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Abstract

L-zero-divisor graphs of L-commutative rings have been introduced
and studied in [5]. Here we consider L-zero-divisor graphs of a finite
direct product of L-commutative rings. Specifically, we look at the
preservation, or lack thereof, of the diameter and girth of the L-ziro-
divisor graph of a L-ring when extending to a finite direct product of
L-commutative rings.
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1. Introduction

In [14], Zadeh introduced the concept of fuzzy set, which is a very useful
tool to describe the situation in which the data is imprecise or vague. Fuzzy
sets handle such situations by attributing a degree to which a certain object
belongs to a set. Many researchers used this concept to generalize some
notions of algebra. Goguen in [6] generalized the notion of fuzzy subset of
X to that of an L-subset, namely a function from X to a lattice L. In
[11], Rosenfeld considered the fuzzification of algebraic structures. Liu [7],
introduced and examined the notion of a fuzzy ideal of a ring. Since then
several authors have obtained interesting results on L-ideals of a ring R and
L-modules (see [8, 9, 1]). Rosenfeld in [12] considered fuzzy relations on
fuzzy sets and developed the theory of fuzzy graphs in 1975. During the
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same time, Yeh and Bang in [13] also introduced various connectedness con-
cepts in fuzzy graphs. After the pioneering work of Rosenfeld and Yeh and
Bang in 1975, when some basic fuzzy graph theoretic concepts and appli-
cations we are indicated, several authors have been finding deeper results
and fuzzy analogues of many other graph-theoretic concepts. See [9] for a
comprehensive survey of the literature on these developments.

Among the most interesting graphs are the zero-divisor graphs, because
these involve both ring theory and graph theory. By studying these graphs,
we can gain a broader insight into the concepts and properties that involve
both graphs and rings. It was Beck (see [3]) who first introduced the no-
tion of a zero-divisor graph for commutative rings. This notion was later
redefined by D.F. Anderson and P.S. Livingston in [1]. Since then, there
has been a lot of interest in this subject and various papers were published
establishing different properties of these graphs as well as relations between
graphs of various extensions (see [1, 2, 3, 9]). The zero-divisor graph of a
direct product of commutative rings have been studied by Axtell, Stickles
and Warfel in [2]. In the present paper, we characterize the diameter and
girth of the L-zero-divisor graph of a direct product of L-commutative rings
not necessarily with identity.

2. Preliminaries

Throughout this paper, R is a commutative ring, not necessarily with iden-
tity, and L stands for a complete lattice with least element 0 and greatest
element 1. In order to make this paper easier to follow, we recall in this
section various notions from graph theory and fuzzy commutative algebra
theory which will be used in the sequel. For a graph Γ, by E(Γ) and V (Γ),
we denote the set of all edges and vertices, respectively. We recall that a
graph is connected if there exists a path connecting any two distinct vertices.
The distance between two distinct vertices a and b, denoted by d(a, b), is
the length of a shortest path connecting them (if such a path does not exist,
then d(a, a) = 0 and d(a, b) = ∞). The diameter of a graph Γ, denoted by
diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is
connected with diameter less than or equal to one. The girth of a graph Γ,
denoted gr(Γ), is the length of a shortest cycle in Γ, provided Γ contains a
cycle; otherwise; gr(Γ) = ∞.

If R is a commutative ring, let Z(R) denote the set of zero-divisors of
R and let Z(R)∗ denote the set of non-zero zero-divisors of R. We consider
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the undirected graph Γ(R) with vertices in the set V (Γ(R)) = Z(R)∗, such
that for distinct vertices a and b there is an edge connecting them if and
only if ab = 0. Then Γ(R) is connected with diam(Γ(R)) ≤ 3 ([1, Theorem
2.3]) and gr(Γ(R)) ≤ 4 ([10, (1.4)]). Thus diam(Γ(R)) = 0, 1, 2, or 3 and
gr(Γ(R)) = 3, 4, or ∞.

Let R be a commutative ring and L stands for a complete lattice with
least element 0 and greatest element 1. By an L-subset µ of a non-empty
set X, we mean a function µ from X to L. If L = [0, 1], then µ is called a
fuzzy subset of X. LX denotes the set of all L-subsets of X. We recall some
definitions and lemmas from the book [9], which we need for development
of our paper.

Definition 2.1. An L-ring is a function µ : R → L, where (R,+, .) is a
ring, that satisfies:

(1) µ 6= 0;

(2) µ(x− y) ≥ µ(x) ∧ µ(y) for every x, y in R;

(3) µ(xy) ≥ µ(x) ∨ µ(y) for every x, y in R.

Definition 2.2. Let µ ∈ LR. Then µ is called an L-ideal of R if for every
x, y ∈ R the following conditions are satisfied:

(1) µ(x− y) ≥ µ(x) ∧ µ(y);

(2) µ(xy) ≥ µ(x) ∨ µ(y).

The set of all L-ideals of R is denoted by LI(R).

