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Abstract

Let pn/qn = [a0; a1, . . . , an ] be the n-th convergent of the continued
fraction expansion of [a0; a1, a2, . . . ]. Leaping convergents are those of
every r-th convergent prn+i/qrn+i (n = 0, 1, 2, . . . ) for fixed integers r
and i with r ≥ 2 and i = 0, 1, . . . , r − 1. The leaping convergents for
the e-type Hurwitz continued fractions have been studied. In special,
recurrence relations and explicit forms of such leaping convergents have
been treated.

In this paper, we consider recurrence relations and explicit forms of
the leaping convergents for some different types of Hurwitz continued
fractions.
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1. Introduction

α = [a0; a1, a2, . . . ] denotes the regular (or simple) continued fraction
expansion of a real α, where
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α = a0 + θ0, a0 = ⌊α⌋ ,

1/θn−1 = an + θn, an = ⌊1/θn−1⌋ (n ≥ 1) .

The n-th convergent of the continued fraction expansion of α is denoted
by pn/qn = [a0; a1, . . . , an ]. It is well-known that pn and qn satisfy the
recurrence relation:

pn = anpn−1 + pn−2 (n ≥ 0), p−1 = 1, p−2 = 0,

qn = anqn−1 + qn−2 (n ≥ 0), q−1 = 0, q−2 = 1 .

Leaping convergents are those of every r-th convergent prn+i/qrn+i

(n = 0, 1, 2, . . . ) for fixed integers r and i with r ≥ 2 and i = 0,
1, . . . , r−1. Leaping convergents of the continued fraction expansion of e1/s

(s ≥ 1) have been considered. This continued fraction is one of the typical
Hurwitz continued fractions. Hurwitz continued fraction expansions have
the form

[a0; a1, . . . , an, Q1(k), . . . , Qp(k)]
∞
k=1

= [a0; a1, . . . , an, Q1(1), . . . , Qp(1), Q1(2), . . . , Qp(2), Q1(3), . . . ] ,

where a0 is an integer, a1, . . . , an are positive integers, Q1, . . . , Qp are
polynomials with rational coefficients which take positive integral values for
k = 1, 2, . . . and at least one of the polynomials is not constant. Various
Hurwitz continued fractions are mentioned in Section 3.

Elsner [1] studied arithmetical properties of leaping convergents
p3n+1/q3n+1 for the continued fraction of e = [2; 1, 2k, 1]∞k=1. Putting Pn =
p3n+1, Qn = q3n+1 (n ≥ 0), P−1 = P−2 = Q−1 = 1, Q−2 = −1, P−n = Pn−3

and Q−n = −Qn−3 (n ≥ 0), then for any integer n

Pn = 2(2n + 1)Pn−1 + Pn−2, Qn = 2(2n + 1)Qn−1 +Qn−2 .

The author [4] studied those p3n/q3n for e1/s = [1; s(2k − 1)− 1, 1, 1 ]∞k=1

(s ≥ 2). Putting Pn = p3n, Qn = q3n (n ≥ 0), P−n = Pn−1 and
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Q−n = −Qn−1 (n ≥ 0), then for any integer n

Pn = 2s(2n − 1)Pn−1 + Pn−2, Qn = 2s(2n − 1)Qn−1 +Qn−2 .

In the latter case, P̂n = p3n+1, Q̂n = q3n+1, P̃n = p3n+2 and Q̃n = q3n+2 do
not satisfy any recurrence relations of the type like Pn = SnPn−1 + Pn−2.
But they do some different type of relations. Moreover, all p’s and q’s are
explicitly expressed in the aspect of leaping convergents in [5]. Namely, for
n ≥ 1 we have

p3n = p∗3n−2 =
n
∑

k=0

(2n − k)!

k!(n − k)!
sn−k,

q3n = q∗3n−2 =
n
∑

k=0

(−1)k
(2n − k)!

k!(n − k)!
sn−k,

p3n−1 = p∗3n−3 = n

n
∑

k=0

(2n− k − 1)!

k!(n − k)!
sn−k,

q3n−1 = q∗3n−3 =
n−1
∑

k=0

(−1)k
(2n − k − 1)!

k!(n − k − 1)!
sn−k,

p3n−2 = p∗3n−4 =

n−1
∑

k=0

(2n − k − 1)!

k!(n − k − 1)!
sn−k,

q3n−2 = q∗3n−4 = n
n
∑

k=0

(−1)k
(2n− k − 1)!

k!(n − k)!
sn−k.

