
Discussiones Mathematicae

General Algebra and Applications 31 (2011) 147–158

DISTRIBUTIVE LATTICES OF t-k-ARCHIMEDEAN

SEMIRINGS
∗

Tapas Kumar Mondal

Dr. Bhupendra Nath Dutta Smriti Mahavidyalaya
Hatgobindapur, Burdwan-713407, West Bengal, India

e-mail: tapumondal@gmail.com

Abstract

A semiring S in SL+ is a t-k-Archimedean semiring if for all a, b ∈ S, b ∈√
Sa ∩

√
aS. Here we introduce the t-k-Archimedean semirings and charac-

terize the semirings which are distributive lattice (chain) of t-k-Archimedean
semirings. A semiring S is a distributive lattice of t-k-Archimedean semir-
ings if and only if

√
B is a k-ideal, and S is a chain of t-k-Archimedean

semirings if and only if
√
B is a completely prime k-ideal, for every k-bi-

ideal B of S.
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1. Introduction

In 1942, A.H. Clifford [6] first defined the semilattice decompositions of semi-
groups. Thus the idea of studying a semigroup through its greatest semilattice
decomposition was introduced. The idea consists of decomposing a given semi-
group S into subsemigroups (components) which are possibly of considerably
simpler structure, through a congruence η on S such that S/η is the greatest
semilattice homomorphic image of S and each η-class is a component subsemi-
group. Though the idea first appeared in [6] but much attention was given to the
semigroups which are union of groups. In 1954, T. Tamura and N. Kimura [13]
showed that every commutative semigroup is a semilattice of Archimedean semi-
groups. This well known result has since been generalized by M. Petrich, M.S.

∗The author expresses deepest thanks to Prof. Anjan Kumar Bhuniya for suggesting this

work to him.
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Putcha, T. Tamura, N. Kimura, S. Bogdanovic, M. Ciric, F. Kmet and many
others [3, 4, 5, 7, 8, 9, 10, 11, 12]. Much attention in this area has been aimed
to the semigroups which are decomposable into a semilattice of Archimedean
semigroups.

In this article we introduce the t-k-Archimedean semirings and characterize
the semirings which are distributive lattices(chain) of t-k-Archimedean semirings.
The t-k-Archimedean semirings are the semirings analogue of t-Archimedean
semigroups, in some sense. The k-bi-ideals play a crucial role in characteriz-
ing such semirings. A necessary and sufficient condition for a semiring S to be
a distributive lattice of t-k-Archimedean semirings is that the k-radical of each
k-bi-ideal B of S is a k-ideal of S.

The preliminaries and prerequisites we need have been discussed in Section
2. In Section 3, several equivalent characterizations have been made for the
semirings which are distributive lattices of t-k-Archimedean semirings, which is
the main theorem of this article. In Section 4, the semirings which are chains
of t-k-Archimedean semirings has been characterized. A semiring S is a chain
of t-k-Archimedean semirings if and only if k-radical of each k-bi-ideal of S is a
completely prime k-ideal.

2. Preliminaries

A semiring (S,+, ·) is an algebra with two binary operations + and · such that
both the additive reduct (S,+) and the multiplicative reduct (S, ·) are semigroups
and such that the following distributive laws hold:

x(y + z) = xy + xz and (x+ y)z = xz + yz.

Thus the semirings can be regarded as a common generalization of both rings
and distributive lattices. By SL

+ we denote the variety of all semirings (S,+, ·)
such that (S,+) is a semilattice, i.e., a commutative and idempotent semigroup.
Throughout this paper, unless otherwise stated, S is always a semiring in SL

+.
Let A be a nonempty subset of S. Then the k-closure A of A in S is defined

by
A = {x ∈ S | x+ a1 = a2, for some a1, a2 ∈ A}.