Lemma 2.3. Let R be a ring and µ ∈ LI(R). Then µ(x) ≤ µ(0) for every
x in R.

Definition 2.4 [5, Definition 3.1]. Let R be a ring and µ ∈ LI(R). A
µ-zero-divisor is an element x ∈ R for which there exists y ∈ R with µ(y) 6=
µ(0) such that µ(xy) = µ(0).

The set of µ-zero-divisors in R will be denoted by Z(µ).

Definition 2.5 [5, Definition 3.2]. Let R be a ring and µ ∈ LI(R). We
define an undirected graph Γ(µ) with vertices V (Γ(µ)) = Z(µ)∗ = Z(µ) −
µ∗ = {x ∈ Z(µ) : µ(x) 6= µ(0)}, where distinct vertces x and y are adjacent
if and only if µ(xy) = µ(0), where µ∗ = {x ∈ R : µ(x) = µ(0)}.
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Notation. For the graph Γ(µ), we denote the diameter, the girth, and the
distance between two distinct vertices a and b, by diam(Γ(µ)), gr(µ) and
dµ(a, b), respectively.

Remark 2.6. Let R be a ring and µ ∈ LI(R). Clearly, if µ is a non-zero
constant, then Γ(µ) = ∅. So throughout this paper, we shall assume unless
otherwise stated, that µ is not a non-zero constant. Thus there is a non-zero
element y of R such that µ(y) 6= µ(0).

Definition 2.7 [5, Definition 3.4]. Let R be a ring and µ ∈ LI(R). We say
µ is an L-integral domain if Z(µ) = µ∗.

Definition 2.8 [5, Definition 3.6]. Let R be a ring and µ ∈ LI(R). An
element a ∈ R is said to be µ-nilpotent precisely when there exists a positive
integer n such that µ(an) = µ(0).

The set of all µ-nilpotents of R is denoted by nil(µ), and we set nil(µ)∗ =
nil(µ)− µ∗.

Theorem 2.9 [5, Theorem 3.16]. Let R be a ring and µ ∈ LI(R). Then
Γ(µ) is connected with diam(Γ(µ)) ≤ 3.

Theorem 2.10 [5, Theorem 3.17]. Let R be a ring and µ ∈ LI(R). If Γ(µ)
contains a cycle, then gr(Γ(µ)) ≤ 4.

3. Diameter and direct products

Before starting to describe the diameter of a finite direct product of L-rings,
we will develop some tools that will be used in examining L-commutative
rings, not necessarily with identity with L-zero-divisor graphs having diam-
eter either 1 or 2. Compare the next lemma with [2, Lemma 2.2].

Lemma 3.1. Let S be a commutative ring and µ ∈ LI(S) with diam(Γ(µ))
= 1. Then S = Z(µ) if and only if µ(S2) = µ({0}).

Proof. Let µ(x2) 6= µ(0) for some x ∈ S. By assumption, there exists
a non-zero element y ∈ S such that x 6= y. Observe that x + y 6= x.
Since S = Z(µ) and diam(Γ(µ)) = 1, we have µ(xy) = µ(0). So, µ(x2) =
µ(x2+xy−xy) ≥ µ(x2+xy)∧µ(xy) = µ(0)∧µ(0) = µ(0); hence µ(x2) = µ(0)
by Lemma 2.3, a contradiction. The other implication is clear.
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Example 3.2. Let S = Z denote the ring of integers. We define the mapping
µ : S → [0, 1] by

µ(x) =

{

1/2 if x ∈ 2Z

1/5 otherwise.

Then µ ∈ LI(S) and Z(µ) = Z. Since µ(32) 6= µ(0), we have µ(S2) 6=
µ({0}). Therefore, the condition diam(Γ(µ)) = 1 is not superficial in
Lemma 3.1

Compare the next lemma with [2, Lemma 2.3].

Lemma 3.3. Let S be a ring and µ ∈ LI(S) such that diam(Γ(µ)) = 2.
Suppose Z(µ) is a (not necessarily proper) subring of S. Then for all x, y ∈
Z(µ), there exists z ∈ Z∗(µ) such that µ(zx) = µ(zy) = µ(0).

Proof. Let x, y ∈ Z(µ). We split the proof into three cases.

Case 1. x = 0 or y = 0. Assume that x = 0 and let z ∈ Z∗(µ). Then
µ(zx) ≥ µ(x) ∨ µ(z) = µ(0); so µ(zx) = µ(0) by Lemma 2.3. Similarly, for
y = 0.

Case 2. x = y 6= 0. If µ(xy) = µ(0), we choose z = x, and if µ(xy) 6=
µ(0), then there exists z ∈ Z(µ)∗ such that µ(zx) = µ(zy) = µ(0) since
diam(Γ(µ)) = 2.

