# THE RINGS WHICH ARE BOOLEAN* 

Ivan Chajda<br>Department of Algebra and Geometry Palacký University Olomouc, 17. listopadu 12<br>77146 Olomouc, Czech Republic<br>e-mail: ivan.chajda@upol.cz<br>AND<br>Filip Švrček<br>Department of Algebra and Geometry Palacký University Olomouc, 17. listopadu 12 77146 Olomouc, Czech Republic<br>e-mail: filip.svrcek@upol.cz


#### Abstract

We study unitary rings of characteristic 2 satisfying identity $x^{p}=x$ for some natural number $p$. We characterize several infinite families of these rings which are Boolean, i.e., every element is idempotent. For example, it is in the case if $p=2^{n}-2$ or $p=2^{n}-5$ or $p=2^{n}+1$ for a suitable natural number $n$. Some other (more general) cases are solved for $p$ expressed in the form $2^{q}+2 m+1$ or $2^{q}+2 m$ where $q$ is a natural number and $m \in\left\{1,2, \ldots, 2^{q}-1\right\}$.


Keywords: Boolean ring, unitary ring, characteristic 2.
2010 Mathematics Subject Classification: 06E20, 16R40.

A ring $\mathcal{R}=(R ;+, \cdot)$ is called Boolean if every its element is idempotent, i.e., if $\mathcal{R}$ satisfies the identity $x^{2}=x$. Boolean rings play an important role in propositional logic and in theoretical computer science as well as in lattice theory, see e.g. [2]. In particular, every unitary Boolean ring

[^0]can be converted into a Boolean algebra and vice versa. This motivated us to classify Boolean rings among rings with restricted powers, i.e., rings satisfying the identity $x^{p}=x$ for a natural number $p>2$.

A sample result is the following.
Lemma 1. Let $\mathcal{R}=(R ;+, \cdot)$ be a ring satisfying the identity $x^{p}=x$ for some integer $p \geq 2$. The following are equivalent:
(a) $\mathcal{R}$ is Boolean;
(b) $\mathcal{R}$ satisfies the identity $x^{q+1}=x^{q}$ for some natural number $q \leq p$.

Proof. (a) $\Rightarrow$ (b): It is evident, because $x^{2}=x$ implies $x^{q+1}=x^{q}$ for every natural number $q$.
(b) $\Rightarrow$ (a): Then $\mathcal{R}$ satisfies also $x^{p+1}=x^{p}$ and hence

$$
x^{2}=x \cdot x=x \cdot x^{p}=x^{p+1}=x^{p}=x,
$$

thus $\mathcal{R}$ is Boolean.
It is an easy consequence of $x^{2}=x$ that every Boolean ring is of characteristic 2 , i.e., it satisfies the identity $x+x=0$. Due to this fact, we restrict our treaty only to rings of characteristic 2 .

A ring $\mathcal{R}=(R ;+, \cdot)$ is called unitary if it contains a unit, i.e., an element denoted by 1 such that $x \cdot 1=x=1 \cdot x$ for each $x \in R$. For further information and notation on rings, the reader is refered to basic monographs [1, 4-6].

As a motivation, we can serve with the following two particular cases.
Lemma 2. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying the identity $x^{3}=x$. Then $\mathcal{R}$ is Boolean.

Proof. Every element of $\mathcal{R}$ can be written in the form $x+1$ because $x=$ $(x+1)+1$, due to the fact that $\mathcal{R}$ is unitary and of characteristic 2 . Hence, we get

$$
\begin{aligned}
1+x & =(1+x)^{3}=(1+x) \cdot(1+x)^{2}=(1+x) \cdot\left(1+x^{2}\right) \\
& =1+x+x^{3}+x^{2}=1+x+x+x^{2}=1+x^{2}
\end{aligned}
$$

whence $x=x^{2}$ proving that $\mathcal{R}$ is Boolean.

