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Abstract

In a manner analogous to a commutative ring, the L-ideal-based
L-zero-divisor graph of a commutative ring R can be defined as the
undirected graph Γ(µ) for some L-ideal µ of R. The basic properties
and possible structures of the graph Γ(µ) are studied.
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1. Introduction

Research on the theory of fuzzy sets has been witnessing an exponential
growth; both within mathematics and in its applications. This ranges from
traditional mathematical like logic, topology, algebra, analysis etc. to pat-
tern recognition, information theory, artificial intelligence, neural networks
and planning. Consequently, fuzzy set theory has emerged as a poten-
tial area of interdisciplinary research and fuzzy graph theory is of recent
interest.

Zadeh in [20] introduced the notion of a fuzzy subset µ of a non-empty
set X as a function from X to [0, 1]. Goguen in [8] generalized the notion
of fuzzy subset of X to that of an L-fuzzy subset, namely a function from
X to a lattice L. In [14], Rosenfeld considered the fuzzification of algebraic
structures. Liu [10], introduced and examined the notion of a fuzzy ideal
of a ring. Since then several authors have obtained intersting results on
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L-fuzzy ideals of a ring R and L-fuzzy modules (see [8, 9, 11, 18]). See [12]
for a comprehensive survey of the literature on these developments.

Rosenfeld in [17] considered fuzzy relations on fuzzy sets and developed
the theory of fuzzy graphs in 1975. During the same time Yeh and Bang
in [19] has also introduced various connectedness concepts in fuzzy graphs.
After the pioneering work of Rosenfeld and Yeh and Bang in 1975, when
some basic fuzzy graph theoretic concepts and applications have been indi-
cated, several authors have been finding deeper results, and fuzzy analogues
of many other graph theoretic concepts. This include fuzzy trees, fuzzy line
graphs, operations on fuzzy graphs, automorphism of fuzzy graphs, fuzzy
interval graphs, cycles and cocycles of fuzzy graphs, and meric aspects in
fuzzy graphs.

Among the most interesting graphs are the zero-divisor graphs, because
these involve both ring theory and graph theory. By studying these graphs
we can gain a broader insight into the concepts and properties that involve
both graphs and rings. It was Beck (see [6]) who first introduced the notion
of a zero-divisor graph for commutative ring. This notion was later redefined
by D.F. Anderson and P.S. Livingston in [1]. Since then, there has been a
lot of interest in this subject and various papers were published establishing
different properties of these graphs as well as relations between graphs of
various extensions (see [2, 3, 4]). The notion of a zero-divisor graph were
extended to non-commutative rings [15] and to commutative semirings in
[7] and various properties were established in [15] and [7].

Let R be a commutative ring with identity and µ an L-ideal of R. In the
present paper, we introduce and investigate the L-ideal-based L-zero-divisor
graph of R, denoted by Γ(µ) (see Definition 3.2). We know (at least as far as
we are aware) of no systematic study of L-fuzzy ideal-based L-zero-divisor
graph in the ring context. By mean of the graph Γ(µ), we hope to begin
such a study. There are two possible directions one can pursue. The first
is to try to understand the possible shapes of the graph Γ(µ) as µ ranges
over the class of L-ideals, and the second is to infer properties of the set of
µ-zero-divisors of R (see Definition 3.1). In this paper we concentrate on
the second direction. Here is a brief summary of our paper. We will make
an intensive study of the notions of µ-Zero-divisors, µ-nilradical ideals, and
L-zero-divisor graph of a commutative ring R. For example, we show that
Γ(µ) is connected with diam(Γ(µ)) ≤ 3. Furthermore, if Γ(µ) contains a
cycle, then gr(Γ(µ)) ≤ 4. Also, we study Γ(µ) for several classes of L-rings
which generalize L-valuation domains to the context of rings with µ-zero-
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divisors. These are L-rings with non-zero µ-zero-divisors that satisfy certain
divisibility conditions between elements and equality conditions between the
set of µ-zero-divisors in R and the set of µ-nilpotent elements in R. In this
case, we completely characterize the µ-diameter and µ-girth of the L-zero-
divisor graph of such L-rings (see Sections 3, 4, 5, and 6).

2. Preliminaries

Throughout this paper R is a commutative ring with identity and L stands
for a complete lattice with least element 0 and greatest element 1. In order
to make this paper easier to follow, we recall in this section various notions
from graph theory and fuzzy commutative algebra theory which will be used
in the sequel.

For a graph Γ by E(Γ) and V (Γ) we denote the set of all edges and
vertices, respectively. We recall that a graph is connected if there exists
a path connecting any two distinct vertices. At the other extreme, we say
that Γ is totally disconnected if no two vertices of Γ are adjacent. The
distance between two distinct vertices a and b, denoted by d(a, b), is the
length of the shortest path connecting them (if such a path does not exist,
then d(a, a) = 0 and d(a, b) = ∞). The diameter of graph Γ, denoted by
diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it
is connected with diameter less than or equal to one. The girth of a graph
Γ, denoted gr(Γ), is the length of a shortest cycle in Γ, provided Γ contains
a cycle; otherwise; gr(Γ) = ∞. Eccentricity of a vertex a is defined as a
sup{d(a, x) : x ∈ V (Γ)}. If the diameter of a graph is finite, it is interesting
to see what is the smallest eccentricity of a vertex in Γ. Vertices of Γ with
this smallest eccentricity form the center of this graph. Center of the graph
is one of the so-called central sets of a graph. Therefore, notably, the graphs
with finite diameter are very important.

If R is a commutative ring, let Z(R) denote the set of zero-divisors of
R and let Z(R)∗ denote the set of non-zero zero-divisors of R. We consider
the undirected graph Γ(R) with vertices in the set V (Γ(R)) = Z(R)∗, such
that for distinct vertices a and b there is an edge connecting them if and
only if ab = 0. Then Γ(R) is connected with diam(Γ(R)) ≤ 3 ([1, Theorem
2.3]) and gr(Γ(R)) ≤ 4 ([13, (1.4)]). Thus diam(Γ(R)) = 0, 1, 2, or 3 and
gr(Γ(R)) = 3, 4, or ∞.

Let R be a commutative ring and L stands for a complete lattice with
least element 0 and greatest element 1. By an L-subset µ of a non-empty
set X, we mean a function µ from X to L. If L = [0, 1], then µ is called
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a fuzzy subset of X. LX denotes the set of all L-subsets of X. We recall
some definitions and lemmas from the book [12], which we need them for
development of our paper.