Note that all the six formulas for p∗3n−2, p∗3n−3, p∗3n−4, q∗3n−2, q∗3n−3

and q∗3n−4 correspond to s = 1 in the continued fraction expansion of e.

In this paper, we consider recurrence relations and explicit forms of the
leaping convergents for some different types of Hurwitz continued fractions.
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2. Recurrence relations of leaping convergents

In [5, Theorem 2], some three term relations were shown for a more general
continued fraction of [1;T1(k), T2(k), T3(k)]

∞
k=1. In [6, Theorem 1] these

results were further extended in the following form.

Lemma 1. Let the continued fraction be given by

[a0;T1(k), T2(k), . . . , Tr(k) ]
∞
k=1

with odd r, where each Tν(k) (ν = 1, 2, . . . , r) takes a positive integer for
k = 1, 2, . . . . Let α, β, γ, δ, α′, β′, γ′ and δ′ be integers defined by

(

α β

γ δ

)

=

(

α(n) β(n)

γ(n) δ(n)

)

=

(

T2(n) 1

1 0

)

. . .

(

Tr(n) 1

1 0

)

,

and

(

α′ β′

γ′ δ′

)

=

(

α(n − 1) β(n− 1)

γ(n− 1) δ(n− 1)

)

=

(

T2(n− 1) 1

1 0

)

. . .

(

Tr(n− 1) 1

1 0

)

,

respectively. Then we have for n ≥ 2

(γ ′T1(n) + δ′)xn = U(n)xn−1 + (γT1(n+ 1) + δ)xn−2 ,

where U(n) = (γ′T1(n) + δ′)(αT1(n + 1) + β) + γ ′(γT1(n + 1) + δ), and
xn = prn+1 or xn = qrn+1.

By shifting the position from T1(n) to Tν(n) (ν = 2, . . . , r), a more general
result was shown in [6, Theorem 2].
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Lemma 2. Let the continued fraction be given by

[a0;T1(k), T2(k), . . . , Tr(k) ]
∞
k=1,

where each Tν(k) (ν = 1, 2, . . . , r) takes a positive integer for k = 1, 2, . . . .
Let Ri,j(n) (i = 1, 2, . . . , r − 1; j = 1, 2, 3, 4) be integers defined by

(

Ri,1(n) Ri,2(n)

Ri,3(n) Ri,4(n)

)

=

(

Ti+1(n− 1) 1

1 0

)

. . .

(

Tr(n− 1) 1

1 0

)

·
(

T1(n) 1

1 0

)(

T2(n) 1

1 0

)

. . .

(

Ti(n) 1

1 0

)

with

(

R0,1(n) R0,2(n)

R0,3(n) R0,4(n)

)

=

(

T1(n − 1) 1

1 0

)(

T2(n− 1) 1

1 0

)

. . .

(

Tr(n− 1) 1

1 0

)

.

Then we have for n ≥ 2

Ri,3(n)xn

= (Ri,3(n)Ri,1(n+ 1) +Ri,4(n)Ri,3(n+ 1))xn−1 + (−1)r−1Ri,3(n+ 1)xn−2,

where xn = prn+i or xn = qrn+i.

These relations are entailed from the regular continued fractions.
On the contrary, it is not easy to find the continued fraction satisfying
a given three term relation. In addition, such relations can not be di-
rectly applied to the simple continued fraction which period is not pure.
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In [2], we consider the non-regular continued fractions in order to deal with
some more general three term relations. In this paper we shall consider
the leaping convergents of non-regular continued fractions and obtain their
characteristics. As the case of non-periodic simple continued fractions, [2,
Corollary 1] is stated as follows.