Case 3. x 6= y, x 6= 0 and y 6= 0. If µ(xy) 6= µ(0), we are done. So we
may assume that µ(xy) = µ(0). If x+y = 0, then µ(xy) = µ(−x2) = µ(x2) =
µ(0). Therefore, z = x yiels the desired element. So, suppose µ(x2) 6= µ(0),
µ(y2) 6= µ(0) and x + y 6= 0. Let X ′ = {x′ ∈ Z∗(µ) : µ(xx′) = µ(0)} and
Y ′ = {y′ ∈ Z∗(µ) : µ(yy′) = µ(0)}. Observe that x ∈ Y ′ and y ∈ X ′; hence
X ′ and Y ′ are nonempty. Now we show that X ′ ∩ Y ′ 6= ∅. Suppose not. By
assumption, we have µ(x(x+ y)) ≥ µ(x2)∧µ(xy) = µ(x2)∧ µ(0) = µ(x2) 6=
µ(0) and µ(x2) = µ(x2 + xy − xy) ≥ µ(x2 + xy) ∧ µ(0) = µ(x(x + y));
hence µ(x(x + y)) = µ(x2) 6= µ(0). It follows that x + y /∈ X ′. Similarly,
x + y /∈ Y ′. Since diam(Γ(µ)) = 2 and Z(µ) is a subring, there exists
w ∈ Z(µ)∗ such that µ(xw) = µ(w(x + y)) = µ(0). Also, we have µ(yw) =
µ(yw+xw−xw) ≥ µ(yw+xw)∧µ(xw) = µ(0); so µ(yw) = µ(0) by Lemma
2.3. Then w ∈ X ′ ∩ Y ′, which is a contradiction. Now since X ′ ∩ Y ′ 6= ∅,
choose z ∈ X ′ ∩ Y ′.
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Remark 3.4. Assume that (L1,≤1), (L2,≤2), . . . , (Ln,≤n) are complete lat-
tices with least element 0 and greatest element 1 and let L = L1×L2×· · ·×
Ln. We set up a partial order on L as follows: for X = (x1, x2, . . . , xn), Y =
(y1, y2, . . . , yn ∈ L, we write X ≤ Y if and only if xi ≤i yi for every
i = 1, 2, . . . , n. It is straightforward to check that ≤ is a partial order
on L. Furthermore, if we define

X ∨ Y = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn)

X ∧ Y = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn),

then an inspection will show that L is a complete lattice with least element
0 and greatest element 1.

Lemma 3.5. Assume that L1, L2, . . . , Ln (n ≥ 2) are as in Remark 3.4 and
let R1, R2, . . . , Rn be commutative rings, µi ∈ LiI(Ri) for every i = 1, . . . , n,
X = (x1, x2, . . . , xn) ∈ R = R1 × R2 × · · · × Rn, L = L1 × L2 × · · · × Ln

and µ = µ1 × µ2 × · · · × µn. Then the mapping µ : R → L defined by
µ(X) = (µ1(x1), µ2(x2), µn(xn)) is an L-ideal of R.

Proof. Let X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn ∈ R. Then µ(X − Y )
= (µ1(x1 − y1), . . . , µn(xn − yn)). By Remark 3.4, we have µ(X) ∧ µ(Y ) =
(µ1(x1) ∧ µ1(y1), . . . , µn(xn) ∧ µ(yn); so µ(X − Y ) ≥ µ(X) ∧ µ(Y ) since
for each i, µi(xi − yi) ≥i µi(xi) ∧ µi(yi) (also see the definition of ≤).
Similarly, µ(XY ) ≥ µ(X) ∨ µ(Y ).

Remark 3.6. Throughout this section, we shall assume, unless otherwise
stated, that R, L, and µ are as described in Remark 3.4 and Lemma 3.5.

Compare the next theorem with [2, Theorem 3.3].

Theorem 3.7. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that Rn = Z(µn) and µ1, . . . , µn−1 are L-integral domains. Then the
following hold:

(i) If diam(Γ(µn)) ≤ 2, then diam(Γ(µ)) = 2.

(ii) If diam(Γ(µn)) = 3, then diam(Γ(µ)) = 3.
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Proof. (i) Let x = (x1, . . . , xn) ∈ R and yn ∈ R∗

n. Then µ(x(0, 0, . . . , yn))
= µ(0) since Rn = Z(µn); hence Z(µ) = R. If zn ∈ Z∗(µn), then

µ((1, 1, 0, . . . , 0)(1, 1, . . . , 1, zn)) 6= µ(0);

so dµ((1, 1, 0, . . . , 0), (1, 1, . . . , 1, zn)) ≥ 2. Now if diam(Γ(µn)) ≤ 2, then for
a = (a1, . . . , an), b = (b1, . . . , bn) ∈ R we have either µ(ab) = µ(0) or for some
cn ∈ R∗

n we get µ(a(0, 0, . . . , cn)) = µ(0) = µ(b(0, . . . , cn)) using Lemma 3.3
in the diameter two case. So we have diam(Γ(µ)) = 2. If diam(Γ(µn)) = 3,
then there exist xn, yn ∈ R∗

n such that dµn
(xn, yn) = 3. Then for bi ∈ R∗

i

(1 ≤ i ≤ n − 1) we have dµ((b1, . . . , bn−1, xn), (b1, . . . , bn−1, yn)) = 3, as
required.