On the contrary, we can show that there exists a unitary ring of characteristic 2 satisfying the identity $x^{4}=x$ which is not Boolean. In fact, we can show the whole infinite family of identities $x^{p}=x$, i.e., an infinite set of natural numbers $p$ such that a unitary ring of characteristic 2 satisfying the identity $x^{p}=x$ need not be Boolean, see the following.

Lemma 3. For each natural number $k$ there exists a unitary commutative ring of characteristic 2 satisfying the identity $x^{3 k+1}=x$ which is not Boolean.

Proof. Consider the four-element ring $\mathcal{R}$ whose operations + and $\cdot$ are determined by the tables

| + | 0 | 1 | 2 | 3 |  | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 3 | 2 | 1 | 0 | 1 | 2 | 3 |
| 2 | 2 | 3 | 0 | 1 | 2 | 0 | 2 | 3 | 1 |
| 3 | 3 | 2 | 1 | 0 | 3 | 0 | 3 | 1 | 2 |

It is an immediate reflexion that $\mathcal{R}$ is unitary, commutative and of characteristic 2. Moreover, $\mathcal{R}$ satisfies $x^{3 k+1}=x$ for every natural number $k$. However, $\mathcal{R}$ is not Boolean because e.g. $2 \cdot 2=3 \neq 2$.

Remark 4. Let us note that if $\mathcal{R}=(R ;+, \cdot)$ is a unitary ring satisfying the identity $x^{p}=x$ for some even $p$ then we need not suppose that $\mathcal{R}$ is of characteristic 2 . In fact, in this case there exists an element $-1 \in R$ and from the identity $x^{p}=x$ for $x=-1$ we get $1=(-1)^{p}=-1$. Then for each $x \in R$ we have $-x=(-1) \cdot x=1 \cdot x=x$ whence $x+x=x+(-x)=0$.

Similarly as in Lemma 2, we can determine infinite sets of natural numbers $p$ for which $x^{p}=x$ implies that $\mathcal{R}$ is Boolean.

Theorem 5. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring and $n$ be a natural number.
(i) If $\mathcal{R}$ satisfies $x^{2^{n}-2}=x$ for $n>1$ then $\mathcal{R}$ is Boolean.
(ii) If $\mathcal{R}$ is of characteristic 2 and satisfies $x^{2^{n}-5}=x$ for $n>3$ then $\mathcal{R}$ is Boolean.

Proof. (i): As mentioned above, $\mathcal{R}$ is of charactic 2. If $\mathcal{R}$ satisfies $x^{2^{n}-2}=x$ then it satisfies also $x^{2^{n}}=x^{3}$ thus by Lemma 3(a) from [3]

$$
1+x^{2^{n}}=(1+x)^{2^{n}}=(1+x)^{3}=1+3 \times x+3 \times x^{2}+x^{3}
$$

Since $x^{2^{n}}=x^{3}$, we conclude $3 \times\left(x+x^{2}\right)=x+x^{2}=0$, whence $x=x^{2}$.
(ii): If $\mathcal{R}$ satisfies $x^{2^{n}-5}=x$ for some natural number $n>3$ then it satisfies also $x^{2^{n}}=x^{6}$ and therefore, by [3], Lemma 3(a),

$$
\begin{aligned}
1+x^{6} & =1+x^{2^{n}}=(1+x)^{2^{n}}=(1+x)^{6}=(1+x)^{4} \cdot(1+x)^{2} \\
& =\left(1+x^{4}\right) \cdot\left(1+x^{2}\right)=1+x^{2}+x^{4}+x^{6}
\end{aligned}
$$

whence $x^{2}=x^{4}$. This yields

$$
x^{3}=x^{5}=x^{7}=\cdots=x^{2^{n}-5}=x
$$

and, applying Lemma 2, we conclude that $\mathcal{R}$ is Boolean.
Similarly, we can also decide the following case.
Lemma 6. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying $x^{2^{q}+1}=x$ for a natural number $q$. Then $\mathcal{R}$ is Boolean.