Then we have, A ⊆ A and if (A,+) is a subsemigroup of (S,+) then A = {x ∈
S | x+ a ∈ A, for some a ∈ A}, since (S,+) is a semilattice. A is called a k-set if
A ⊆ A. An ideal K of S is called a k-ideal of S if it is a k-set. A subsemiring B
of S is called a k-bi-ideal of S if BSB ⊆ B and B is a k-set. For a ∈ S, the least
k-bi-ideal Bk(a) of S [1], which contains a is given by

Bk(a) =
{

u ∈ S | u+ a+ a2 + asa = a+ a2 + asa, for some s ∈ S
}

.
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We note that aSa = {x ∈ S | x + asa = asa, for some s ∈ S} is a k-bi-ideal of
S but may not contain a. A nonempty subset A of S is called completely prime
(resp. semiprimary) if for x, y ∈ S, xy ∈ A implies x ∈ A or y ∈ A (resp. xn ∈ A
or yn ∈ A, for some n ∈ N).

Let F be a subsemiring of S. F is called a left (right) filter of S if:

(i) for any a, b ∈ S, ab ∈ F ⇒ b ∈ F (a ∈ F ); and

(ii) for any a ∈ F, b ∈ S, a + b = b ⇒ b ∈ F . F is a filter of S if it is both a
left and a right filter of S. The least filter of S containing a is denoted by
N(a). Let N be the equivalence relation on S defined by

N = {(x, y) ∈ S × S | N(x) = N(y)}.

Lemma 1. Let S be a semiring in SL
+.

(a) For a, b ∈ S the following statements are equivalent:

(i) There are s1, s2, t1, t2 ∈ S such that b+ s1at1 = s2at2;

(ii) There is s ∈ S such that b+ sas = sas.

(b) If a, b, c, d ∈ S such that c + xa = xa and d + yb = yb for some x, y ∈ S,
then there is some z ∈ S such that c+ za = za and d+ zb = zb.

(c) If a, b ∈ S such that a + bxb = byb for some x, y ∈ S, then there is some
z ∈ S such that a+ bzb = bzb.

Proof. (a) Since (ii)⇒(i) is clear, we assume (i). For x = s1+s2+t1+t2 one gets
s1at1+xax = s2at2+xax = xax, since (S,+) is a semilattice, and then b+s1at1+
xax = s2at2 + xax implies that b + xax = xax.
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Hence (i) implies (ii).
(b) Clearly, z = x+ y is such an element.
(c) Again, z = x+ y is such an element.

Let A be a non-empty subset of a semiring S. Then the k-radical of A in S is
given by

√
A = {x ∈ S | (∃ n ∈ N) xn ∈ A}. Thus

√
A = {x ∈ S | (∃ n ∈

N) xn + a1 = a2, for some a1, a2 ∈ A}. It is interesting to note that for every
a ∈ S,

√
aSa =

√

Bk(a), though aSa ⊆ Bk(a) and the inclusion is likely to be
proper.

Let S be a semiring in SL
+. Define a binary relation σ on S by: for a, b ∈ S,

aσb ⇔ b ∈
√
SaS ⇔ bn ∈ SaS for some n ∈ N.

Then a3 ∈ SaS ⊆ SaS shows that σ is reflexive. So the transitive closure ρ = σ∗

is reflexive and transitive, and therefore the symmetric relation η = ρ∩ ρ−1 is an
equivalence relation. This equivalence relation η is the least distributive lattice
congruence on S.

Lemma 2 [2]. For any S in SL
+, η is the least distributive lattice congruence

on S.

Definition. A semiring S in SL
+ is called left (right) k-Archimedean if for all

a ∈ S, S =
√
Sa(

√
aS) and t-k-Archimedean semiring if it is both a left k-

Archimedean semiring and a right k-Archimedean semiring.

Then by Lemma 1, a semiring S is t-k-Archimedean if and only if for a, b ∈ S
there exist n ∈ N and x ∈ S such that bn + xa = xa and bn + ax = ax. A
semiring S is called a distributive lattice(chain) of t-k-Archimedean semirings if
there exists a congruence ρ on S such that S/ρ is a distributive lattice(chain) and
each ρ-class is a t-k-Archimedean semiring.

3. Distributive lattices of t-k-Archimedean semirings

In this section we describe the semirings S by radical of k-bi-ideal of S. In the
following proofs we will use that from b + c = c for b, c ∈ S in any semiring
S in SL

+ it follows that bn + cn = cn for every n ∈ N. This can be proved
by induction. Since the case n = 1 is given, we may assume bn + cn = cn for
some n ∈ N. Then bn+1 + cnb = cnb and by adding cn+1 on both sides we get
bn+1 + cn(b+ c) = cn(b+ c), and hence bn+1 + cn+1 = cn+1.