Lemma 3. Given a regular continued fraction

α = [a0; a1, a2, . . . , aρ, T1(k), T2(k), . . . , Tw(k) ]
∞
k=1 ,

where ρ ≥ 0 and w ≥ 1 are fixed integers. Then for any integers r and i
with r ≥ 2 and 0 ≤ ρ ≤ i < ρ+ r

(−1)r−1Dr−1(M − r) · zn

+
(

Dr−1(M)Dr(M − r) +Dr−1(M − r)Dr−2(M + 1)
)

· zn−1

−Dr−1(M) · zn−2 = 0
(

M = (n− 1)r + i+ 2
)

holds for zn = prn+i and zn = qrn+i. Here, for positive integers a and l
define D0(a) = 1 and

Dl(a)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−T (a) −1 0

1 −T (a+ 1) −1

0 1 −T (a+ 2)

. . . −1

1 −T (a+ l − 2) −1

1 −T (a+ l − 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,
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where

T (a) = Tw{(a−ρ−1)/w}+1

(⌈

a− ρ

w

⌉)

for a fixed positive integer w. {·} denotes the fractional part function and
⌈·⌉ the ceiling function.

3. Hurwitz continued fractions

Up to the present, the following numbers are well-known to yield Hurwitz
continued fractions.

e1/s= [1; (2k − 1)s− 1, 1, 1 ]∞k=1 (s ∈ Z, s > 1) .

ae1/a= [a+ 1; 2a− 1, 2k, 1 ]∞k=1 (a ∈ Z+) .

1

a
e1/a= [0; a − 1, 2a, 1, 2k, 2a − 1 ]∞k=1 (a ∈ Z, a > 1) .

e2= [7; 3k − 1, 1, 1, 3k, 12k + 6 ]∞k=1 .

e2/s= [1; 3ks − 5s+ 1

2
, 12ks − 6s, 3ks − s+ 1

2
, 1, 1 ]∞k=1 (s : odd, s ≥ 3) .

√

v

u
tanh

1√
uv

= [0; (4k − 3)u, (4k − 1)v ]∞k=1 (u, v ∈ Z+) .

I(a/b)+1

(

2

b

)

Ia/b

(

2

b

) = [0; a+ kb]∞k=1 ,

where Iλ(z) are the modified Bessel functions of the first kind, defined by
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Iλ(z) =
∞
∑

n=0

(z/2)λ+2n

n!Γ(λ+ n+ 1)
.

√

fracvu tan
1√
uv

= [0;u− 1, 1, (4k − 1)v − 2, 1, (4k + 1)u− 2 ]∞k=1 .

J(a/b)+1

(

2

b

)

Ja/b

(

2

b

) = [0; a+ b− 1, 1, a + (k + 1)b− 2 ]∞k=1 ,

where Jλ(z) are the Bessel functions of the first kind, defined by

Jλ(z) =
(z

2

)λ
∞
∑

n=0

(iz/2)2n

n!Γ(λ+ n+ 1)
.

It seems that each one of the above belongs to one of the types, e-type
(and/or e2-type), tanh-type and tan-type. No concrete example where the
degree of any polynomial exceeds 1 is known.

Recently, the author obtained more general Hurwitz continued fractions
of three types. In [5] and [7], the author constituted more general forms of
Hurwitz continued fractions of e-type, namely, some extended forms of the
continued fractions of e1/s, ae1/a and 1

ae
1/a.

[0;u(a + kb)− 1, 1, v − 1]∞k=1

=

∞
∑

n=0

u−2n−1v−2nb−n(n!)−1
n+1
∏

i=1

(a+ bi)−1

∞
∑

n=0

b−n(n!)−1

(

(uv)−2n
n
∏

i=1

(a+ bi)−1 − (uv)−2n−1
n+1
∏

i=1

(a+ bi)−1

)

=
0F1

(

;
a

b
+ 2;

1

u2v2b2

)

uv(a+ b)0F1

(

;
a

b
+ 1;

1

u2v2b2

)

− 0F1

(

;
a

b
+ 2;

1

u2v2b2

)
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and

[0; v − 1, 1, u(a + kb)− 1]∞k=1

=

∞
∑

n=0

b−n(n!)−1

(

u−2nv−2n−1
n
∏

i=1

(a+ bi)−1+u−2n−1v−2n−2
n+1
∏

i=1

(a+ bi)−1

)

∞
∑

n=0

(uv)−2nb−n(n!)−1
n
∏

i=1

(a+ bi)−1

=
0F1

(

;
a

b
+ 2;

1

u2v2b2

)

uv(a+ b)0F1

(

;
a

b
+ 1;

1

u2v2b2

)

− 0F1

(

;
a

b
+ 2;

1

u2v2b2

) .