Proof. We compute

$$
\begin{aligned}
1+x & =(1+x)^{2^{q}+1}=(1+x) \cdot(1+x)^{2^{q}}=(1+x) \cdot\left(1+x^{2^{q}}\right) \\
& =1+x+x^{2^{q}}+x^{2^{q}+1}=1+x+x^{2^{q}}+x=1+x^{2^{q}}
\end{aligned}
$$

i.e., for $p=2^{q}+1$ we have $x^{p}=x=x^{2^{q}}=x^{p-1}$. By Lemma $1, \mathcal{R}$ is Boolean.

Another relative large set of odd natural numbers $p$, for which a unitary ring of characteristic 2 satisfying $x^{p}=x$ is Boolean, is discerned by the following result.

Theorem 7. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying $x^{p}=x$ where $p=2^{q}+2 m+1$ for some natural number $q$ and $m \in\left\{1,2, \ldots, 2^{q-1}-1\right\}$. If $2^{q}-2 m=2^{a}+2^{b}$ where $a, b$ are integers such that $q>a>b \geq 1$ then $\mathcal{R}$ is Boolean provided $2^{a}-2^{b}$ divides $2 m$.

Proof. Assume $p=2^{q}+2 m+1$ with $2^{q}-2 m=2^{a}+2^{b}$ for some integers $q, m, a, b$ such that $q>a>b \geq 1$ and $m \in\left\{1,2, \ldots, 2^{q-1}-1\right\}$. If $2^{a}-$ $2^{b}$ divides $2 m$ then $2 m=r\left(2^{a}-2^{b}\right)$ for some natural number $r$. Since $x^{2^{q}+2 m+1}=x$, we have

$$
x^{2^{q+1}}=x^{2^{q}+2 m+1} \cdot x^{2^{q}-2 m-1}=x \cdot x^{2^{q}-2 m-1}=x^{2^{q}-2 m} .
$$

Hence, using [3], Lemma 3(a),

$$
\begin{aligned}
1+x^{2^{q}-2 m} & =1+x^{2^{q+1}}=(1+x)^{2^{q+1}}=(1+x)^{2^{q}-2 m}=(1+x)^{2^{a}+2^{b}} \\
& =(1+x)^{2^{a}} \cdot(1+x)^{2^{b}}=\left(1+x^{2^{a}}\right) \cdot\left(1+x^{2^{b}}\right) \\
& =1+x^{2^{a}}+x^{2^{b}}+x^{2^{a}+2^{b}}=1+x^{2^{a}}+x^{2^{b}}+x^{2^{q}-2 m}
\end{aligned}
$$

This yields $0=x^{2^{a}}+x^{2^{b}}$, thus $x^{2^{a}}=x^{2^{b}}$. Since $2 m=r \cdot\left(2^{a}-2^{b}\right)$ and $2^{q}+2 m+1>2^{q}+1>2^{a}$, we conclude

$$
\begin{aligned}
x^{2^{q}+1} & =x^{2^{q}+\left(2^{a}-2^{b}\right)+1}=\cdots=x^{2^{q}+r \cdot\left(2^{a}-2^{b}\right)+1} \\
& =x^{2^{q}+2 m+1}=x^{p}=x .
\end{aligned}
$$

By Lemma $6, \mathcal{R}$ is Boolean.
Corollary 8. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying $x^{p}=x$ where $p=2^{q}+2 m+1$ for some natural number $q$ and $m \in\left\{1,2, \ldots, 2^{q-1}-1\right\}$. If $2^{q}-2 m=2^{a+1}+2^{a}$ for some integer a such that $q-1>a \geq 1$ then $\mathcal{R}$ is Boolean.

Proof. If $2^{q}-2 m=2^{a+1}+2^{a}$ for some integers $q, m, a$ such that $q-1>$ $a \geq 1, m \in\left\{1,2, \ldots, 2^{q-1}-1\right\}$ then $2^{a+1}-2^{a}=2^{a}$. Thus it divides

$$
2 m=2^{q}-2^{a+1}-2^{a}=2^{a} \cdot\left(2^{q-a}-3\right)
$$

which, by Theorem 7, means that $\mathcal{R}$ is Boolean.