Lemma 3. Let S be a semiring in SL
+ such that for all a, b ∈ S, ab ∈

√
Sa ∩

√
bS.

Then

1. for all a, b ∈ S, a ∈ bSb ⇒ a ∈
√
b2rSb2r for all r ∈ N.
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2. for all a, b ∈ S, a ∈
√
bSb implies that

√
aSa ⊆

√
bSb.

3. the least distributive lattice congruence η on S is given by: for a, b ∈ S,

aηb ⇔ b ∈
√
aSa and a ∈

√
bSb.

Proof. (1) Let a, b ∈ S such that a ∈ bSb. Then there exists s ∈ S such
that a + bsb = bsb. By hypothesis, there exist m ∈ N and u ∈ S such that
(b2s)m+ub = ub. Then am+1+(bsb)m+1 = (bsb)m+1 gives am+1+ bsub2 = bsub2.
Again, there are n ∈ N and v ∈ S such that (bsub2)n + b2v = b2v. Then we have
a(m+1)(n+1) + b2vbsub2 = b2vbsub2 which yields a ∈

√
b2Sb2. Thus the result is

true for r = 1. Let a ∈
√
b2kSb2k for some k ∈ N. Then there are p ∈ N and

w ∈ S such that

ap + b2
k

wb2
k

= b2
k

wb2
k

Now iterating this implication as above, we get a ∈
√
b2k+1Sb2k+1 . Therefore, by

the method of principle of mathematical induction, we have: for every r ∈ N, a ∈√
b2rSb2r .

(2) For a ∈
√
bSb there are n ∈ N and s ∈ S such that an + bsb = bsb. Let x ∈√

aSa. Then there exists m ∈ N such that xm ∈ aSa. Suppose r ∈ N be such that
2r > n. Then by (1), we find p ∈ N and u ∈ S such that xp + a2

r

ua2
r

= a2
r

ua2
r

which implies xp + bsba2
r
−nua2

r
−nbsb = bsba2

r
−nua2

r
−nbsb, and so x ∈

√
bSb.

Thus the result.

(3) From Theorem 3.4 [2], we have the least distributive lattice congruence η on
S as follows:

η = ρ ∩ ρ−1, where ρ = σ∗ and aσb ⇔ b ∈
√
SaS.

Let us define a binary relation ξ on S by: for a, b ∈ S,

aξb ⇔ b ∈
√
aSa and a ∈

√
bSb.

We will show ξ = η. Clearly
√
aSa ⊆

√
SaS. Now let x ∈

√
SaS. Then there

are n ∈ N and s ∈ S such that xn + sas = sas. Again, sas ∈
√
Ssa ⊆

√
Sa

implies that (sas)m + ta = ta for some m ∈ N and t ∈ S. Also, there are
p ∈ N and u ∈ S such that (ta)p + au = au, which gives xnm(p+1) + auta =
auta, and so x ∈

√
aSa. Thus

√
SaS =

√
aSa. Now aηb implies that there

are c1, c2, . . . , cn, d1, d2, . . . , dm ∈ S such that aσc1, c1σc2, . . . , cn−1σcn, cnσb and
bσd1, d1σd2, . . . , dm−1σdm, dmσa. These give c1 ∈

√
aSa, c2 ∈ √

c1Sc1, . . . , b ∈√
cnScn and d1 ∈

√
bSb, d2 ∈

√
d1Sd1, . . . , a ∈

√
dmSdm so that b ∈

√
aSa and

a ∈
√
bSb, by (2). Thus aξb. Again aξb implies b ∈

√
aSa and a ∈

√
bSb which

yields aσb and bσa to get aηb. Thus ξ = η.



152 T.K. Mondal

Remark 4. Let S be a semiring in SL
+ and a ∈ S. Then

√
aSa =

√

Bk(a).
Thus it follows that if for all a, b ∈ S, ab ∈

√
Sa∩

√
bS then the least distributive

lattice congruence η on S is given by: for a, b ∈ S,

aηb ⇔ a ∈
√

Bk(b) and b ∈
√

Bk(a).