Definition 2.1. A L-ring is a function µ : R → L, where (R,+, .) is a ring,
that satisfies:

(1) µ 6= 0;

(2) µ(x− y) ≥ µ(x) ∧ µ(y) for every x, y in R;

(3) µ(xy) ≥ µ(x) ∧ µ(y) for every x, y in R.

Definition 2.2. Let µ ∈ LR. Then µ is called an L-ideal of R if for every
x, y ∈ R the following conditions are satisfied:

(1) µ(x− y) ≥ µ(x) ∧ µ(y);

(2) µ(xy) ≥ µ(x) ∨ µ(y).

The set of all L-ideals of R is denoted by LI(R).

Lemma 2.3. Let R be a ring and µ ∈ LI(R). Then µ(x) ≤ µ(0) and
µ(1) ≤ µ(x) for every x in R.

3. Definitions and basic structures

We begin with the key definition of this paper.

Definition 3.1. Let R be a ring and µ ∈ LI(R). A µ-zero-divisor is an
element x ∈ R for which there exists y ∈ R with µ(y) 6= µ(0) such that
µ(xy) = µ(0).

The set of µ-zero-divisors in R will be denoted by Z(µ).

Definition 3.2. Let R be a ring and µ ∈ LI(R). We define an undirected
graph Γ(µ) with vertices V (Γ(µ)) = Z(µ)∗ = Z(µ) − µ∗ = {x ∈ Z(µ) :
µ(x) 6= µ(0)}, where distinct vertces x and y are adjacent if and only if
µ(xy) = µ(0), where µ∗ = {x ∈ R : µ(x) = µ(0)}.
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Notation. For the graph Γ(µ) by diam(Γ(µ)), gr(µ) and dµ(a, b) we denote
the diameter, the girth and the distance between two distinct vertices a and
b, respectively.

Remark 3.3. Let R be a ring and µ ∈ LI(R). Clearly, if µ is a non-zero
constant, then Γ(µ) = ∅. So throughout this paper we shall assume unless
otherwise stated, that µ is not a non-zero constant. Thus there is a non-zero
element y of R such that µ(y) 6= µ(0).

Definition 3.4. Let R be a ring and µ ∈ LI(R). We say µ is an L-integral
domain if Z(µ) = µ∗.

Theorem 3.5. Let R be a ring and µ ∈ LI(R). Then the following hold:

(1) If µ is one to one, then Γ(R) = Γ(µ).

(2) µ is an L-integral domain if and only if Γ(µ) = ∅.

Proof. This follows directly from the definitions.

Definition 3.6. Let R be a ring and µ ∈ LI(R). An element a ∈ R is said
to be µ-nilpotent precisely when there exists a positive integer n such that
µ(an) = µ(0).

The set of all µ-nilpotents of R is denoted by nil(µ), and we set nil(µ)∗ =
nil(µ)− µ∗.

Remark 3.7. Assume that R is a ring and µ ∈ LI(R). Let µ(xn) = µ(0)
for some positive integer n. By Remark 3.3, there exists 0 6= y ∈ R such that
µ(y) 6= µ(0). Then µ(xny) ≥ µ(xn)∨µ(y) = µ(0)∨µ(y) = µ(0); so µ(xny) =
µ(0) by Lemma 2.3. Hence xn ∈ Z(µ). In particular, if µ(x) = µ(0), we
conclude that x ∈ Z(µ). Moreover, µ(xn+k) ≥ µ(xn) ∨ µ(xk) = µ(0); hence
µ(xn+k) = µ(0) for every positive integer k.

Example 3.8. Let R = Z8 denote the ring of integers modulo 8. We define
the mapping µ : R → [0, 1] by

µ(x) =

{

1 if x = 0̄

1/2 if x 6= 0̄.

Then µ ∈ LI(R) and Z(µ) = nil(µ) = {0̄, 2̄, 4̄, 6̄}.
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Lemma 3.9. Let R be a ring and µ ∈ LI(R). Then The following hold:

(1) nil(µ) is an ideal of R and µ∗ ⊆ nil(µ) ⊆ Z(µ).

(2) If Z(µ) is an ideal of R, then Z(µ) is a prime ideal of R.

Proof. (1) Let x, y ∈ nil(µ) and r ∈ R. Then µ(xn) = µ(0) = µ(ym) for
some positive integers n,m. So there are integers a0, a1, . . . , an+m such that
µ((x− y)m+n) = µ(a0x

n+m + · · ·+ amxnym + · · ·+ an+myn+m) ≥

µ(a0x
n+m) ∧ · · · ∧ µ(an+myn+m) ≥ µ(0) ∧ · · · ∧ µ(0) = µ(0),

and hence µ((x − y)m+n) = µ(0) by Lemma 2.3 and Remark 3.7. Thus
x − y ∈ nil(µ). Since µ((rx)n) ≥ µ(rn) ∨ µ(xn) ≥ µ(rn) ∨ µ(0) = µ(0),
we get rx ∈ nil(µ). Thus nil(µ) is an ideal of R. Clearly, µ∗ ⊆ nil(µ).
Finally, let x ∈ nil(µ). By Remark 3.7, we may assume that µ(x) 6= µ(0).
Since x ∈ nil(µ)∗, let n (n ≥ 2) be the least positive integer such that
µ(xn) = µ(0). As µ(xn−1) 6= µ(0), µ(x) 6= µ(0) and µ(xxn−1) = µ(0), we
conclude that x ∈ Z(R), as required.

(2) Let x, y ∈ R be such that xy ∈ Z(µ). Then there exists z ∈ R
such that µ(z) 6= µ(0) and µ(xyz) = µ(0). Therefore, if µ(yz) = µ(0),
then y ∈ Z(µ). If µ(yz) 6= µ(0), then x ∈ Z(µ). Thus Z(µ) is a prime
ideal of R.

Theorem 3.10. Let R be a ring and µ ∈ LI(R). Then the following hold:

(1) If x ∈ nil(µ)∗ and y ∈ Z(µ)∗, then dµ(x, y) ≤ 2 in Γ(µ).

(2) Let x ∈ Z(µ) − nil(µ), and let y ∈ nil(µ)∗ such that x|zyn for some
positive integer n and z ∈ R− Z(µ). Then dµ(x, y) ≤ 2 in Γ(µ).