Hence, we get the sequence of numbers

$$
\begin{equation*}
p=3,5,9,17,33, \ldots \tag{S}
\end{equation*}
$$

by Lemma 6, for which a unitary ring of characteristic 2 satisfying the identity $x^{p}=x$ is Boolean. In what follows, we will detect other natural numbers $p$ of this property.

Remark 9. We can recognize that (ii) of Theorem 5 can be included in the cases treated in Theorem 7. Namely, if $p=2^{n}-5$ for some integer $n>3$ then we can compute

$$
p=2^{n-1}+\left(2^{n-1}-5\right)=2^{n-1}+\left(2^{n-1}-6\right)+1
$$

Using the notation from Theorem 7 we have

$$
2^{q}-2 m=2^{n-1}-\left(2^{n-1}-6\right)=6=2^{2}+2^{1}
$$

Thus, applying Corollary 8 , we obtain that $\mathcal{R}$ is Boolean. Hence, we can extend our sequence $(\mathrm{S})$ with numbers

$$
p=11,27,59,123, \ldots
$$

Moreover, Corollary 8 enables us to insert also numbers of the form $2^{n}-11$ ( $n>4$ ), i.e.,

$$
p=21,53,117,245, \ldots
$$

further numbers of the form $2^{n}-23(n>5)$, i.e.,

$$
p=41,105,233,489, \ldots
$$

etc. We can generalize this approach in the following result.
Theorem 10. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying $x^{p}=x$ for some natural number $p$ of the form $2^{n}-\left(3 \cdot 2^{l}-1\right)$ where $n, l$ are arbitrary natural numbers such that $n-3 \geq l$. Then $\mathcal{R}$ is Boolean.

Proof. If $p=2^{n}-\left(3 \cdot 2^{l}-1\right)$ for some natural numbers satisfying $n-3 \geq l$ then

$$
3 \cdot 2^{l} \leq 3 \cdot 2^{n-3}<4 \cdot 2^{n-3}=2^{n-1}
$$

and, therefore, $p=2^{n-1}+\left(2^{n-1}-3 \cdot 2^{l}\right)+1$. We put $q=n-1,2 m=2^{n-1}-3 \cdot 2^{l}$ and then obtain

$$
2^{q}-2 m=2^{n-1}-\left(2^{n-1}-3 \cdot 2^{l}\right)=3 \cdot 2^{l}=2 \cdot 2^{l}+2^{l}=2^{l+1}+2^{l}
$$

which, due to Corollary 8 , means that $\mathcal{R}$ is Boolean.
In the next theorem, we will analyse the case of Theorem 7 in more details to obtain a general method how to produce sequences of $p$ 's for which $\mathcal{R}$ is Boolean.

Theorem 11. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring of characteristic 2 satisfying $x^{p}=x$ where $p=2^{q}+2 m+1$ for some natural number $q$ and $m \in\left\{1,2, \ldots, 2^{q-1}-1\right\}$ such that $2^{q}-2 m=2^{a}+2^{b}$ where $a, b$ are integers satisfying $a>b \geq 1$ and, moreover, $q=(a+1)+k \cdot(a-b)$ for some nonnegative integer $k$. Then $\mathcal{R}$ is Boolean.
Proof. Consider a unitary ring $\mathcal{R}$ of characteristic 2 satisfying the identity $x^{p}=x$ for a number $p$ possessing the assumption. Then