For the remainder of the section, we assume that R1, R2, . . . , Rn−1 and Rn

are rings, not necessarily with identity, such that Z∗(µ1), . . . , Z
∗(µn−1) and

Z∗(µn) are nonempty. Compare the next theorem with [2, Theorem 3.4].

Theorem 3.8. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 1 for all i = 1, . . . , n. Then the following hold:

(i) diam(Γ(µ)) = 1 if and only if µi(R
2

i ) = µi({0}) for every
i ∈ {1, 2, . . . , n}.

(ii) diam(Γ(µ)) = 2 if and only if µi(R
2

i ) = µi({0}) and µj(R
2

j ) 6= µj({0})
for some i, j ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if µi(R
2

i ) 6= µi({0}) for every
i ∈ {1, 2, . . . , n}.

Proof. (i) Assume that µi(R
2

i ) = µi({0}) for all i, and let x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ Z∗(µ). Then

µ(xy) = (µ1(x1y1), . . . , µn(xnyn)) = (µ1(0), . . . , µn(0)) = µ(0);

hence diam(Γ(µ)) = 1. Conversely, assume that µj(R
2

j ) 6= µj({0}) for some
j ∈ {1, 2, . . . , n}. Then µj(xjyj) 6= µj(0) for some xj, yj ∈ Rj. Let zi ∈
Z∗(µi) for i 6= j. Set X = (0, . . . , xj , . . . , 0), Y = (0, . . . , yj, . . . , 0) and
Z = (0, . . . , zi, . . . , 0). Then µ(XZ) = µ(Y Z) = µ(0); hence X −Z − Y is a
path of length 2 from X to Y in Z∗(µ), which is a contradiction.
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(ii) Let µi(R
2

i ) = µi({0}) and µj(R
2

j ) 6= µj({0}) for some i, j ∈
{1, 2, . . . , n}. Then diam(Γ(µ)) 6= 1 by (i). Let ci ∈ Z∗(µi), and set
c = (0, . . . , ci, . . . , 0). For any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Z∗(µ), at
worst we have x− c− y is a path from x to y in Z∗(µ). So, diam(Γ(µ)) ≤ 2.
The result then follows from (i). Conversely, assume that diam(Γ(µ)) = 2.
If µi(R

2

i ) = µi({0}), then Ri = Z(µi) for all i = 1, . . . , n (see Lemma
3.1); so diam(Γ(µ)) = 1 by (i), a contradiction. If for each i, Z(µi) 6= Ri,
then there must exist xi ∈ Ri with xi /∈ Z(µi) for all i = 1, . . . , n. For
each i, let zi ∈ Z∗(µi). So there is an element wi ∈ Z∗(µi) such that
µi(ziwi) = µi(0) for all i. If a = (z1, x2, . . . , xn) and b = (x1, z2, x3, . . . , xn),
then µ(a(w1, 0, . . . , 0)) = µ(0) and µ(b(0, w2, 0, . . . , 0)) = µ(0); hence a, b ∈
Z∗(µ). Since µ(ab) 6= µ(0), we get dµ(a, b) > 1. As diam(Γ(µ)) = 2, there
exists c = (c1, . . . , cn) ∈ Z∗(µ) such that µ(ac) = µ(bc) = µ(0). It follows
that there exists i (1 ≤ i ≤ n) such that xi ∈ Z∗(µi), a contradiction. Thus
the proof is complete.

(iii) Follows from (i) and (ii).

Compare the next theorem with [2, Theorem 3.5].

Theorem 3.9. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 2 for all i = 1, . . . , n. Then the following hold:

(i) diam(Γ(µ)) 6= 1.

(ii) diam(Γ(µ)) = 2 if and only if Ri = Z(µi) for some i ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if Ri 6= Z(µi) for every i ∈ {1, 2, . . . , n}.

Proof. (i) Since diam(Γ(µn)) = 2, there exist distinct yn, wn ∈ Z∗(µn)
with µn(ynwn) 6= µn(0). Set a = (0, 0, . . . , yn) and b = (0, 0, . . . , wn). Then
µ(ab) = (µ1(0), . . . , µn−1(0), µn(ynwn)) 6= µ(0). Therefore diam(Γ(µ)) > 1.