Proof. (1) We may assume that x 6= y and µ(xy) 6= µ(0). Since y ∈ Z(µ)∗

and µ(xy) 6= µ(0), there is a z ∈ Z(µ)∗ − {x} such that µ(zy) = µ(0). Let
n be the least positive integer such that µ(xnz) = µ(0) since x ∈ nil(µ)∗.
If n = 1, then x − z − y is a path of length 2 from x to y. If n ≥ 2, then
x− xn−1z − y is a path between x and y. Thus dµ(x, y) ≤ 2.

(2) We may assume that x 6= y and µ(xy) 6= µ(0). Since x ∈ Z(µ) −
nil(µ) and µ(xy) 6= µ(0), there is a w ∈ Z(µ)∗ − {x, y} such that µ(xw) =
µ(0). Since x|zyn with µ(z) 6= µ(0) (otherwise, z ∈ µ∗ ⊆ Z(µ), a contradic-
tion) and µ(xw) = µ(0), we get µ(zynw) = µ(0). If µ(ynw) 6= µ(0), then
z ∈ Z(µ), a contradiction. So we conclude that µ(ynw) = µ(0). Let m be
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the least positive integer such that µ(wym) = µ(0). If m = 1, then x−w−y
is a path of length 2 from x to y. If m ≥ 2, then x − ym−1w − y is a path
between x and y. Thus dµ(x, y) ≤ 2 in Γ(µ).

Definition 3.11. Let R be a ring and µ ∈ LI(R). A µ-unit of R is an
element a ∈ R if µ(a) 6= µ(0) and for which there exist b ∈ R such that
µ(ab) = µ(1).

The set of all µ-units of R is denoted by U(µ).

Proposition 3.12. Let R be a ring and µ ∈ LI(R). Then the following
hold:

(1) If x ∈ U(µ), then µ(x) = µ(1).

(2) If x ∈ nil(µ), then 1 + x ∈ U(µ).

(3) If xn ∈ U(µ) for some positive integer n, then x ∈ U(µ).

Proof. (1) Since x is a µ-unit, there is an element y ∈ R such that
µ(1) = µ(xy) ≥ µ(x) ∨ µ(y) ≥ µ(x). Now the assertion follows from
Lemma 2.3.

(2) By assumption, there exists a positive integer n such that µ(xn) =
µ(0) and

µ(1 + xn) ≥ µ(1) ∧ µ(xn) = µ(1) ∧ µ(0) ≥ µ(1).

On the other hand, µ(1) = µ(1+ xn − xn) ≥ µ(1+ xn)∧µ(xn) = µ(1+ xn);
hence µ(1) = µ(1+xn) = µ((1+x)(1+x++̇(−1)n−1xn−1)). It follows that
1 + x is a µ-unit in R.

(3) Is clear.

Example 3.13. Let R denote the ring of integers modulo 8 and let µ be the
fuzzy ideal in Example 3.8. Then U(µ) = {1̄, 2̄, . . . , 7̄} and U(µ) ∩ Z(µ) =
{2̄, 4̄, 6̄}.

Theorem 3.14. Let R be a ring and µ ∈ LI(R). Let nil(µ) be a prime ideal
of R with nil(µ) $ Z(µ) and Z(µ) ∩ U(µ) = ∅. Then the set Z(µ)− nil(µ)
is not finite.
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Proof. Suppose not. If x ∈ Z(µ) − nil(µ), then there exist positive in-
tegers n,m (n > m ≥ 1) such that xm = xn, so µ(xm(1 − xn−m)) = µ(0);
hence xm(1 − xn−m) ∈ nil(µ). Then nil(µ) prime gives 1 − xn−m ∈ nil(µ),
and so by Proposition 3.11, x ∈ U(µ) ∩ Z(µ), which is a contradiction,
as needed.

Theorem 3.15. Let R be a ring and µ ∈ LI(R). Then V (Γ(µ))− nil(µ) is
totally disconnected if and only if nil(µ) is a prime ideal of R.

Proof. Suppose that V (Γ(µ)) − nil(µ) is totally disconnected. Let x, y /∈
nil(µ) such that xy ∈ nil(µ). So there exists a positive integer n such that
µ(xnyn) = µ(0). If µ(xn) = µ(0), then x ∈ nil(µ), which is a contradiction.
So we may assume that µ(xn) 6= µ(0) and µ(yn) 6= µ(0). If xn = yn, then
µ(x2n) = µ(0); thus x ∈ nil(µ), a contradiction. So we may assume that
xn 6= yn. Thus xn, yn ∈ V (Γ(µ)) − nil(µ) and xn − yn is a path from xn

to yn in Γ(µ) and this is a contradiction. Thus xy /∈ nil(µ) and nil(µ) is
a prime ideal of R. Conversely, assume that nil(µ) is a prime ideal of R,
and let x and y be two distinct elements of V (Γ(µ))− nil(µ). Suppose that
µ(xy) = µ(0). Then xy ∈ nil(µ); hence either x or y belong to nil(µ), which
is a contradiction.

Example 3.16. Let R = Z denote the ring of integers. We define the
mapping µ : R → [0, 1] by

µ(x) =

{

1/2 if x ∈ 2Z

1/5 otherwise

Then µ ∈ LI(R), Z(µ) = Z and nil(µ) = 2Z. Since nil(µ) is a prime ideal
of R, we get V (Γ(µ))− nil(µ) is totally disconnected by Theorem 3.15.

Theorem 3.17. Let R be a ring and µ ∈ LI(R). Then Γ(µ) is connected
with diam(Γ(µ)) ≤ 3.

Proof. Let x and y be distinct vertices of Γ(µ). We split the proof into
five cases.

Case 1. µ(xy) = µ(0). Then x− y is a path in Γ(µ).

Case 2. µ(xy) 6= µ(0), µ(x2) = µ(0), and µ(y2) = µ(0). Then

µ(x(xy)) = µ(x2y) ≥ µ(x2) ∨ µ(y) = µ(0) ∨ µ(y) = µ(0).
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Then Lemma 2.3 gives µ(x(xy)) = µ(0). Similarly, µ(y(xy)) = µ(0). Then
x− xy − y is a path in Γ(µ).

Case 3. µ(xy) 6= µ(0), µ(x2) = µ(0), and µ(y2) 6= µ(0). Then there
is an element b ∈ Z(µ)∗ − {x, y} with µ(by) = µ(0). If µ(bx) = µ(0), then
x − b − y is a path between x and y. If µ(bx) 6= µ(0), then x− bx− y is a
path. In either case there is a path between x and y.