$$
\begin{aligned}
2 m= & 2^{q}-2^{a}-2^{b}=2^{(a+1)+k \cdot(a-b)}-2^{a}-2^{b} \\
= & 2^{b} \cdot\left(2^{(a+1)+k \cdot(a-b)-b}-2^{a-b}-1\right) \\
= & 2^{b} \cdot\left(2^{(k+1) \cdot(a-b)+1}-2^{a-b}-1\right) \\
= & 2^{b} \cdot\left(2 \cdot 2^{(k+1) \cdot(a-b)}-2^{a-b}-1\right) \\
= & 2^{b} \cdot\left[\left(\left(2^{a-b}\right)^{k+1}-2^{a-b}\right)+\left(\left(2^{a-b}\right)^{k+1}-1\right)\right] \\
= & 2^{b} \cdot\left[2^{a-b} \cdot\left(\left(2^{a-b}\right)^{k}-1\right)+\left(\left(2^{a-b}\right)^{k+1}-1\right)\right] \\
= & 2^{b} \cdot\left[2^{a-b} \cdot\left(2^{a-b}-1\right) \cdot\left(\left(2^{a-b}\right)^{k-1}+\ldots+2^{a-b}+1\right)\right. \\
& \left.\quad+\left(2^{a-b}-1\right) \cdot\left(\left(2^{a-b}\right)^{k}+\ldots+2^{a-b}+1\right)\right] \\
= & 2^{b} \cdot\left(2^{a-b}-1\right) \cdot\left(2 \cdot\left(2^{a-b}\right)^{k}+\ldots+2 \cdot 2^{a-b}+1\right) \\
= & \left(2^{a}-2^{b}\right) \cdot\left(2 \cdot\left(2^{a-b}\right)^{k}+\ldots+2 \cdot 2^{a-b}+1\right) .
\end{aligned}
$$

Hence, $2^{a}-2^{b}$ divides $2 m$ and, by Theorem 7, $\mathcal{R}$ is Boolean.

Remark 12. Theorem 11 shows us how to construct numbers $p$ for which the unitary ring of characteristic 2 satisfying $x^{p}=x$ is Boolean.

It is enough to choose arbitrary integers $a, b$ such that $a>b \geq 1$ then to take $q=(a+1)+k \cdot(a-b)$ for some nonnegative integer $k$ and to compute $2 m=2^{q}-2^{a}-2^{b}$. Then $p=2^{q}+2 m+1$ is the number which we look for.

Example 13. If we take $a=8, b=3$ and $k=1$, we have $q=(8+1)+1$. $(8-3)=14$ and, consequently, $2 m=2^{14}-2^{8}-2^{3}=16120$. In fact, we have proved that the unitary ring of characteristic 2 satisfying the identity $x^{32505}=x$ is Boolean, because $32505=2^{14}+16120+1$.

Until now, except Lemma $5(\mathrm{i})$ and partially also Lemma 3, we have dealed with unitary rings of characteristic 2 satisfying the identity $x^{p}=x$ only for odd natural numbers $p$. Further, we will discuss some cases when $p$ is even.

It is worth noticing that we have already solved the case of unitary ring satisfying $x^{2^{r}}=x$ for $r$ even. As mentioned in Remark 4, such a ring is of characteristic 2 and we can write here $2^{r}=3 k+1$ for some odd natural number $k$. Hence, by Lemma 3 , such a ring need not be Boolean.

If we consider a unitary ring satisfying $x^{2^{r}}=x$ for $r$ odd then this ring is of characteristic 2 and we can express $2^{r}$ in the form $3 k+2$ for some even $k$. Such a ring also need not be Boolean in general, see the following example for $r=3$.

Example 14. The eight-element ring $\mathcal{R}$ whose operations + and $\cdot$ are determined by the tables

| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 0 | 3 | 2 | 6 | 7 | 4 | 5 |
| 2 | 2 | 3 | 0 | 1 | 5 | 4 | 7 | 6 |
| 3 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 |
| 4 | 4 | 6 | 5 | 7 | 0 | 2 | 1 | 3 |
| 5 | 5 | 7 | 4 | 6 | 2 | 0 | 3 | 1 |
| 6 | 6 | 4 | 7 | 5 | 1 | 3 | 0 | 2 |
| 7 | 7 | 5 | 6 | 4 | 3 | 1 | 2 | 0 |