It was e-type Hurwitz continued fractions that several recurrence
relations and explicit forms have been studied about the leaping
convergents in [1], [3, 4] and [5]. In the next two sections, we introduce
more general Hurwitz continued fractions of tanh-type, tan-type,
and obtain the explicit forms of the corresponding leaping convergents.
In Section 6 we show the explicit forms of the leaping convergents of e2/s,
which are slightly different from those of e-type. In Section 7 we prove the
theorem presented in the next section.

4. Explicit forms for the convergents of tanh-type Hurwitz

continued fractions

In [3], [7] the author obtained a generalized tanh-type Hurwitz continued
fraction as

[0;u(a + (2k − 1)b), v(a + 2kb) ]∞k=1

=

∞
∑

n=0

(n!)−1u−n−1(vb)−n
n+1
∏

i=1

(a+ bi)−1

∞
∑

n=0

(n!)−1(uvb)−n
n
∏

i=1

(a+ bi)−1
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=
0F1

(

;
a

b
+ 2;

1

uvb2

)

u(a+ b)0F1

(

;
a

b
+ 1;

1

uvb2

) ,

where

0F1(; c; z) =
∞
∑

n=0

1

(c)n

zn

n!

is the confluent hypergeometric limit function with (c)n = c(c + 1) . . . (c +
n− 1) (n ≥ 1) and (c)0 = 1. This continued fraction includes the cases of

√

v

u
tanh

1√
uv

and

I(a/b)+1

(

2

b

)

Ia/b

(

2

b

) .

By applying Lemmata 1 and 2, the three term relation about the leaping
convergents of [0;u(a+ (2k − 1)b), v(a + 2kb) ]∞k=1 is given by

(

a+ (n− 2)b
)

pn =
(

(

a+ (n− 2)b
)(

a+ (n− 1)b
)

(a+ nb)uv

+ 2
(

a+ (n− 1)b
)

)

pn−2 − (a+ nb)pn−4 (n ≥ 4) .

The same relation also holds for q’s instead of p’s. Now, such p’s and q’s
can be expressed explicitly as follows.

Theorem 1. Let pn/qn be the n-th convergent of the continued fraction

[0;u(a+ (2k − 1)b), v(a + 2kb) ]∞k=1 =
0F1

(

;
a

b
+ 2;

1

uvb2

)

u(a+ b)0F1

(

;
a

b
+ 1;

1

uvb2

) .
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Then, for n = 1, 2, . . . we have

p2n−1 =
n−1
∑

k=0

(

n+ k − 1

2k

)

(

n+k
∏

i=n−k+1

(a+ bi)

)

(uv)k,

p2n =

n−1
∑

k=0

(

n+ k

2k + 1

)

(

n+k+1
∏

i=n−k+1

(a+ bi)

)

ukvk+1,

q2n−1 =

n−1
∑

k=0

(

n+ k

2k + 1

)

(

n+k
∏

i=n−k

(a+ bi)

)

uk+1vk,

q2n =

n
∑

k=0

(

n+ k

2k

)

(

n+k
∏

i=n−k+1

(a+ bi)

)

(uv)k.

If a = −1 and b = 2, then by
∏τ

i=µ(2i − 1) = (2τ − 1)!!/(2µ − 3)!! we have
the following.

Corollary 1. Let pn/qn be the n-th convergent of the continued fraction par
√

v/u tanh 1/
√
uv = [0; (4k − 3)u, (4k − 1)v ]∞k=1. Then, for n = 1, 2, . . . we

have

p2n−1 =
n−1
∑

k=0

(

2n+ 2k − 1

4k

)(

4k

2k

)

(2k)!

22k
(uv)k,

p2n =
n−1
∑

k=0

(

2n+ 2k + 1

4k + 2

)(

4k + 2

2k + 1

)

(2k + 1)!

22k+1
ukvk+1,
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q2n−1 =

n−1
∑

k=0

(

2n + 2k

4k + 2

)(

4k + 2

2k + 1

)

(2k + 1)!

22k+1
uk+1vk,

q2n =

n
∑

k=0

(

2n+ 2k

4k

)(

4k

2k

)

(2k)!

22k
(uv)k.