(ii) Assume that Ri = Z(µi) for some i ∈ {1, 2, . . . , n}. Since Ri =
Z(µi), for xi, yi ∈ Z(µi) there exists zi ∈ Z∗(µi) such that µi(xizi) =
µi(yizi) = µi(0) by Lemma 3.3. So, for any x = (x1, . . . , xn), y = y1, . . . , yn)
∈ Z∗(µ), there exists z = (0, 0, . . . , 0, zi, 0, . . . , 0) ∈ Z∗(µ) such that µ(xz) =
µ(yz) = µ(0). If without loss of generality y = z, we have µ(xy) = µ(0).
Therefore, diam(Γ(µ)) ≤ 2. By (i), it must be that diam(Γ(µ)) = 2. Con-
versely, suppose that diam(Γ(µ)) = 2 andRi 6= Z(µi) for all i ∈ {1, 2, . . . , n}.
Let ei ∈ Z(µi) and mi ∈ Ri − Z(µi) for all i. Set a = (e1,m2, . . . ,mn)
and b = (m1, e2,m3, . . . ,mn). Then µ(ab) 6= µ(0). Since diam(Γ(µ)) = 2,
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there exists z = (z1, . . . , zn) ∈ Z∗(µ) such that µ(az) = µ(bz) = µ(0).
Then µ1(e1z1) = µ1(0), µi(mizi) = µi(0) (2 ≤ i ≤ n), µ1(m1z1) = µ1(0),
µ2(e2z2) = µ2(0) and µi(mizi) = µi(0) (3 ≤ i ≤ n), which is a contradiction.

(iii) Follows from (i) and (ii).

Compare the next theorem with [2, Theorem 3.9].

Theorem 3.10. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 3 for all i = 1, . . . , n. Then diam(Γ(µ)) = 3.

Proof. Since for each i, diam(Γ(µi)) = 3, there exist distinct xi, yi ∈
Z∗(µi) with µi(xiyi) 6= µi(0) and there is no zi ∈ Z∗(µi) such that µi(xizi) =
µi(yizi) = µi(0). Consider x = (x1, . . . , xn) and y = (y1, . . . , yn). Now for
each i ∈ {1, . . . , n}, there are elements x′i, y

′

i ∈ Z∗(µi) such that µi(xix
′

i) =
µi(0) and µi(yiy

′

i) = µi(0); hence x, y ∈ Z∗(µ). Since µ(xy) 6= µ(0), we have
diam(Γ(µ)) > 1. If diam(Γ(µ)) = 2, there exists a = (a1, . . . , an) ∈ Z∗(µ)
such that µ(ax) = µ(ay) = µ(0). Then for each i ∈ {1, . . . , n}, we have
µi(xiai) = µi(yiai) = µi(0), a contradiction. Thus diam(Γ(µ)) = 3.

Compare the next theorem with [2, Theorem 3.8].

Theorem 3.11. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 1, diam(Γ(µj)) = 2 for some i, j ∈ {1, . . . , n}, and
there is no k ∈ {1, . . . , n} with diam(Γ(µk)) = 3. Then the following hold:

(i) diam(Γ(µ)) 6= 1.

(ii) diam(Γ(µ)) = 2 if and only if Ri = Z(µi) for some i ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if Ri 6= Z(µi) for every i ∈ {1, 2, . . . , n}.

Proof. (i) Same as Theorem 3.9 (i).
(ii) Let Ri = Z(µi) and diam(Γ(µi)) = 1. Thus we have µi(R

2

i ) =
µi({0}) by Lemma 3.1. Let xi ∈ R∗

i . Since µ((0, . . . , 0, xi, 0, . . . , 0)
(y1, y2, . . . , yn)) = µ(0) for all (y1, y2, . . . , yn) ∈ Z∗(µ), we have diam(Γ(µ))
≤ 2. It follows from (i) that diam(Γ(µ)) = 2. Conversely, assume that
diam(Γ(µ)) = 2. Suppose Ri 6= Z(µi) for every i ∈ {1, 2, . . . , n}. Then
for each i, Ri 6= Z(µi). Without loss of generality, let z1 ∈ Z∗(µ1). Then
there exists w1 ∈ Z∗(µ1) such that µ1(z1w1) = µ1(0). For each i, let ri ∈
Ri − Z(µi), and set a = (r1, 0, . . . , 0), b = (0, r2, 0, . . . , 0), c = (z1, 0, . . . , 0)
and d = (w1, r2, r3, . . . , rn). Then a− b− c− d is a path of length 3. Since a
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is annihilated only by an element of the form (0, 0, . . . , 0, tn) and d is anni-
hilated by an element of the form (s1, 0, . . . , 0) with µ1(s1w1) = µ1(0), there
is no path of length 2 from a to d. Hence diam(Γ(µ)) = 3, a contradiction.

(iii) By (i) and (ii).

Compare the next theorem with [2, Theorem 3.6].

Theorem 3.12. Let R, L, µ be as in Remark 3.6, and let µi ∈ LiI(Ri) such
that diam(Γ(µi)) = 1, diam(Γ(µj)) = 3 for some i, j ∈ {1, . . . , n}, and there
is no k ∈ {1, . . . , n} with diam(Γ(µk)) = 2. Then the following hold:

(i) diam(Γ(µ)) 6= 1.