Case 4. µ(xy) 6= µ(0), µ(x2) 6= µ(0), and µ(y2) = µ(0). The proof of
(4) is similar to that (3).

Case 5. µ(xy) 6= µ(0), µ(x2) 6= µ(0), and µ(y2) 6= µ(0). Then there are
a, b ∈ Z(µ)∗ − {x, y} with µ(ax) = µ(0) = µ(by). If a = b, then x− a− y is
a path. If a 6= b and µ(ab) 6= µ(0), then x − ab − y is a path. If a 6= b and
µ(ab) = µ(0), then x− a− b− y is a path between x and y.

Thus Γ(µ) is connected and diam(Γ(µ)) ≤ 3.

Theorem 3.18. Let R be a ring and µ ∈ LI(R). If Γ(µ) contains a cycle,
then gr(Γ(µ)) ≤ 4.

Proof. Suppose not. Assume that Γ(µ) contains a cycle x0 − x1 − · · · −
xn − x0 such that gr(Γ(µ)) > 4 (so n ≥ 4), µ(xixj) 6= µ(0) for all i, j ∈
{0, 1, . . . , n} with |i − j| ≥ 2 and µ(xixi+1) = µ(0). We split the proof into
three cases.

Case 1. x1xn−1 6= x0 and x1xn−1 6= xn. Then µ(x0xn) = µ(0) and
µ(x1xn−1) 6= µ(0) since |n− 2| ≥ 2, and we have

µ(x0x1xn−1) ≥ µ(x0x1) ∨ µ(xn−1) = µ(0) ∨ µ(xn−1) = µ(0).

Thus µ(x0x1xn−1) = µ(0) by Lemma 2.3. Similarly, µ(x1xn−1xn) = µ(0).
So x0 − x1xn−1 − xn − x0 is a cycle of length 3.

Case 2. x1xn−1 = x0. Since µ(x20) = µ(x0x1xn−1) ≥

µ(x0x1) ∨ µ(xn−1) = µ(0) ∨ µ(xn−1) = µ(0),

we get µ(x20) = µ(x0x1xn−1) = µ(0). We claim that there is an element
y of R such that µ(x0y) 6= µ(0) and x0y 6= x0. Suppose not. Then for
every y ∈ R, either µ(x0y) = µ(0) or x0y = x0. Take y = x3. Then by
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assumption, µ(x0x3) 6= µ(0) and x0x3 6= x0 (if x0x3 = x0, then µ(x0x2) =
µ(x0x2x3) ≥ µ(x0) ∨ µ(x2x3) = µ(0), so µ(x0x2) = µ(0) by Lemma 2.3,
a contradiction), which is a contradiction. So there is an element y of R
such that µ(x0y) 6= µ(0) and x0y 6= x0.

If x0y 6= x1, then µ(x0x1y) ≥ µ(x0x1) ∨ µ(y) = µ(0) ∨ µ(y) = µ(0),
so µ(x0x1y) = µ(0). Thus, we have either x0 − x1 − x0y − x0 is a cycle.
Similarly, if x0y = x1, then x0y 6= xn and µ(xnx0y) = µ(0) = µ(x0yx0).
Thus x0 − xn − x0y − x0 is a 3-cycle in Γ(µ) .

Case 3. x1xn−1 = xn. This necessarily forces µ(x2n) = µ(0) and there
exists an element y ∈ R such that µ(xny) 6= µ(0) and xny 6= xn. If xny 6=
xn, then xn − xny − xn−1 − xn is a cycle of length 3, and if xny = xn,
then xn − x0 − xny − xn is a 3-cycle in Γ(µ). Thus, every case leads to a
contradiction.

4. Γ(µ) when µ ∈ ℜR

Let R be a commutative ring with identity. A prime ideal P of R is called a
divided prime ideal of R if P ⊆ Rx for all x ∈ R−P . Let ℜR = {µ ∈ LI(R) :
nil(µ) is a non-zero divided prime ideal of R}. We are interested in the case
where the L-ideal µ satisfies µ∗ 6= nil(µ) ⊆ Rz for all z ∈ Z(µ)− nil(µ). In
particular, this condition holds when µ ∈ ℜR. In this case, we show that
nil(µ) is a divided prime ideal of R when nil(µ) $ Z(µ).

Theorem 4.1. Let R be a ring and µ ∈ LI(R) with µ∗ 6= nil(µ) ⊆ Rz for
all z ∈ Z(µ)− nil(µ). Then the following hold:

(1) nil(µ) is a prime ideal of R.

(2) nil(µ) ⊆
⋂

n≥1
Rzn for all z ∈ Z(µ)− nil(µ).

(3) If nil(µ) $ Z(µ), then nil(µ) is a divided prime ideal of R.

Proof. (1) If Z(µ) = nil(µ), then nil(µ) is a prime ideal of R by Lemma
3.9. So we may assume that nil(µ) $ Z(µ) and nil)(µ ⊆ Rz for all z ∈
Z(µ) − nil(µ). Suppose that nil(µ) is not prime. Then there exist x, y ∈
Z(µ) − nil(µ) such that xy ∈ nil(µ). So there exists a positive integer n
such that µ(xnyn) = µ(0). It is easy to see that there exists a positive
integer m < n such that µ(x(xmyn) = µ(0) with µ(xmyn) 6= µ(0); hence
x ∈ Z(µ). Similarly, y ∈ Z(µ). Since x, y /∈ nil(µ), we have µ(xk) 6= µ(0)
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and µ(yk) 6= µ(0) for all positive integer k. As x ∈ Z(µ), there is an element
x′ ∈ R with µ(x′) 6= µ(0) such that µ(xx′) = µ(0). Since µ(x2) 6= µ(0) and
µ(x2x′) = µ(0) (because µ(x2x′) ≥ µ(xx′)∨µ(x) = µ(0)∨µ(x) = µ(0), and so
we have equality by Lemma 2.3), we get x2 ∈ Z(µ)− nil(µ); hence nil(µ) ⊆
Rx2. Thus xy = x2d for some d ∈ R. Moreover, since µ(0) = µ(x2ndn)
and µ((xd)2n)) ≥ µ(x2ndn) ∨ µ(dn) = µ(0), we have µ((xd)2n)) = µ(0)
by Lemma 2.3; so xd ∈ nil(µ). Thus y − xd /∈ nil(µ) since y /∈ nil(µ).
As µ(x(y − xd)) = µ(xy − x2y) = µ(0) and µ(x) 6= µ(0), we must have
y − xd ∈ Z(µ) − nil(µ). Thus nil(µ) ⊆ R(y − xd), and hence xnil(µ) ⊆
R(x(y − xd)) = {0}. Let z ∈ nil(µ) − µ∗ ⊆ Rx2. Then z = x2r for some
r ∈ R. Then z ∈ nil(µ) gives µ(x2krk) = µ(0) for some positive integer k;
hence µ((xr)2k) ≥ µ(x2krk)∨µ(rk) = µ(0). It then follows from Lemma 2.3
that xr ∈ nil(µ). Thus z = x(xr) ∈ xnil(µ) = {0}, a contradiction. Hence
nil(µ) is a prime ideal of R.