| $\cdot$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 4 | 5 | 3 | 7 | 1 | 6 |
| 3 | 0 | 3 | 5 | 6 | 7 | 1 | 4 | 2 |
| 4 | 0 | 4 | 3 | 7 | 5 | 6 | 2 | 1 |
| 5 | 0 | 5 | 7 | 1 | 6 | 2 | 3 | 4 |
| 6 | 0 | 6 | 1 | 4 | 2 | 3 | 7 | 5 |
| 7 | 0 | 7 | 6 | 2 | 1 | 4 | 5 | 3 |

is unitary, of characteristic 2 , but it is evidently not Boolean.

We finish with the result which solves the problem for even natural numbers $p$ which are sum of two consequently standing powers of two, i.e. for numbers

$$
p=6,12,24,48, \ldots .
$$

Theorem 15. Let $\mathcal{R}=(R ;+, \cdot)$ be a unitary ring satisfying the identity $x^{p}=x$ where $p=2^{a+1}+2^{a}$ for some natural number $a$. Then $\mathcal{R}$ is Boolean.

Proof. Consider a unitary ring $\mathcal{R}$ satisfying $x^{2^{a+1}+2^{a}}=x$ for some natural number $a$. By Remark 4, this ring is of characteristic 2 and, by [3], Lemma 3(a), we have

$$
\begin{aligned}
1+x & =(1+x)^{2^{a+1}+2^{a}}=(1+x)^{2^{a+1}} \cdot(1+x)^{2^{a}} \\
& =\left(1+x^{2^{a+1}}\right) \cdot\left(1+x^{2^{a}}\right)=1+x^{2^{a}}+x^{2^{a+1}}+x^{2^{a+1}+2^{a}} .
\end{aligned}
$$

Hence, $x^{2^{a+1}}=x^{2^{a}}$, and further

$$
\begin{aligned}
x^{2^{a+2}} & =x^{2^{a+1}+2^{a+1}}=x^{2^{a+1}} \cdot x^{2^{a+1}}=x^{2^{a+1}} \cdot x^{2^{a}} \\
& =x^{2^{a+1}+2^{a}}=x^{p}=x .
\end{aligned}
$$

From the identity $x^{p}=x^{2^{a+1}+2^{a}}=x$ we can also obtain

$$
x^{2^{a+2}}=x^{\left(2^{a+1}+2^{a}\right)+\left(2^{a+1}-2^{a}\right)}=x^{1+\left(2^{a+1}-2^{a}\right)}=x^{1+2^{a}} .
$$

Altogether we have $x=x^{2^{a+2}}=x^{2^{a}+1}$, and, by Lemma $6, \mathcal{R}$ is Boolean.
Remark 16. It is easily seen that all the numbers $p$ which are determined by Theorem 15 are just the numbers of the form $p=6 \cdot 2^{k-1}$ where $k$ is an arbitrary natural number.

## References

[1] I.T. Adamson, Rings, modules and algebras (Oliver\&Boyd, Edinburgh, 1971).
[2] G. Birkhoff, Lattice Theory, 3rd edition (AMS Colloq. Publ. 25, Providence, RI, 1979).
[3] I. Chajda and F. Švrček, Lattice-like structures derived from rings, Contributions to General Algebra, Proc. of Salzburg Conference (AAA81), J. Hayn, Klagenfurt 20 (2011), 11-18.
[4] N. Jacobson, Structure of Rings (Amer. Math. Soc., Colloq. Publ. 36 (rev. ed.), Providence, RI, 1964).
[5] J. Lambek, Lectures on Rings and Modules (Blaisdell Publ. Comp., Waltham, Massachusetts, Toronto, London, 1966).
[6] N.H. McCoy, Theory of Rings (Mainillan Comp., New York, 1964).
Received 17 February 2011 Revised 22 June 2011


[^0]:    *This work is supported by the Research and Development Council of the Czech Government via the project MSM6198959214.