5. Explicit forms for the convergents of tan-type Hurwitz

continued fractions

In [3], [7] the author also obtained a generalized tan-type Hurwitz continued
fraction as

[0;u(a+ b)− 1, 1, v(a + 2kb) − 2, 1, u(a + (2k + 1)b)− 2 ]

=

∞
∑

n=0

(−1)n(n!)−1u−n−1(vb)−n
n+1
∏

i=1

(a+ bi)−1

∞
∑

n=0

(−1)n(n!)−1(uvb)−n
n
∏

i=1

(a+ bi)−1

=
0F1

(

;
a

b
+ 2;

−1

uvb2

)

u(a+ b)0F1

(

;
a

b
+ 1;

−1

uvb2

) ,

including the cases of

√

v

u
tan

1√
uv

and

J(a/b)+1

(

2

b

)

Ja/b

(

2

b

) .
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Apply Lemma 3 to the leaping convergents of

[0;u(a + b)− 1, 1, v(a + 2kb)− 2, 1, u(a + (2k + 1)b) − 2 ]∞k=1 .

Note that T (M) = T3(n) = 1, T (M + 1) = T4(n) = u
(

a + (2n + 1)b
)

− 2,
T (M +2) = T1(n+1) = 1 and T (M +3) = T2(n+1) = v

(

a+(2n+2)b
)

−2.
For simplicity, put sn = a+nb. Then the three term recurrence relation for
i = 2 is given by

s2n−1p4n+2 =
(

s2n−1(us2n+1 − 1) + s2n+1(uvs2n−1s2n − us2n−1 − 1)
)

p4n−2

− s2n+1p4n−6 (n ≥ 2) .

The same relation also holds for q’s instead of p’s. The relations for i = 1,
3 and 4 are similarly obtained as follows.

(uvs2n−2s2n−1 − vs2n−2 − us2n−1)p4n+1

=
(

(uvs2n−2s2n−1 − vs2n−2 − us2n−1)(us2n+1 − 1)

+ (uvs2ns2n+1 − vs2n − us2n+1)(uvs2n−2s2n−1 − us2n−1 − 1)
)

p4n−3

− (uvs2ns2n+1 − vs2n − us2n+1)p4n−7 (n ≥ 2) ,

(uvs2n−1s2n − us2n−1 − vs2n)p4n+3

=
(

(uvs2n−1s2n − us2n−1 − vs2n)(vs2n+2 − 1)

+ (uvs2n+1s2n+2 − us2n+1 − vs2n+2)(uvs2n−1s2n − vs2n − 1)
)

p4n−1

− (uvs2n+1s2n+2 − us2n+1 − vs2n+2)p4n−5 (n ≥ 2) ,

s2np4n+4 =
(

s2n(vs2n+2 − 1) + s2n+2(uvs2ns2n+1 − vs2n − 1)
)

p4n

− s2n+2p4n−4 (n ≥ 2) .
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Now, such p’s and q’s can be expressed explicitly as follows.

Theorem 2. Let pn/qn be the n-th convergent of the continued fraction

[0;u(a + b)− 1, 1, v(a + 2kb)− 2, 1, u(a + (2k + 1)b)− 2 ]

=
0F1

(

;
a

b
+ 2;

−1

uvb2

)

u(a+ b)0F1

(

;
a

b
+ 1;

−1

uvb2

) .

Then, for n = 1, 2, . . . we have

p4n−3 = P2(n)− P1(n− 1), p4n−2 = P2(n),

q4n−3 = Q2(n)−Q1(n− 1), q4n−2 = Q2(n),

p4n−1 = P1(n)− P2(n), p4n = P1(n),

q4n−1 = Q1(n)−Q2(n), q4n = Q1(n)

where

P1(n) =

n−1
∑

k=0

(−1)n−k−1

(

n+ k

2k + 1

)

(

n+k+1
∏

i=n−k+1

(a+ bi)

)

ukvk+1 ,

P2(n) =

n−1
∑

k=0

(−1)n−k−1

(

n+ k − 1

2k

)

(

n+k
∏

i=n−k+1

(a+ bi)

)

(uv)k ,

Q1(n) =

n
∑

k=0

(−1)n−k

(

n+ k

2k

)

(

n+k
∏

i=n−k+1

(a+ bi)

)

(uv)k ,

Q2(n) =
n−1
∑

k=0

(−1)n−k−1

(

n+ k

2k + 1

)

(

n+k
∏

i=n−k

(a+ bi)

)

uk+1vk .
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If a = −1 and b = 2, then we have the following.