(2) Let z ∈ Z(µ) − nil(µ). Then there exists z′ ∈ R with µ(z′) 6= µ(0)
and µ(zz′) = µ(0). Let n (n ≥ 2) be an integer. Then µ(znz′) ≥ µ(zn−1) ∨
µ(zz′) = µ(0), so µ(znz′) = µ(0). Thus zn ∈ Z(µ) for all positive integer n.
Since nil(µ) is a prime ideal of R by part (1) above, and thus nil(µ) ⊆ Rzn

for all integers n ≥ 1. Hence nil(µ) ⊆
⋂

n≥1
Rzn.

(3) Let z ∈ R − nil(µ) and w ∈ Z(µ) − nil(µ). There is an element
w′ ∈ R with µ(w′) 6= µ(0) and µ(ww′) = µ(0). Since µ(ww′z) ≥ µ(ww′) ∨
µ(z) = µ(0), we coclude that µ(ww′z) = µ(0);- thus wz ∈ Z(µ). So wz ∈
Z(µ)− nil(µ) since nil(µ) is prime, and thus nil(µ) ⊆ Rwz ⊆ Rz.

Corollary 4.2. Let R be a ring and µ ∈ LI(R). Then the following state-
ments are equivalent:

(1) µ∗ 6= nil(µ) ⊆ Rz for all z ∈ Z(µ)− nil(µ) and nil(µ) $ Z(µ).
[(2)] µ ∈ ℜR and nil(µ) $ Z(µ).

Proof. Apply Theorem 4.1.

Definition 4.3. Let R be a ring, µ ∈ LI(R), and J an ideal of R. Then
the subset annµ(J), the µ-annihilator of J with respect to µ, is defined by

annµ(J) = {y ∈ R : µ(yJ) = µ(0)} = {y ∈ R : µ(xy) = µ(0) for all x ∈ J}.

Lemma 4.4. Let R be a ring, µ ∈ LI(R), and J an ideal of R. Then
annµ(J) is an ideal of R.
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Proof. The proof is straightforward.

Theorem 4.5. Let µ ∈ ℜR, nil(µ) $ Z(µ), and N(µ) = {x ∈ R : µ(x2) =
µ(0)}.

(1) If µ(xy) = µ(0) for x ∈ Z(µ) − nil(µ) and y ∈ R, then y ∈ N(µ) ⊆
nil(µ) and annµ(x) ⊆ annµ(nil(µ)). Then the following hold:

(2) nil(µ) is infinite.

(3) V (Γ(µ))− nil(µ) is totally disconnected.

Proof. (1) By hypothesis, xy ∈ nil(µ), so y ∈ nil(µ) since nil(µ) is a divided
prime ideal of R by Theorem 4.1; hence nil(µ) ⊆ Rx. Thus y2 ∈ ynil(µ) ⊆
R(xy); thus y2 = xyr for some r ∈ R. Furthermore, µ(y2) ≥ µ(xy)∨µ(r) =
µ(0). This implies that µ(y2) = µ(0) by Lemma 2.3. Hence y ∈ N(µ).
Let z ∈ annµ(x). Then µ(xz) = µ(0), so znil(µ) ⊆ R(xz). Suppose that
u ∈ nil(µ). Then uz ∈ znil(µ) ⊆ R(xz); thus uz = xzs for some s ∈ R.
Therefore, since µ(uz) ≥ µ(xz) ∨ µ(s) = µ(0), we get µ(uz) = µ(0); hence
z ∈ annµ(nil(µ)), as needed.

(2) Suppose not. Let x ∈ Z(µ) − nil(µ). Then there exists z ∈ R with
µ(z) 6= µ(0) and µ(xz) = µ(0). By part (1) above, z ∈ nil(µ)∗. It then
follows from Theorem 4.1 that nil(µ) ⊆

⋂

n≥1
R(x2). So for every positive

integer n, we must have z ∈ R(xn). Then for each positive integer n, we have
z = znx

n for some zn ∈ R. Note that zn ∈ nil(µ)∗ since nil(µ) is a prime
ideal of R and xn /∈ nil(µ). Since nil(µ) is finite, there exist positive integers
n > m such that zm = zn, so z = znx

n = zmxn = xn−m(zmxm) = xn−mz.
Moreover, µ(z) = µ(xn−mz) ≥ µ(xz)∨µ(xn−m−1) = µ = (0)∨µ(xn−m−1) =
µ(0); hence µ(z) = µ(0), which is a contradiction.

(3) Since nil(µ) is a prime ideal of R, the graph V (Γ(µ)) − nil(µ) is
totally disconnected by Theorem 3.15.

5. L-chained rings

In this section, we continue the investigation of Γ(µ) when R is a chained
ring and µ ∈ LI(R). We say that a ring R is a chained ring if the (principal)
ideals of R are linearly ordered (by inclusion), equivalently, if either x|y or
y|x for all x, y ∈ R.
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Lemma 5.1. Let R be a ring and µ ∈ LI(R). If N(µ) = {x ∈ R : µ(x2) =
µ(0)} and x ∈ nil(µ)−N(µ), then µ(xy) = µ(0) for some y ∈ N(µ)∗ −{x},
where N(µ)∗ = N(µ)− µ∗.

Proof. Let n (n ≥ 3) be the least positive integer such that µ(xn) = µ(0)
and let y = xn−1. Then µ(xy) = µ(0), µ(y) 6= µ(0), and µ(y2) = µ(x2n−2).
It follows from Lemma 2.3 that µ(x2n−2) = µ(xnxn−2) ≥ µ(xn)∨µ(xn−2) =
µ(0) ∨ µ(xn−2) = µ(0); hence µ(y2) = µ(0) by Lemma 2.3. Clearly, x 6= y
since µ(x2) 6= µ(0), and the proof is complete.