Now we prove the main theorem of this article.

Theorem 5. The following conditions on a semiring S in SL
+ are equivalent:

1. S is a distributive lattice of t-k-Archimedean semirings;

2. For all a, b ∈ S, b ∈ SaS implies b ∈
√
Sa ∩

√
aS;

3. For all a, b ∈ S, ab ∈
√
Sa ∩

√
bS;

4.
√
B is a k-ideal of S, for every k-bi-ideal B of S;

5.
√

Bk(a) =
√
aSa is a k-ideal of S, for all a ∈ S;

6. N(a) = {x ∈ S | a ∈
√
Sx ∩

√
xS} for all a ∈ S.

Proof. Scheme of the proof: (1) ⇒ (2) ⇒ (3) ⇒ (1), (3) ⇒ (4) ⇒ (5)
⇒ (3), (3) ⇔ (6).

(1) ⇒ (2) : Let ν be a distributive lattice congruence on S such that the
ν-classes Tα;α ∈ S/ν are t-k-Archimedean semirings. Let a, b ∈ S be such that
b ∈ SaS. Then there is s ∈ S such that b+sas = sas, which gives b3+uau = uau,
where u = bs+ sb. Now uauνau2νauνua implies that uau, au, ua ∈ Tα, for some
α ∈ S/ν. Then there exist m ∈ N and v ∈ Tα such that (uau)m+ auv = auv and
(uau)m + vua = vua. From these we get b3m + auv = auv and b3m + vua = vua,
and so b ∈

√
aS ∩

√
Sa.

(2) ⇒ (3) : Let a, b ∈ S. Now (ab)2 ∈ SaS ∩ SbS implies that there exist
m,n ∈ N such that (ab)2m ∈ Sa and (ab)2n ∈ bS. Thus ab ∈

√
Sa ∩

√
bS.

(3) ⇒ (1) : By the Lemma 3, the least distributive lattice congruence η on
S is given by: for a, b ∈ S

aηb ⇔ a ∈
√
bSb and b ∈

√
aSa.

Let T be an η-class. Then T is a subsemiring of S, since η is a distributive
lattice congruence. Let a, b ∈ T . Then there are n ∈ N and s ∈ S such that
an+bsb = bsb and bn+asa = asa. Then we have an+1+(a+abs)b = (a+abs)b and
an+1+b(sba+a) = b(sba+a). Now aη(a+abs)η(sba+a) implies a+abs, sba+a ∈
T , and so a ∈

√
Tb ∩

√
bT . Hence T is a t-k-Archimedean semiring.

(3) ⇒ (4) : Let B be a k-bi-ideal of S and let u, v ∈
√
B, c ∈ S. Then

there exist n ∈ N and b ∈ B such that un + b = b and vn + b = b. By (3), there
exist x, y ∈ S and m1, t1 ∈ N such that (uc)m1 + xu = xu, (ux)t1 + yu = yu.
Then (uc)m1(t1+1) + x(ux)t1u = x(ux)t1u implies (uc)m2 + x1u

2 = x1u
2, where

m2 = m1(t1 + 1) and x1 = xy. Also, there exist s ∈ S and t2 ∈ N such



Distributive lattices of t-k-Archimedean semirings 153

that (u2x1)
t2 + su2 = su2. Iterating similarly we find that for every r ∈ N,

there exists p ∈ N such that (uc)p + xru
2r = xru

2r . Let r ∈ N be such that
2r > n. Then there exists q ∈ N such that (uc)q + xru

2r = xru
2r . By (3),

there exist t ∈ N and z ∈ S such that (xru
2r)t + u2

r

z = u2
r

z. Then we have
(uc)q(t+1) + bu2

r
−nzxru

2r−nb = bu2
r
−nzxru

2r−nb. Hence uc ∈
√
B. Similarly,

cu ∈
√
B. Again we have (u + b)n + sbs + sb + bs = un + sbs + sb + bs, for

some s ∈ S, i.e., (u + b)n + b + sbs + sb + bs = b + sbs + sb + bs. Then for
w = (u + b)s + s(u + b) + u + b, we have (u + b)n+2 + wbw = wbw. Also,
there are m ∈ N and y ∈ S such that (wbw)m + ywb = ywb. Then we have
(u+ b)(n+2)(m+1) + wbwywb = wbwywb. Again there exist p ∈ N and z ∈ S such
that (wbwywb)p + bz = bz. Then we get (u + b)(n+2)(m+1)(p+1) + bzwbwywb =
bzwbwywb. This implies (u+ b) ∈

