_{2}$ be a super filter of L, then $\frac{L}{F}$ is a BL-algebra.
If $L=L_{1} \cup L_{2}$ is a super $B L$-algebra and $F=F_{1} \cup F_{2}$ a super filter of L, then $\frac{L}{F} \neq \frac{\mathcal{L}}{\mathcal{F}}$.
Example 3.28. In Example 3.2 we have:

$$
\begin{aligned}
& {[0]_{F_{1}}=\frac{0}{F_{1}}=\left\{x \in L_{1} \mid x \rightarrow 0 \in F_{1}, 0 \rightarrow x \in F_{1}\right\}=\{0\},} \\
& {[a]_{F_{1}}=\frac{a}{F_{1}}=\left\{x \in L_{1} \mid x \rightarrow a \in F_{1}, a \rightarrow x \in F_{1}\right\}=\{a, 1\},} \\
& {[c]_{F_{1}}=\frac{c}{F_{1}}=\left\{x \in L_{1} \mid x \rightarrow c \in F_{1}, c \rightarrow x \in F_{1}\right\}=\{c\},} \\
& {[1]_{F_{1}} \frac{1}{F_{1}}=\left\{x \in L_{1} \mid x \rightarrow 1 \in F_{1}, 1 \rightarrow x \in F_{1}\right\}=\{a, 1\},}
\end{aligned}
$$

Thus $[a]_{F_{1}}=[1]_{F_{1}}$, therefore $\frac{L_{1}}{F_{1}}=\left\{[0]_{F_{1}},[c]_{F_{1}},[1]_{F_{1}}\right\}$.
$[0]_{F_{2}}=\frac{0}{F_{2}}=\left\{x \in L_{2} \mid x \rightarrow 0 \in F_{2}, 0 \rightarrow x \in F_{2}\right\}=\{0\}$,
$[b]_{F_{2}}=\frac{b^{2}}{F_{2}}=\left\{x \in L_{2} \mid x \rightarrow b \in F_{2}, b \rightarrow x \in F_{2}\right\}=\{b, c, 1\}$,
$[c]_{F_{2}}=\frac{c}{F_{2}}=\left\{x \in L_{2} \mid x \rightarrow c \in F_{2}, c \rightarrow x \in F_{2}\right\}=\{b, c, 1\}$,
$[d]_{F_{2}}=\frac{d}{F_{2}}=\left\{x \in L_{2} \mid x \rightarrow d \in F_{2}, d \rightarrow x \in F_{2}\right\}=\{d\}$,
$[1]_{F_{2}}=\frac{1}{F_{2}}=\left\{x \in L_{2} \mid x \rightarrow 1 \in F_{2}, 1 \rightarrow x \in F_{2}\right\}=\{b, c, 1\}$,
Thus $[b]_{F_{2}}=[c]_{F_{2}}=[1]_{F_{2}}$, therefore $\frac{L_{2}}{F_{2}}=\left\{[0]_{F_{2}},[d]_{F_{2}},[1]_{F_{2}}\right\}$.
So $\frac{\mathcal{L}}{\mathcal{F}}=\frac{L_{1}}{F_{1}} \cup \frac{L_{2}}{F_{2}}=\left\{[0]_{F_{1}},[c]_{F_{1}},[1]_{F_{1}},[0]_{F_{2}},[d]_{F_{2}},[1]_{F_{2}}\right\}$ is a bi-BL-algebra.
In $\frac{L}{F}$ we have:
$[0]_{F}=\frac{0}{F}=\{x \in L \mid x \rightarrow 0 \in F, 0 \rightarrow x \in F\}=\{0\}$,
$[a]_{F}=\frac{a}{F}=\{x \in L \mid x \rightarrow a \in F, a \rightarrow x \in F\}=\{a, b, c, 1\}$,
$[b]_{F}=\frac{b}{F}=\{x \in L \mid x \rightarrow b \in F, b \rightarrow x \in F\}=\{a, b, c, 1\}$,
$[c]_{F}=\frac{c}{F}=\{x \in L \mid x \rightarrow c \in F, c \rightarrow x \in F\}=\{a, b, c, 1\}$,
$[d]_{F}=\frac{d}{F}=\{x \in L \mid x \rightarrow d \in F, d \rightarrow x \in F\}=\{d\}$.
So $\frac{L}{F}=\left\{[0]_{F},[d]_{F},[1]_{F}\right\}$, we show that $\frac{L}{F} \neq \frac{\mathcal{L}}{\mathcal{F}}$, since $[1]_{F_{1}} \in \frac{\mathcal{L}}{\mathcal{F}}$, but $[1]_{F_{1}} \notin \frac{L}{F}$.

Definition 3.29. Let $A=A_{1} \cup A_{2}$ be a bi-BL-algebra and $\mathcal{B}(A)$ be the Boolean $b i$-algebra associated with the bounded distributive lattice $L(A)$. Elements of $\mathcal{B}(A)$ are called the $b i$-Boolean elements of A and $\mathcal{B}(A):=B\left(A_{1}\right) \cup B\left(A_{2}\right)$, where $B\left(A_{1}\right)$ and $B\left(A_{2}\right)$ are Boolean elements of A_{1} and A_{2}, respectively.