Proposition 5.2. Let R be a chained ring, µ ∈ LI(R), N(µ) = {x ∈ R :
µ(x2) = µ(0)} and x, y ∈ R.

(1) If µ(xy) = µ(0), then either x ∈ N(µ) or y ∈ N(µ).

(2) If x, y ∈ N(µ), then µ(xy) = µ(0).

(3) If x, y ∈ Z(µ)−N(µ), then µ(xy) 6= µ(0).

(4) If x ∈ Z(µ)∗, then µ(xy) = µ(0) for some y ∈ N(µ)∗.

(5) If x1, x2, . . . , xn ∈ Z(µ)∗, then there is a y ∈ N(µ)∗ such that
µ(xiy) = µ(0) for every integer i, 1 ≤ i ≤ n.

(6) N(µ) is an ideal of R.

(7) N(µ) is a prime ideal of R if and only if N(µ) = nil(µ).

Proof. (1) We may assume that x|y. Then y = ax for some a ∈ R; hence
µ(y2) = µ(axy) ≥ µ(a)∨µ(xy) = µ(a)∨µ(0) = µ(0). Thus µ(y2) = µ(0) by
Lemma 2.3; so y ∈ N(µ).

(2) We may assume that x|y. Then y = ax for some a ∈ R; so µ(xy) =
µ(ax2) ≥ µ(a) ∨ µ(x2) = µ(0). Thus µ(xy) = µ(0).

(3) follows from the case (1) above.
(4) If x ∈ N(µ), then let y = x. If x ∈ Z(µ) −N(µ), then there exists

y ∈ R with µ(y) 6= µ(0) such that µ(xy) = µ(0). By the case (3) above, we
must have y ∈ N(µ)∗.

(5) Since R is a chained ring, there is an integer j, 1 ≤ j ≤ n, such that
xj |xi for all i, 1 ≤ i ≤ n. By the case (4) above, there exists y ∈ N(µ)∗ such
that µ(xjy) = µ(0); hence µ(xiy) = µ(0) for all i, 1 ≤ i ≤ n.

(6) Let x, y ∈ N(µ) and r ∈ R. Then µ(r2x2) ≥ µ(r2)∨µ(x2) = µ(r2)∨
µ(0) = µ(0); so µ(r2x2) = µ(0) by Lemma 2.3. Thus rx ∈ N(µ). Now we
need only show that x+y ∈ N(µ). By assumption, µ(x2) = µ(0) = µ(y2) and
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µ(xy) = µ(0) by part (2). Thus µ((x+y)2) ≥ µ(x2)∨µ(y2)∨µ(2xy) = µ(0);
so µ((x+ y)2) = µ(0) by Lemma 2.3. Thus N(µ) is an ideal of R.

(7) Let N(µ) is a prime ideal of R. Since the inclusion N(µ) ⊆ nil(µ) is
clear, we will prove the reverse inclusion. Let x ∈ nil(µ). Then µ(xn) = µ(0)
for some positive integer n. Let m (m ≥ 3) be the least positive integer
such that µ(xm) = µ(0), and let y = xm. Then µ(y2) = µ(x2m) = µ(0);
hence N(µ) prime gives x ∈ N(µ), and so we have equality. Conversely,
assume that xy ∈ N(µ) for some x, y ∈ R. Then by part (1) above, either
x2 ∈ N(µ) = nil(µ) or y2 ∈ N(µ) = nil(µ); thus either x ∈ N(µ) or
y ∈ N(µ), as needed.

Theorem 5.3. Let R be a chained ring and µ ∈ LI(R). If N(µ) = {x ∈
R : µ(x2) = µ(0)}, then V (Γ(µ))−N(µ) is totally disconnected.

Proof. Apply Proposition 5.2.

Theorem 5.4. Let R be a chained ring and µ ∈ LI(R). Then diam(Γ(µ))
≤ 2.

Proof. If |Z(µ)∗| = 1, then diam(Γ(µ)) = 0. So we may assume that
|Z(µ)∗| ≥ 2. Let N(µ) = {x ∈ R : µ(x2) = µ(0)}, and let x, y ∈ Z(µ)∗

with x 6= y. If x, y ∈ N(µ), then µ(xy) = µ(0) by Proposition 5.2 (2),
and thus dµ(x, y) = 1. If x ∈ N(µ) and y /∈ N(µ), then µ(yz) = µ(0) for
some z ∈ N(µ)∗ by Proposition 5.2 (4), and µ(xz) = µ(0) by Proposition
5.2 (2); hence x − z − y is a path from x to y. Thus dµ(x, y) ≤ 2. Finally,
let x, y /∈ N(µ). Then µ(xz) = µ(yz) = µ(0) by Proposition 5.2 (5). Thus
dµ(x, y) ≤ 2, and hence diam(Γ(µ)) ≤ 2.

Theorem 5.5. Let R be a chained ring and µ ∈ LI(R) with Z(µ) 6= {0},
and let N(µ) = {x ∈ R : µ(x2) = µ(0)}. Then exactly one of the following
three cases must occur:

(1) |Z(µ)∗| = 1. In this case, diam(Γ(µ)) = 0;

(2) |Z(µ)∗| ≥ 2 and N(µ) = Z(µ). In this case, diam(Γ(µ)) = 1;

(3) |Z(µ)∗| ≥ 2 and N(µ) $ Z(µ). In this case, diam(Γ(µ)) = 2.

Proof. This follows directly from Proposition 5.2 and Theorem 5.4.

Theorem 5.6. Let R be a chained ring and µ ∈ LI(R) with N(µ) = {x ∈
R : µ(x2) = µ(0)}. Then exactly one of the following three cases must occur:
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(1) |N(µ)∗| = 1. In this case, gr(Γ(µ)) = ∞;

(2) |N(µ)∗| = 2 and N(µ) = Z(µ). In this case, gr(Γ(µ)) = ∞;

(3) |N(µ)∗| = 2 and N(µ) $ Z(µ). In this case, gr(Γ(µ)) = 3;

(4) |N(µ)∗| ≥ 3. In this case, gr(Γ(µ)) = 3.

Proof. (1) Let N(µ)∗ = {x}. If N(µ)∗ = Z(µ)∗, then gr(Γ(µ)) = ∞. If
N(µ)∗ $ Z(µ)∗, then Γ(µ) is a star graph with center x by Proposition 5.2.
Thus gr(Γ(µ)) = ∞.