√

Bk(b) ⊆
√
B. Again for some t ∈ S we have

(u+v)n+tut+tu+ut = vn+tut+tu+ut which implies that (u+v)n+t(u+b)t+
t(u+b)+(u+b)t+(u+b) = t(u+b)t+t(u+b)+(u+b)t+(u+b) which again implies
that (u+v)n+2+s(u+ b)s = s(u+ b)s, where s = (u+v)t+ t(u+v)+u+v. Now
s(u+b)s ∈

√
B shows that there arem ∈ N and b ∈ B such that (s(u+b)s)m+b =

b and hence (u+ v)(n+2)m + b = b. Thus (u+ v) ∈
√
B, and so

√
B is an ideal of

S. Let s ∈ S, a ∈
√
B such that s+ a = a. Then there is b ∈ B and n ∈ N such

that an + b = b. Now sn + an = an gives sn + b = b which yields s ∈
√
B. Thus√

B is a k-ideal of S.

(4) ⇒ (5) : Obvious.

(5) ⇒ (3) : Let a, b ∈ S. Then
√
aSa and

√
bSb are k-ideals of S. Then

ab ∈
√
aSa ∩

√
bSb and hence ab ∈

√
Sa ∩

√
bS.

(3) ⇒ (6) : Let a ∈ S and F = {x ∈ S | a ∈
√
Sx ∩

√
xS} and y, z ∈ F .

Then there exist n ∈ N and u ∈ S such that an + uy = uy, an + uz = uz
and an + yu = yu, an + zu = zu so that an + u(y + z) = u(y + z), and an +
(y + z)u = (y + z)u, which imply y + z ∈ F . By (3), there exist m ∈ N and
v ∈ S such that (yu)m + vy = vy and (uz)m + zv = zv. Now we can write
an(m+1) + u(yu)mz = u(yu)mz and an(m+1) + y(uz)mu = y(uz)mu, which give
an(m+1) + uv(yz) = uv(yz) and an(m+1) + (yz)vu = (yz)vu so that yz ∈ F . Thus
F is a subsemiring of S. Let y ∈ F and c ∈ S such that y + c = c. Then there
exist n ∈ N and u ∈ S such that an + uy = uy and an + yu = yu, which imply
an + uc = uc and an + cu = cu so that c ∈ F .

Now let y, z ∈ S such that yz ∈ F . Then there exist n ∈ N and u ∈ S
such that an + (uy)z = (uy)z and an + y(zu) = y(zu). By (3), (yz)m + sy = sy
and (yz)m + zs = zs, for some m ∈ N and s ∈ S. Since F is a subsemiring,
(yz)m ∈ F . Then there exist r ∈ N and v ∈ S such that ar + v(yz)m = v(yz)m,
and ar+(yz)mv = (yz)mv. This implies ar+(vs)y = (vs)y, and ar+z(sv) = z(sv).
Hence y, z ∈ F . Thus F is a filter of S containing a. Let T be a filter of S
containing a and let y ∈ F . Then an + sy = sy, for some n ∈ N and s ∈ S. Now
since T is a filter, a ∈ T implies an ∈ T and so an + sy = sy implies that y ∈ T .
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Thus F = N(a). It also follows directly that {x ∈ S | a ∈
√
Sx ∩

√
xS} = {x ∈

S | a ∈
√
xSx}.

(6) ⇒ (3) : Let a, b ∈ S. Then a, b ∈ N(ab), since N(ab) is a filter of S. So
by (6), ab ∈

√
Sa ∩

√
bS.

4. Chains of t-k-Archimedean semirings

In this section we characterize the semirings which are chains of t-k-Archimedean
semirings. Let (T,+, ·) be a distributive lattice with the partial order defined by
a ≤ b ⇔ a + b = b for all a, b ∈ S. It is well known that (T,≤) is a chain if and
only if ab = b or ab = a for all a, b ∈ T .