Example 3.30. In Example 3.1, we have $B\left(L_{1}\right)=B\left(L_{2}\right)=\{0,1\}$, then $\mathcal{B}(A)=$ $B\left(L_{1}\right) \cup B\left(L_{2}\right)=\{0,1\}$.

Example 3.31. In Example 3.3, we have $\mathcal{B}(A)=B\left(L_{1}\right)=B\left(L_{2}\right)=\{0,1\}$ but the Boolean elements of L are $B(L)=\{0, a, d, 1\}$. Thus the $b i$-Boolean elements of a super $B L$-algebra are not equal with Boolean elements of L.

Remark 3.32. Suppose $L=L_{1} \cup L_{2}$ be a chain super $B L$-algebra and also $1_{L_{1}}=1_{L_{2}}$ and $0_{L_{1}}=0_{L_{2}}$, then the bi-Boolean elements of L is equal the Boolean elements of L, i.e., $\mathcal{B}\left(L_{1}\right)=B\left(L_{1}\right)=B\left(L_{2}\right)=B(L)$.

Example 3.33. Let $L_{1}=\{0,1,2,4\}$ and $L_{2}=\{0,2,3,4\}$. Then $L_{1} \cup L_{2}=$ $\{0,1,2,3,4\}=\mathcal{L}_{5}$. Define \odot and \rightarrow as follow:

\mathcal{L}_{1}	\odot	0	1	2	4	\rightarrow	0	1	2		
	0	0	0	0	0	0	4	4	4		
	1	0	0	0	1	1	2	4	4		
	2	0	0	1	2	2	1	2	4		
	4	0	1	2	4	4	0	1	2		
\mathcal{L}_{2}	\odot	0	2	3	4	\rightarrow	0	2	3		
	0	0	0	0	0	0	4	4	4		
	2	0	0	0	2	2	3	4	4		
	3	0	0	2	3	3	2	3	4		
	4	0	2	3	4	4		2	3		

L_{1} and L_{2} are $B L$-algebras, thus $\mathcal{L}_{5}=L_{1} \cup L_{2}$ is a super $B L$-algebra and we have $B\left(L_{1}\right)=B\left(L_{2}\right)=B\left(\mathcal{L}_{5}\right)=\mathcal{B}\left(\mathcal{L}_{5}\right)=\{0,1\}$.

Otherwise suppose $L_{1}=\{0,1,2,3\}$ and $L_{2}=\{0,2,3,4\}$, then $L_{1} \cup L_{2}=$ $\{0,1,2,3,4\}=\mathcal{L}_{5}$. Define \odot and \rightarrow as follow:

\mathcal{L}_{1}	\odot	0	1	2	3	\rightarrow	0	1	2	3
	0	0	0	0	0	0	3	3	3	3
	1	0	0	0	1	1	2	3	3	3
	2	0	0	1	2	2	1	2	3	3
	3	0	1	2	3	3	0	1	2	3
\mathcal{L}_{2}	\odot	0	2	3	4	\rightarrow	0	2	3	4
	0	0	0	0	0	0	4	4	4	4
	2	0	0	0	2	2	3	4	4	4
	3	0	0	2	3	3	2	3	4	4
	4	0	2	3	4	4	0	2	3	

L_{1} and L_{2} are $B L$-algebras, thus $\mathcal{L}_{5}=L_{1} \cup L_{2}$ is a super $B L$-algebra and we have $B\left(L_{1}\right)=\{0,3\}$ and $B\left(L_{2}\right)=\{0,4\}$, then $\mathcal{B}\left(\mathcal{L}_{5}\right)=\{0,3,4\}$ but $B\left(\mathcal{L}_{5}\right)=\{0,4\}$. So $\mathcal{B}\left(\mathcal{L}_{5}\right) \neq B\left(\mathcal{L}_{5}\right)$.

Definition 3.34. Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. We denote by $\mathcal{D}_{s}(L)=$ $D_{s}\left(L_{1}\right) \cup D_{s}\left(L_{2}\right)$ the set of all bi-deductive systems of L where $D_{s}\left(L_{1}\right)$ and $D_{s}\left(L_{1}\right)$ are deductive systems of L_{1} and L_{2} respectively. If L is a super $B L$-algebra, then $D_{s}(L)$ is the set of all deductive systems of L.

Example 3.35. Consider $\mathcal{H}_{2,2 \times 2}$. Then $D_{s}\left(\mathcal{L}_{2}\right)=\left\{\{0\}, \mathcal{L}_{2}\right\}$ and $D_{s}\left(\mathcal{L}_{2 \times 2}\right)$ $=\left\{\{1\},\{a, 1\},\{b, 1\}, \mathcal{L}_{2 \times 2}\right\}$, thus $\mathcal{D}_{s}\left(\mathcal{H}_{2,2 \times 2}\right)=D_{s}\left(\mathcal{L}_{2}\right) \cup D_{s}\left(\mathcal{L}_{2 \times 2}\right)=\{\{0\}$, $\left.\{1\},\{a, 1\},\{b, 1\}, \mathcal{L}_{2}, \mathcal{L}_{2 \times 2}\right\}$. But $D_{s}\left(\mathcal{H}_{2,2 \times 2}\right)=\left\{\{1\},\{a, 1\},\{b, 1\}, \mathcal{L}_{2 \times 2}\right.$, $\left.\mathcal{H}_{2,2 \times 2}\right\}$, thus $\mathcal{D}_{s}\left(\mathcal{H}_{2,2 \times 2}\right) \neq D_{s}\left(\mathcal{H}_{2,2 \times 2}\right)$, since $\mathcal{L}_{2} \notin D_{s}\left(\mathcal{H}_{2,2 \times 2}\right)$.