(2) By hypothesis, |Z(µ)∗| = 2; hence gr(Γ(µ)) = ∞.
(3) Let N(µ)∗ = {x, y}. If y 6= −x, then µ((x+ y)2) ≥ µ(x2) ∧ µ(y2) ∧

µ(xy) ∧ µ(xy) = µ(0) (note that by Proposition 5.2 (2), µ(xy) = 0); so
µ((x + y)2) = µ(0) by Lemma 2.3. It follows that x + y ∈ N(µ)∗. Thus,
either x + y = x or x + y = y, a contradiction. So we may assume that
y = −x. If z ∈ Z(µ)∗ − N(µ)∗, then x − y − z − x is a triangle since by
Proposition 5.2 (4), µ(xz) = µ(0) = µ(yz), so gr(Γ(µ)) = 3.

(4) If |N(µ)∗| ≥ 3, then gr(Γ(µ)) = 3 by 5.2 (2).

6. L-domainlike rings

We say that a ring R is domainlike ring if Z(R) = nil(R) [5]. In this section,
we investigate the properties of Γ(µ), where R is a µ-domainlike ring and
µ ∈ LI(R). We say that a ring R is µ-domainlike ring if Z(µ) = nil(µ).

Proposition 6.1. Let R be a ring and µ ∈ LI(R). Let x, y ∈ nil(µ)∗ be
distinct with µ(xy) 6= µ(0). Then there is a path of length 2 from x to y in
nil(µ)∗ ⊆ Z(µ)∗.

Proof. Since µ(xy) 6= µ(0) and x ∈ nil(µ)∗, let n (n ≥ 2) be the least
positive integer such that µ(xny) = µ(0). Also, since µ(xn−1y) 6= µ(0)
and y ∈ nil(µ)∗, let m (m ≥ 2) be the l–=east positive integer such
that µ(xn−1ym) = µ(0). Then µ(0) 6= µ(xn−1ym−1) ∈ nil(µ)∗. Thus
x− xn−1ym−1 − y is a path of length 2 from x to y in nil(µ)∗.

Theorem 6.2. Let R be a µ-domainlike ring and µ ∈ LI(R). Then
diam(Γ(µ)) ≤ 2.

Proof. Apply Proposition 6.1.
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Lemma 6.3. Let R be a ring and µ ∈ LI(R). If |Z(µ)∗| ≥ 3 and there exist
a, b in Z(µ)∗ such that µ(ab) = µ(0) = µ(a2) = µ(b2), then gr(Γ(µ)) = 3.

Proof. By assumption, if diam(Γ(µ)) = 1, then there exist x1, x2 and x3 in
Z(µ)∗ such that µ(x1x2) = µ(x2x3) = µ(x3x1) = µ(0); hence x1−x2−x3−x1
is a cycle of length 3. So we may assume that diam(Γ(µ)) > 1. Then
there exists some c ∈ Z(µ)∗ − {a, b} such that (without loss of generality)
µ(ac) = µ(0) 6= µ(bc). Since µ(a(a+b)) ≥ µ(a2)∧µ(ab) = µ(0)∧µ(0) = µ(0)
and µ(b(a+ b)) ≥ µ(ab) ∧ µ(ab) = µ(0), we must have µ(a(a+ b)) = µ(0) =
µ(b(a+ b)) by Lemma 2.3. Now we will show that µ(a+ b) 6= µ(0). Suppose
not. Then µ(c(a + b)) ≥ µ(c) ∨ µ(a + b) = µ(0); so µ(c(a + b)) = µ(0).
Therefore, µ(bc) = µ(bc+ac−ac) = µ(c(a+ b)−ac) ≥ µ(c(a+ b))∧µ(ac) =
µ(0); thus µ(bc) = µ(0), and this is a contradiction. So a+ b ∈ Z(µ)∗. Thus
a− b− a+ b− a is a cycle of length 3, as required.

Lemma 6.4. Let R be a ring and µ ∈ LI(R), and let a, b ∈ Z(µ)∗ be such
that µ(ab) = µ(0) = µ(a3) = µ(b3), µ(a2) 6= µ(0) and µ(b2) 6= µ(0). Then
gr(Γ(µ)) = 3.

Proof. By hypothesis, µ(ab2) ≥ µ(ab) ∨ µ(b) = µ(0) ∨ µ(b) = µ(0). Then
µ(ab2) = µ(0) by Lemma 2.3, and b2 6= a (otherwise, b4 = a2 and µ(a2) =
µ(b4) ≥ µ(b3) ∨ µ(b) = µ(0); so µ(a2) = µ(0), a contradiction). Similarly,
b2 6= b and b2 6= 0. Thus b − a − b2 − b is a 3-cycle in Γ(µ), and hence
gr(Γ(µ)) = 3.

Lemma 6.5. Let R be a ring and µ ∈ LI(R), and let a,∈ Z(µ)∗ be such
that µ(an) = µ(0) and µ(an−1) 6= µ(0) for some n ≥ 4. Then gr(Γ(µ)) = 3.

Proof. Let a be an element Z(µ)∗ such that µ(an) = µ(0) and µ(an−1) 6=
µ(0) for some n ≥ 5. If k > n, then µ(ak) ≥ µ(an) ∨ µ(ak−n) = µ(0);
so µ(ak) = µ(0) by Lemma 2.3. Then an−3 − an−2 − an−1 − an−3, and
hence gr(Γ(µ)) = 3. If there exists some a ∈ Z(µ)∗ with µ(a4) = µ(0)
and µ(a3) 6= µ(0), then consider the element a2 + a3. If a2 + a3 = a3,
then µ(a2) = µ(0) and µ(a3) ≥ µ(a) ∨ µ(a2) = µ(0); hence µ(a3) = µ(0), a
contradiction. Thus a2+a3 6= a3. Similarly, a2+a3 6= a2. If a2+a3 = 0, then
µ(a3) = µ(a(−a3) = µ(−a4) = µ(0); which is a contradiction. Therefore,
a2 + a3 6= 0. Clearly, a2 6= 0 (otherwise, µ(a3) = µ(0), a contradiction). If
µ(a2+a3) = µ(0), then µ(a3+a4) ≥ µ(a)∨µ(a2+a3) = µ(a)∨µ(0) = µ(0);
so µ(a3 + a4) = µ(0). It then follows that

µ(a3) = µ(a3 + a4 − a4) ≥ µ(a3 + a4) ∨ µ(−a4) = µ(0).
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Therefore, µ(a3) = µ(0), which is a contradiction. So, µ(a2 + a3) 6= µ(0).
Thus, we get the cycle a2 − a3 − (a2 + a3) − a2 with length 3. Thus,
gr(Γ(µ)) = 3.