Corollary 2. Let pn/qn be the n-th convergent of the continued fraction
√

v/u tan 1/
√
uv = [0;u − 1, 1, (4k − 1)v − 2, 1, (4k + 1)u − 2 ]∞k=1. Then,

for n = 1, 2, . . . we have

p4n−3 = P ∗
2 (n)− P ∗

1 (n− 1), p4n−2 = P ∗
2 (n),

q4n−3 = Q∗
2(n)−Q∗

1(n − 1), q4n−2 = Q∗
2(n),

p4n−1 = P ∗
1 (n)− P ∗

2 (n), p4n = P ∗
1 (n),

q4n−1 = Q∗
1(n)−Q∗

2(n), q4n = Q∗
1(n),

where

P ∗
1 (n) =

n−1
∑

k=0

(−1)n−k−1

(

2n+ 2k + 1

4k + 2

)(

4k + 2

2k + 1

)

(2k + 1)!

22k+1
ukvk+1 ,

P ∗
2 (n) =

n−1
∑

k=0

(−1)n−k−1

(

2n+ 2k − 1

4k

)(

4k

2k

)

(2k)!

22k
(uv)k ,

Q∗
1(n) =

n
∑

k=0

(−1)n−k

(

2n+ 2k

4k

)(

4k

2k

)

(2k)!

22k
(uv)k ,

Q∗
2(n) =

n−1
∑

k=0

(−1)n−k−1

(

2n+ 2k

4k + 2

)(

4k + 2

2k + 1

)

(2k + 1)!

22k+1
uk+1vk .

6. Explicit forms for the convergents of e2/s

A three term relation of e2/s was given in [6]. Namely, for n ≥ 2
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A(n)xn = U(n)xn−1 +B(n)xn−2 ,

where xn = p5n+1 or xn = q5n+1, and

A(n) = γ(n− 1)T1(n) + δ(n− 1)

= 18
(

2s + 1
)2
n2 − 36

(

2s+ 1
)2
n+ 2

(

35s2 + 35s + 9
)

,

U(n) = (γ(n− 1)T1(n) + δ(n− 1))(α(n)T1(n+ 1) + β(n))

+ γ(n− 1)(γ(n)T1(n+ 1) + δ(n))

= 6(2s + 1)(2n − 1)
(

324
(

2s+ 1
)4
n4 − 648

(

2s + 1
)4
n3

+ 18
(

2s+ 1
)2(

68s2 + 68s+ 19
)

n2 + 18
(

2s+ 1
)2(

4s2 + 4s− 1
)

n

−
(

140s4 + 280s3 + 190s2 + 50s + 3
))

and

B(n) = γ(n)T1(n+ 1) + δ(n)

= 18
(

2s+ 1
)2
n2 − 2s(s + 1) .

In this section we shall show the explicit forms for those of e2/s. If s > 1 is
odd, the continued fraction expansion of e2/s is given by

e2/s = [1;
(6k − 5)s− 1

2
, (12k − 6)s,

(6k − 1)s− 1

2
, 1, 1 ]∞k=0 .

Let pn/qn be the n-th convergent of this continued fraction expansion.



Leaping convergents of Hurwitz continued fractions 117

Theorem 3. For n = 1, 2, . . . we have

p5n−4 =
1

(3n− 2)!

3n−2
∑

k=0

(3n+ k − 2)!

(

3n − 2

k

)

sk

2k+1
,

p5n−3 =
1

(3n− 1)!

3n−1
∑

k=0

(3n+ k − 1)!

(

3n − 1

k

)

(s

2

)k
,

p5n−2 =
1

(3n− 1)!

3n−1
∑

k=0

(3n+ k)!

(

3n− 1

k

)

(s

2

)k+1
,

p5n−1 =
1

(3n− 1)!

3n
∑

k=0

(3n+ k − 1)!

(

3n

k

)

(s

2

)k
,

p5n =
1

(3n)!

3n
∑

k=0

(3n + k)!

(

3n

k

)

(s

2

)k
,

and

q5n−4 =
1

(3n− 2)!

3n−2
∑

k=0

(−1)3n−k−2(3n + k − 2)!