Theorem 6. The following conditions on a semiring S in SL
+ are equivalent:

1. S is a chain of t-k-Archimedean semirings;

2. S is a distributive lattice of t-k-Archimedean semirings and for all a, b ∈ S,

b ∈
√
aSa or a ∈

√
bSb;

3. For all a, b ∈ S, N(a) = {x ∈ S | a ∈
√
xSx} and N(ab) = N(a) ∪N(b);

4. η = N is the least chain congruence on S such that each of its congruence
classes is t-k-Archimedean.

Proof. (1) ⇒ (2) : Let S be a chain C of t-k-Archimedean semirings Sα(α ∈ C).
Then S is a distributive lattice of t-k-Archimedean semirings too. Let a, b ∈ S.
Then there exist α, β ∈ C such that a ∈ Sα, b ∈ Sβ. Since C is a chain,
either αβ = α or αβ = β. If αβ = α then a, ab ∈ Sα. Since Sα is t-k-
Archimedean, there exist n ∈ N and x ∈ Sα such that an + abxab = abxab.
Since S is a distributive lattice of t-k-Archimedean semirings, there exist m ∈ N

and y ∈ S such that (abxab)m + bxaby = bxaby, by Theorem 5. Then we have
an(m+1) + bxabyabxab = bxabyabxab, i.e., a ∈

√
bSb. If αβ = β, then b, ab ∈ Sβ.

Similarly, proceeding as above we have b ∈
√
aSa.

(2) ⇒ (3) : Since S is a distributive lattice of t-k-Archimedean semirings, by
Theorem 5, N(a) = {x ∈ S | a ∈

√
xSx}. Let a, b ∈ S. Then ab ∈ N(ab) ⇒ a ∈

N(ab) and b ∈ N(ab). Then N(a) ⊆ N(ab) and N(b) ⊆ N(ab) ⇒ N(a)∪N(b) ⊆
N(ab). By hypothesis, either a ∈

√
bSb or b ∈

√
aSa. If a ∈

√
bSb, then there

exist m ∈ N and x ∈ S such that am + bxb = bxb. Now am+1 + abxb = abxb.
Since S is a distributive lattice of t-k-Archimedean semirings, by Theorem 5, there
exist n ∈ N and y ∈ S such that (babx)n + yba = yba. Then am+1 + abxb = abxb
implies a(m+1)(n+1) + abxybab = abxybab so that a ∈

√
abSab, i.e. ab ∈ N(a),

and so N(ab) ⊆ N(a). If b ∈
√
aSa, then similarly we have N(ab) ⊆ N(b). Thus

N(ab) ⊆ N(a) ∪N(b) and hence N(ab) = N(a) ∪N(b).
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(3) ⇒ (4) : By Theorem 5, S satisfies ab ∈
√
Sa ∩

√
bS. Then by Lemma 3,

the least distributive lattice congruence η on S is given by: for all a, b ∈ S, aηb ⇔
a ∈

√
bSb and b ∈

√
aSa. Let a, b ∈ S be such that aηb. Then a ∈

√
bSb and

b ∈
√
aSa which, by Lemma 3, implies that

√
aSa =

√
bSb. Then

x ∈ N(a) ⇔ a ∈
√
xSx

⇔
√
aSa ⊆

√
xSx, by Lemma 3 and Theorem 5

⇔
√
bSb ⊆

√
xSx

⇔ b ∈
√
xSx

⇔ x ∈ N(b)
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shows that N(a) = N(b) and so aN b. Again for a, b ∈ S, aN b implies that
N(a) = N(b). Then x ∈

√
aSa ⇔ a ∈ N(x) ⇔ N(a) ⊆ N(x) ⇔ N(b) ⊆

N(x) ⇔ b ∈ N(x) ⇔ x ∈
√
bSb shows that

√
aSa =

√
bSb. Thus aηb.

Hence η = N . Let a, b ∈ S. Then ab ∈ N(a) or ab ∈ N(b) which implies
N(ab) ⊆ N(a) ⊆ N(ab) or N(ab) ⊆ N(b) ⊆ N(ab), i.e. abNa or abN b, and thus
N is a chain congruence. Also by Theorem 5, each η-class is a t-k-Archimedean
semiring.