(ii) diam(Γ(µ)) = 2 if and only if Ri = Z(µi) and diam(Γ(µi)) = 1 for
some i ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if there is no k ∈ {1, . . . , n} with Rk 6=
Z(µk) and diam(Γ(µk)) = 1.

Proof. (i) Same as Theorem 3.9 (i).
(ii) (⇐) Same as Theorem 3.11 (ii)). Conversely, assume that

diam(Γ(µ)) = 2; we show that diam(Γ(µi)) = 1 and Ri = Z(µi) for
some i ∈ {1, 2, . . . , n}. Suppose either diam(Γ(µi)) 6= 1 or Ri 6= Z(µi)
for every i ∈ {1, 2, . . . , n}. Let i1, . . . , ik be such that diam(Γ(µir)) = 1
(1 ≤ r ≤ k), and let j1, . . . , jt be such that diam(Γ(µjs)) = 3 (1 ≤ s ≤
t). Since for each s (1 ≤ s ≤ t), diam(Γ(µjs)) = 3, there exist dis-
tinct xjs , yjs ∈ Z∗(µjs) with µjs(xjsyjs) 6= µjs(0) such that there is no
zjs ∈ Z∗(µjs) with µjs(xjszjs) = µjs(yjszjs) = µjs(0). Moreover, for each s
(1 ≤ s ≤ t), there must exist x′js, y

′

js
∈ Z∗(µjs) with µjs(xjsx

′

js
) = µjs(0) and

µjs(yjsy
′

js
) = µjs(0). Now for each r (1 ≤ r ≤ k), let mir ∈ Rir −Z(µir). Set

c = (mi1 , . . . , xj1 , . . . , xjt , . . . , 0) and d = (mi1 , . . . , yj1 , . . . , yjt, . . . , 0). Then

µ(c(0, . . . , x′j1 , 0, . . . , 0)) = µ(0);

so c ∈ Z∗(µ). Similarly, d ∈ Z∗(µ). As µ(cd) 6= µ(0) and diam(Γ(µ)) = 2,
there must be some e = (e1, . . . , en) ∈ Z∗(µ) such that µ(ce) = µ(de) = µ(0).
But this is a contradiction, as needed.

(iii) Since Γ(µ) is connected and diam(Γ(µ)) ≤ 3, the diameter of Γ(R)
is either 2 or 3 by (i). If diam(Γ(R)) = 2, then by (ii), diam(Γ(Ri)) = 1
and Ri = Z(Ri) for some i ∈ {1, . . . , n}, which is a contradiction. Thus
diam(Γ(R)) = 3. The proof of the other implication is clear.
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Compare the next theorem with [2, Theorem 3.7].

Theorem 3.13. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 2, diam(Γ(µj)) = 3 for some i, j ∈ {1, . . . , n}, and
there is no k ∈ {1, . . . , n} with diam(Γ(µk)) = 1. Then the following hold:

(i) diam(Γ(µ)) 6= 1.

(ii) diam(Γ(µ)) = 2 if and only if Ri = Z(µi) and diam(Γ(µi)) = 2 for
some i ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if there is no k ∈ {1, . . . , n} with Rk 6=
Z(µk) and diam(Γ(µk)) = 2.

Proof. (i) Same as Theorem 3.9 (i).

(ii) (⇐) Same as in proof of Theorem 3.9 (ii)). Conversely, assume
that diam(Γ(µ)) = 2; we show that diam(Γ(µi)) = 2 and Ri = Z(µi)
for some i. Suppose not. Let i1, . . . , ik be such that diam(Γ(µir)) = 2
(1 ≤ r ≤ k), and let j1, . . . , jt be such that diam(Γ(µjs)) = 3 (1 ≤ s ≤
t). Since for each s (1 ≤ s ≤ t), diam(Γ(µjs)) = 3, there exist dis-
tinct xjs , yjs ∈ Z∗(µjs) with µjs(xjsyjs) 6= µjs(0). Moreover, for each s
(1 ≤ s ≤ t), there must exist x′js , y

′

js
∈ Z∗(µjs) with µjs(xjsx

′

js
) = µjs(0)

and µjs(yjsy
′

js
) = µjs(0). Now for each r (1 ≤ r ≤ k), let mir ∈ Rir −Z(µir).

Set c = (mi1 , . . . , xj1 , . . . , xjt , . . . , 0) and d = (mi1 , . . . , yj1 , . . . , yjt, . . . , 0).
Then µ(c(0, . . . , x

′

j1
, 0, . . . , 0)) = µ(0), so c ∈ Z∗(µ). Similarly, d ∈ Z∗(µ).

As µ(cd) 6= µ(0) and diam(Γ(µ)) = 2, there must be some e = (e1, . . . , en) ∈
Z∗(µ) such that µ(ce) = µ(0) = µ(de). But this is a contradiction, as
required.

(iii) By (i) and (ii).

Theorem 3.14. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
such that diam(Γ(µi)) = 1, diam(Γ(µj)) = 2, and diam(Γ(µk)) = 3. Then
the following hold:

(i) diam(Γ(µ)) 6= 1.