(

3n− 2

k

)

sk

2k+1
,

q5n−3 =
1

(3n− 1)!

3n−1
∑

k=0

(−1)3n−k−1(3n + k − 1)!

(

3n− 1

k

)

(s

2

)k
,

q5n−2 =
1

(3n− 1)!

3n
∑

k=0

(−1)3n−k(3n + k − 1)!

(

3n

k

)

(s

2

)k
,

q5n−1 =
1

(3n− 1)!

3n−1
∑

k=0

(−1)3n−k−1(3n + k)!

(

3n− 1

k

)

(s

2

)k+1
,

q5n =
1

(3n)!

3n
∑

k=0

(−1)3n−k(3n+ k)!

(

3n

k

)

(s

2

)k
.



118 T. Komatsu

Note that the forms of q5n−2 and q5n−1 are interchanged to that of
p5n−2 and p5n−1 in addition to the minus signs for every second term.
Let p∗n/q

∗
n be the n-th convergent of the continued fraction of

e2 = [7; 3k − 1, 1, 1, 3k, 12k + 6 ]∞k=1. Then, for n ≥ 0 we have

p∗n
q∗n

=
pn+2

qn+2
,

where pn/qn is the n-th convergent of the continued fraction of e2/s men-
tioned above.

7. Proof of Theorem 1

We shall prove Theorem 1 by induction. The basic recurrence relation pn =
anpn−1 + pn−2 (n ≥ 0) is used repeatedly. The proofs of other theorems
are also done by induction in similar manners and omitted. The first initial
values match the result because p0 = 0, p1 = 1 and p2 = (a+2b)v. Suppose
that the identities hold for p2n−1 and p2n. Since

(

a+ (2n + 1)b
)

(

n+ k − 1

2k − 1

)

+

(

n+ k − 1

2k

)

(

a+ b(n− k + 1)
)

=

(

n+ k

2k

)

(

a+ b(n+ k + 1)
)

,

we have

u
(

a+ (2n + 1)b
)

(

n+ (k − 1)

2(k − 1) + 1

)





n+(k−1)+1
∏

i=n−(k−1)+1

(a+ bi)



uk−1vk

+

(

n+ k − 1

2k

)

(

n+k
∏

i=n−k+1

(a+ bi)

)

(uv)k

=

(

n+ k

2k

)

(

n+k+1
∏

i=n−k+2

(a+ bi)

)

(uv)k .
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Together with
(

n− 1

0

)

= 1 =

(

n

0

)

and

(

a+ (2n+ 1)b
)

(

2n− 1

2n− 1

) 2n
∏

i=2

(a+ bi) =

(

2n

2n

) 2n+1
∏

i=2

(a+ bi) ,

we obtain

p2n+1 = u
(

a+ (2n+ 1)b
)

p2n + p2n−1

=
n
∑

k=0

(

n+ k

2k

)

(

n+k+1
∏

i=n−k+2

(a+ bi)

)

(uv)k .

Next, suppose that the identities hold for p2n and p2n+1. Since

(

a+ (2n + 2)b
)

(

n+ k

2k

)

+

(

n+ k

2k + 1

)

(

a+ b(n− k + 1)
)

=

(

n+ k + 1

2k + 1

)

(

a+ b(n+ k + 2)
)

,

we have

v
(

a+ (2n+ 2)b
)

(

n+ k

2k

)

(

n+k+1
∏

i=n−k+2

(a+ bi)

)

(uv)k

+

(

n+ k

2k + 1

)

(

n+k+1
∏

i=n−k+1

(a+ bi)

)

ukvk+1
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=

(

n+ k + 1

2k + 1

)

(

n+k+2
∏

i=n−k+2

(a+ bi)

)

ukvk+1 .

Together with

(

a+ (2n+ 2)b
)

(

2n

2n

) 2n+1
∏

i=2

(a+ bi) =

(

2n + 1

2n + 1

) 2n+2
∏

i=2

(a+ bi) ,

we obtain

p2n+2 = v
(

a+ (2n+ 2)b
)

p2n+1 + p2n

=

n
∑

k=0

(

n+ k + 1

2k + 1

)

(

n+k+2
∏

i=n−k+2

(a+ bi)

)

ukvk+1 .

The proof for the identities of q’s are similarly done and omitted.
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