(4) ⇒ (1) : The proof is obvious.

Theorem 7. The following conditions on a semiring S in SL
+ are equivalent:

1. S is a chain of t-k-Archimedean semirings;

2.
√
B is a completely prime k-ideal of S for every k-bi-ideal B of S;

3.
√

Bk(a) =
√
aSa is a completely prime k-ideal of S for every a ∈ S;

4.
√

Bk(ab) =
√

Bk(a) ∩
√

Bk(b) for all a, b ∈ S and every k-bi-ideal of S is
semiprimary.

Proof. (1) ⇒ (2) : Let S be a chain C of t-k-Archimedean semirings {Sα | α ∈
C}. Consider a k-bi-ideal B of S. Then

√
B is a k-ideal of S, by Theorem

5. Let x, y ∈ S such that xy ∈
√
B. Then there exists m ∈ N such that

u = (xy)m ∈ B = B. Suppose α, β ∈ C be such that x ∈ Sα and y ∈ Sβ. Since
C is a chain, either αβ = α or αβ = β. If αβ = α, then x, u ∈ Sα. Then
x ∈

√
uSu ⊆

√
B, and so x ∈

√
B. If αβ = β, then similarly we have y ∈

√
B.

(2) ⇒ (3) : Obvious.

(3) ⇒ (4) : Let a, b ∈ S. Then
√

Bk(a),
√

Bk(b) and
√

Bk(ab) are completely
prime k-ideals of S. Let x ∈

√

Bk(ab). Then there exist m ∈ N and u ∈ S
such that xm + abuab = abuab. Again there exist n ∈ N and v ∈ S such that
(abuab)n+ va = va, by Theorem 5. Then we have xm(n+1)+abuabva = abuabva,
whence x ∈

√

Bk(a). Therefore
√

Bk(ab) ⊆
√

Bk(a). Similarly,
√

Bk(ab) ⊆
√

Bk(b). Thus
√

Bk(ab) ⊆
√

Bk(a)∩
√

Bk(b). Let y ∈
√

Bk(a)∩
√

Bk(b). Then
there exist n ∈ N and s ∈ S such that yn + asa = asa and yn + bsb = bsb.
Again there exist m ∈ N and u ∈ S such that (asabsb)m + uasab = uasab, and
we get y2nm + uasab = uasab. Again there exist p ∈ N and v ∈ S such that
(uasab)p + abv = abv. Then we have y2nm(p+1) + abvuasab = abuasab, and so
y ∈

√

Bk(ab). Thus
√

Bk(ab) =
√

Bk(a) ∩
√

Bk(b). Let B be a k-bi-ideal of S
and a, b ∈ S be such that ab ∈ B. Then ab ∈

√

Bk(ab) implies that a ∈
√

Bk(ab)
or b ∈

√

Bk(ab). Thus an ∈ Bk(ab) ⊆ B or bn ∈ Bk(ab) ⊆ B, for some n ∈ N,
i.e., an ∈ B or bn ∈ B and hence B is semiprimary.

(4) ⇒ (1) : Let a, b ∈ S. Then ab ∈
√

Bk(a) ∩
√

Bk(b). Then there are
m,n ∈ N and s ∈ S such that (ab)n + asa = asa and (ab)m + bsb = bsb, i.e.,
ab ∈

√
Sa∩

√
bS. Then by Lemma 3 and Theorem 5, the least distributive lattice

congruence η on S is given by : for a, b ∈ S, aηb ⇔
√
aSa =

√
bSb ⇔

√

Bk(a) =
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√

Bk(b), and each η-class is a t-k-Archimedean semiring. Now there exists n ∈ N

such that an ∈ Bk(ab) or bn ∈ Bk(ab). Then
√

Bk(ab) ⊆
√

Bk(a) ⊆
√

Bk(ab)
or

√

Bk(ab) ⊆
√

Bk(b) ⊆
√

Bk(ab), i.e.,
√

Bk(ab) =
√

Bk(a) or
√

Bk(ab) =
√

Bk(b). Hence abηa or abηb. Thus η is a chain congruence and so S is a chain
of t-k-Archimedean semirings.
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