(ii) diam(Γ(µ)) = 2 if and only if diam(Γ(µi)) ≤ 2 and Ri = Z(µi) for
some i ∈ {1, 2, . . . , n}.

(iii) diam(Γ(µ)) = 3 if and only if there is no k ∈ {1, 2, . . . , n} with
diam(Γ(µk)) ≤ 2 and Rk = Z(µk).
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Proof. (i) Is clear.
(ii) Let diam(Γ(µi)) ≤ 2 and Ri = Z(µi) for some i ∈ {1, 2, . . . , n}. If

diam(Γ(µi)) = 1 and Ri = Z(µi) for some i, then by a similar argument
as in Theorem 3.11 (ii), we get diam(Γ(µ)) = 2. If diam(Γ(µi)) = 2 and
Ri = Z(µi) for some i, then by a similar argument as in Theorem 3.12 (ii),
we obtain diam(Γ(µ)) = 2. Conversely, assume that diam(Γ(µ)) = 2. It is
easy to see from Theorem 3.13 (ii) that diam(Γ(µi)) ≤ 2 and Ri = Z(µi) for
some i ∈ {1, 2, . . . , n}.

(iii) Follows from (i) and (ii).

Example 3.15. Let R1 = Z8 denote the ring of integers modulo 8, R2 = Z25

the ring of integers modulo 25, R3 = Z6 the ring of integers modulo 6,
R4 = Z the ring of integers and R5 = Z24 the ring of integers modulo 24.
We define the mappings µ1 : R1 → [0, 1] by

µ1(x) =

{

1 if x = 0̄

1/2 otherwise

µ2 : R2 → [0, 1] by

µ2(x) =

{

1 if x = 0̄

1/3 otherwise

µ3 : R3 → [0, 1] by

µ3(x) =

{

1 if x = 0̄

1/4 otherwise

µ4 : R4 → [0, 1] by

µ4(x) =

{

1/2 if x ∈ 2Z

1/5 otherwise.

and µ5 : R5 → [0, 1] by

µ5(x) =

{

1 if x = 0̄

1/2 otherwise.

Then for each i (1 ≤ i ≤ 5), µi ∈ LI(Ri), and Z(µ1) = {0̄, 2̄, 4̄, 6̄},
Z(µ2) = {0̄, 5̄, 1̄0, 1̄5, 2̄0}, Z(µ3) = {0̄, 2̄, 3̄, 4̄}, Z(µ4) = Z, and Z(µ5) =
{0̄, 2̄, 3̄, 4̄, 6̄, 8̄, 9̄, 1̄0, 1̄2, 1̄4, 1̄5, 1̄6, 1̄8, 2̄0, 2̄1, 2̄2}.

(1) Since diam(Γ(µ1)) = 2, R1 6= Z(µ1), and diam(Γ(µ4)) = 3, we get
diam(Γ(µ1 × µ4)) = 3 by Theorem 3.13 (iii).
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(2) Since diam(Γ(µ2)) = 1, R2 6= Z(µ2), and diam(Γ(µ4)) = 3, we have
diam(Γ(µ2 × µ4)) = 3 by 3.12 (iii).

(3) As diam(Γ(µ4)) = 3 = diam(Γ(µ5)), we obtain diam(Γ(µ4×µ5)) = 3
by Theorem 3.10.

(4) As diam(Γ(µ1)) = 2 = diam(Γ(µ3)), R1 6= Z(µ1), and R3 6= Z(µ3),
we obtain diam(Γ(µ1 × µ3)) = 3 by Theorem 3.9 (iii).

(5) Since diam(Γ(µ1)) = 2, diam(Γ(µ2)) = 1, R1 6= Z(µ1), and R2 6=
Z(µ2), we have diam(Γ(µ1 × µ2)) = 3 by Theorem 3.11 (iii).

(6) An inspection will show that diam(Γ(µ2×µ3×µ4)) = 3 by Theorem
3.14 (iii).

4. Girth and direct products

We continue to use the notation already established; so R, L and µ are as the
Remark 3.6. We are now ready to turn our attention toward describing the
girth of L-zero-divisor graph of a direct product of L-commutative rings not
necessarily with identity. Compare the next theorem with [2, Theorem 4.1].

Theorem 4.1. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
for i = 1, . . . , n. Then gr(Γ(µ)) = 3 if and only if one (or both) of the
following hold:

(i) |Z∗(µi)| ≥ 2 for some i ∈ {1, 2, . . . , n}

(ii) |nil(µi)
∗| ≥ 1 and |nil(µj)

∗| ≥ 1 for some i, j ∈ {1, 2, . . . , n} with i 6= j.