Theorem 6.6. Let R be a µ-domainlike ring and µ ∈ LI(R). If Γ(µ)
contains a cycle, then gr(Γ(µ)) = 3.

Proof. Since Γ(µ) contains a cycle, |Z(µ)∗| ≥ 3 and diam(Γ(µ)) 6= 0. So by
Theorem 6.2, either diam(Γ(µ)) = 1 or diam(Γ(µ)) = 2. If diam(Γ(µ)) = 1,
then there exist x1, x2 and x3 in Z(µ)∗ such that µ(x1x2) = µ(x2x3) =
µ(x3x1) = µ(0); hence x1 − x2 − x3 − x1 is a cycle with length 3, and so
gr(Γ(µ)) = 3.

For the remainder of the proof we will assume that diam(Γ(µ)) = 2. As
Γ(µ) contains a cycle and diam(Γ(µ)) = 2, we may assume that |Z(µ)∗| ≥ 4.
Let a ∈ Z(µ)∗. Since Z(µ) = nil(µ), there exists a positive integer n such
that µ(an) = µ(0), but µ(an−1) 6= µ(0). If n ≥ 4, then gr(Γ(µ)) = 3 by
Lemma 6.5.

Now suppose that for all a ∈ Z(µ)∗ we have µ(a3) = µ(0). Since
diam(Γ(µ)) = 2, there exist a, b and c in Z(µ)∗ such that dµ(a, b) = 2 and
µ(ac) = µ(bc) = µ(0). We split the proof into three cases.

Case 1. µ(a2) = µ(0) 6= µ(b2). If µ(a2) = µ(0) = µ(c2), then by Lemma
6.3, gr(Γ(µ)) = 3. So we may assume that µ(c2) 6= µ(0). Since µ(b2) 6= µ(0),
µ(b3) = µ(0) and µ = (c3) = µ(0), Lemma 6.4 gives gr(Γ(µ)) = 3.

Case 2. µ(a2) = µ(0) = µ(b2). If µ(c2) = µ(0), then again Lemma 6.3
gives gr(Γ(µ)) = 3. So we may assume that µ(c2) 6= µ(0). Since µ(c2) 6=
µ(0), we get µ(c) 6= µ(0); hence c2 ∈ Z(µ)∗ (note that µ(c3) = µ(0)).
Clearly, either c2 ∈ Z(µ)∗ − {a} or c2 ∈ Z(µ)∗ − {b} (otherwise, c2 = a = b,
a contradiction). Since µ(c2a) ≥ µ(ac) ∨ µ(c) = µ(0) ∨ µ(c) = µ(0), we get
µ(ac2) = µ(0) by Lemma 2.3. Similarly, µ(c2b) = µ(0). If c2 ∈ Z(µ)∗ −{a},
then c−c2−a−c is a cycle of length 3. If c2 ∈ Z(µ)∗−{b}, then c−c2−b−c
is a cycle of length 3; hence in this case, gr(Γ(µ)) = 3.

Case 3. µ(a2) 6= µ(0) and µ(b2) 6= µ(0). If µ(c2) 6= µ(0), then gr(Γ(µ)) =
3 by Lemma 6.4. So we may assume that µ(c2) = µ(0). If there exists an
element x ∈ Z(µ)∗ such that c 6= x, µ(x2) = µ(0), and x− a− c or x− b− c,
then by an identical argument as the Case 2; we have gr(Γ(µ)) = 3. Since
Z(µ) = nil(µ) is an ideal of R by Lemma 3.9, we have that c + c ∈ Z(µ).
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Since µ(c2) = µ(0), we have µ((c + c)2) ≥ µ(c2) ∧ µ(c2) ∧ µ(2c2) = µ(0); so
µ((c+ c)2) = µ(0). Clearly, c+ c 6= c. If c+ c 6= 0, let x = c+ c, and we get
gr(Γ(µ)) = 3. Now suppose c+ c = 0. If either a2 or b2 is not equal to c, let
x = a2 or x = b2, and again we get gr(Γ(µ)) = 3. So we may assume that
a2 = b2 = c. By hypothesis, |Z(µ)∗| ≥ 4, diam(Γ(µ)) = 2, and µ(x3) = µ(0)
for all x ∈ Z(µ)∗. So there exists d ∈ Z(µ)∗ such that either µ(da) = µ(0),
µ(db) = µ(0) or µ(dc) = µ(0) (otherwise, Γ(µ) is not connected, and this
a contradiction). If µ(ad) = µ(0), if µ(db) = µ(0), if µ(dc) = µ(0) and
µ(d2) = µ(0) or if µ(dc) = µ(0) and d2 6= c, we can appeal to previous
cases to obtain gr(Γ(µ)) = 3. Now suppose µ(dc) = µ(0) and d2 = c. If
ab = a, then µ(a2) = µ(a2b2) = µ(c2) = µ(0), which is a contradiction.
Similarly, ab 6= b. Clearly, µ(ab) 6= µ(0). Thus, ab = c, for the otherwise
we would let x = ab above and have gr(Γ(µ)) = 3. Similarly, ad = bd = c.
Therefore, a(b−d) = 0. If b−d 6= c, we again have gr(Γ(µ)) = 3. So suppose
that b = d + c. Similarly, b(d − a) = 0. Again, if d − a 6= c, we will have
gr(Γ(µ)) = 3. Now, if d = a+ c, we have b = d+ c = a+ c+ c = a, which is
a contradiction. Thus, every case leads to gr(Γ(µ)) = 3.

Example 6.7. (1) Let R and µ be as in Example 3.8. Then R is a µ-
domainlike ring, gr(Γ((µ)) = ∞ and diam(Γ(µ)) = 2 since 2̄− 4̄− 6̄ is a path
of length 2 from 2̄ to 6̄ in Z(µ)∗ (see Theorem 6.2).

(2) Let R and µ be as in Example 3.16. By Lemma 6.3, since µ(2.4) =
µ(0) = µ(22) = µ(42), we must have gr(Γ(µ)) = 3. Moreover, as 2−4−6−8
is a path between 2 and 8, we have diam(Γ(µ)) = 3 by Theorem 3.17.
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