Remark 3.36. Let L be a $b i$ - $B L$-algebra. Then $D_{s}(L)$ together with inclusion relation is not a lattice.

In above example $\left(\mathcal{D}_{s}\left(\mathcal{H}_{2,2 \times 2}\right), \subseteq\right)$ is not a lattice, since $\mathcal{L}_{2} \cap\{b, 1\}=\{-1,0\}$ $\cap\{b, 1\}=\emptyset$ and $\emptyset \notin \mathcal{D}_{s}\left(\mathcal{H}_{2,2 \times 2}\right)$.

4. Conclusion

The union of two subgroups, or two subrings, or two subsemigroups etc. do not form any algebraic structure but all of them find a nice bialgebraic structure as bigroups, birings, bisemigroups etc. Except for this bialgebraic structure these would remain only as sets without any nice algebraic structure on them. Further when these bialgebraic structures are defined on them they enjoy not only the inherited qualities of the algebraic structure from which they are taken but also several distinct algebraic properties that are not present in algebraic structures.

We introduced the notion of a $b i$ - $B L$-algebra and study it in detail. After that the notions of a $b i$-filter, $b i$-deductive system and $b i$-Boolean center of a $b i$ $B L$-algebra are introduced. We have also presented classes of $b i$ - $B L$-algebras and we stated relation between $b i$-filters and quotient $b i$ - $B L$-algebra. Finally we show that the set of all deductive systems of a $b i-B L$-algebra together with inclusion relation is not a lattice.

Acknowledgments

The authors wish to thank the reviewers for their excellent suggestions that have been incorporated into this paper.

References

[1] A. Borumand Saeid, A. Ahadpanah and L. Torkzadeh, Smarandache BL-algebra, J. Applied Logic 8 (2010), 253-261. doi:10.1016/j.jal.2010.06.001
[2] A. Borumand Saeid and S. Motamed, Normal filters in BL-algebras, World Applied Sci. J. 7 (Special Issue Appl. Math.), (2009), 70-76.
[3] A. Borumand Saeid and S. Motamed, Some Results in BL-algebras, Math. Logic Quat 55 (6) (2009), 649-658. doi:10.1002/malq. 200910025
[4] D. Busneag and D. Piciu, On the lattice of deductive systems of a BL-algebra, Central Eur. J Math. 1 (2) (2003), 221-238. doi:10.2478/BF02476010
[5] R. Cingnoli, I.M.L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer Academic publ., Dordrecht, 2000. doi:10.1007/ 978-94-015-9480-6
[6] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of continuous t-norm and their residua, Soft Comput 4 (2000), 106-112. doi:10.1007/ s005000000044
[7] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo BL-algebra: Part I, Mult val logic 8 (5-6) (2002), 673-714.
[8] A. Di Nola and L. Leustean, Compact representations of BL-algebras, Arch-Math. Logic 42 (2003), 737-761. doi:10.1007/s00153-003-0178-y
[9] P. Hajek, Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998. http://dx.doi.org/10.1007/978-94-011-5300-3
[10] M. Haveshki, A. Borumand Saeid and E. Eslami, Some types of filters in BLalgebras, Soft Computing 10 (2006), 657-664. doi:10.1007/s00500-005-0534-4
[11] A. Iorgulescu, Algebras of Logic as BCK-algebras, Academy of Economic Studies, Bucharest, Editura 2008.
[12] A. Iorgulescu, Classes of BCK-algebra-part III, Preprint series of the Institute of Mathematics of the Romanian Academy, preprint nr, 3/2004 (2004), 1-37.
[13] M. Kondo and W.A. Dudck, Filter theory of BL-algebras, Soft Computing 12 (2007), 419-423.
[14] R. Padilla, Smarandache algebraic structures, Bull. Pure Appl. Sci., Delhi 17 (1) (1998), 119-121.
[15] D. Piciu, Algebras of Fuzzy Logic, Ed. Universitaria Craiova, 2007.
[16] E. Turunen, BL-algebras of basic fuzzy logic, Mathware and soft computing 6 (1999), 49-61.
[17] E. Turunen, Boolean deductive systems of BL-algebras, Arch Math. Logic 40 (2001), 467-473. doi:10.1007/s001530100088
[18] E. Turunen, Mathematics behind fuzzy logic, Physica-Verlag, 1999.
[19] W.B. Vasantha Kandasamy, Bialgebraic structures and Smaranche bialgebraic structures, American Research Press, 2003.

Received 14 August 2011
Revisec 21 September 2011