Proof. If (i) holds, there exists i ∈ {1, 2, . . . , n} such that |Z∗(µi)| ≥ 2.
Since Γ(µi) is connected by Theorem 2.9, there must exist ai, bi ∈ Z∗(µi)
such that µi(aibi) = µi(0). Then

(0, . . . , 0, ai, . . . , 0)− (0, . . . , bi, . . . , 0)− (0, . . . , cj , . . . , 0) − (0, . . . , ai, . . . , 0)

is a cycle of length 3, where cj ∈ Z∗(µj) and i 6= j. If (ii) holds, let ai ∈ R∗

i

and bj ∈ R∗

j with µi(a
2

i ) = µi(0) and µj(b
2

j ) = µj(0). We may assume that
j > i. Then

(0, . . . , ai, . . . , 0)− (0, . . . , ai, . . . , bj , . . . , 0)

−(0, . . . , bj , . . . , 0)− (0, . . . , ai, . . . , 0)

is a cycle of length 3. Conversely, suppose, without loss of generality, Ri

has no µi-nilpotent elements for i ∈ {2, 3, . . . , n}. If |Z∗(µi)| < 2, then
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|Z∗(µi)| = 0 (2 ≤ i ≤ n). Let (a1, . . . , an) − (b1, . . . , bn) − (c1, . . . , cn) −
(d1, . . . , dn) − (a1, . . . , an) be a cycle in Γ(µ). Since |Z∗(µi)| = 0 for each i
(2 ≤ i ≤ n), there must exist b1, c1 ∈ R1 such that µ1(b1) 6= µ(0), µ1(c1) 6=
µ(0), and µ1(b1c1) = µ1(0); hence b1, c1 ∈ Z∗(µ1). Thus, |Z

∗(µ1)| ≥ 2.

Compare the next theorem with [2, Theorem 4.2].

Theorem 4.2. Let R, L, and µ be as in Remark 3.6, and let µi ∈ LiI(Ri)
for i = 1, 2. Then gr(Γ(µ)) = 4 if and only if both of the following hold:

(i) |R1| ≥ 3 and |R2| ≥ 3.

(ii) Without loss of generality, µ1 is an L-integral domain and
|Z∗(µ2)| ≤ 1.

Proof. (⇐) Clearly, gr(Γ(µ)) 6= 3 by Theorem 4.1 (i) and (ii). Now let
x1, x2 ∈ R∗

1
be distinct; let y1, y2 ∈ R∗

2
be distinct. Then (x1, 0) − (0, y1) −

(x2, 0)− (0, y2)− (x1, 0) is a cycle. Thus, gr(Γ(µ)) = 4. Conversely, assume
that gr(Γ(µ)) = 4. Then Theorem 4.1 gives |Z∗(µ1)| ≤ 1 and |Z∗(µ2)| ≤
1. Without loss of generality, assume µ2 is not an L-integral domain; so
there exists x ∈ Z(µ2) such that µ2(x) 6= µ2(0). It follows that |Z∗(µ2)| =
|nil(µ2)

∗| = 1. If µ1 is not an L-integral domain, then |Z∗(µ1)| = |nil(µ1)
∗| =

1. Thus gr(Γ(µ)) = 3, a contradiction. Therefore µ1 is an L-integral domain;
so Z∗(µ1) = ∅. Now a cycle must have the form (x1, y1)− (0, y2)− (x2, y3)−
(0, y4)−(x1, y1). In this cycle, y2 and y4 must be nonzero and distinct. Thus,
|R2| ≥ 3. If either x1 or x2 is zero, then |Z∗(µ2) ≥ 2; whence gr(Γ(µ)) = 3 by
Theorem 4.1, a contradiction. If x1 = x2, then y1 and y3 are distinct. If y3 =
0, then y1, y2, y4 ∈ Z∗(µ2), implying y1 = y2 = y4, a contradiction. If y3 6= 0,
then y2, y3, y4 ∈ Z∗(µ2), implying y2 = y3 = y4, another contradiction.
Therefore we must have x1 6= x2 and |R1| ≥ 3.

Example 4.3. (1) Let R2 and µ2 be as in Example 3.15. Then nil(µ2)
∗ =

Z∗(µ2) = {5̄, 1̄0, 1̄5, 2̄0}. Since |Z∗(µi)| ≥ 2, gr(Γ(µ2) × µ) = 3 for every
µ ∈ LI(S) by Theorem 4.1.

(2) Let R1 = Z7 denote the ring of integers modulo 7 and R2 = Z4 the
ring of integers modulo 4. We define the mappings µ1 : R1 → [0, 1] by

µ1(x) =

{

1 if x = 0̄

1/3 otherwise.
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and µ2 : R2 → [0, 1] by

µ2(x) =

{

1 if x = 0̄

1/4 otherwise.

Then for each i (1 ≤ i ≤ 2), µi ∈ LI(Ri), Z
∗(µ1) = ∅ (so µ1 is an L-integral

domain) and Z∗(µ2) = {2̄}. Since |Z∗(µ2)| = 1, we get gr(Γ(µ1 × µ2)) = 4
by Theorem 4.2.
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