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1. Introduction

The concept of hyperstructure was first introduced by Marty [4] in 1934 at
the 8th congress of scandinavian Mathematicians and then he established
the definition of hypergroup [2] in 1935 to analyse its properties and applied
them to groups of rational algebraic functions. Also he was motivated to
introduce this structure to study several problems of the non-commutative
algebra. Then several researchers have been working on this new field of
modern algebra and developed it. M. Krasner [1], a great researcher in
this area, introduced the notions of hyperring and hyperfield to use it as
a technical tool in the study of the approximation of valued fields. Later
on it has been developed and generalized by other researchers. Then the
notion of the hypervector spaces was introduced by M. Scafati Tallini [8]
in 1988.

In the definition [16] of hypervector spaces, M. Scafati Tallini has con-
sidered the field as a usual field. In this paper, we have generalized the
definition of hypervector space by considering the field as a hyperfield and
considering the multiplication structure of a vector by a scalar as hyper-
structure like M. Scafati Tallini. We again call it a hypervector space. Then
we have established a few basic properties in this hypervector space and
thereafter the notions of linear combinations, linearly dependence, linearly
independence, Hamel basis, etc. are introduced and several important prop-
erties like deletion theorem, extension theorem etc. are developed.

2. Preliminaries

We quote some definitions and proofs of a few results which will be needed
in the sequel.

Definition 2.1 [5]. A hyperoperation over a non-empty set X is a mapping
of X ×X into the set of all non-empty subsets of X.

Definition 2.2 [5]. A non-empty set X with exactly one hyperoperation
′#′ is a hypergroupoid.

Let (X , #) be a hypergroupoid. For every point x ∈ X and every
non-empty subset A of X, we define x # A =

⋃

a∈A
{x # a}.

Definition 2.3 [5]. A hypergroupoid (X , #) is called a semihypergroup if
x # (y # z) = (x # y) #z for all x, y, z ∈ X.
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Definition 2.4 [5]. A hypergroupoid (X , #) is called a hypergroup if

(i) x# (y # z) = (x # y) #z.

(ii) ∃ 0 ∈ X such that for every a ∈ X, there is unique element b ∈ X for
which 0 ∈ a#b and 0 ∈ b#a. Here b is denoted by −a.

(iii) For all a, b, c ∈ X if a ∈ b#c, then b ∈ a # (−c).

Result 2.5 [5]. In a hypergroup (X , #), −(−a) = a, ∀a ∈ X.

Proof. Since 0 ∈ a # (−a) and 0 ∈ (−a) # a,∀a ∈ X i.e 0 ∈ (−a) # a
and 0 ∈ a # (−a), ∀a ∈ X. Hence −(−a) = a, ∀a ∈ X.

Result 2.6 [5]. 0# a = {a}, ∀a ∈ X, if (X , #) is a commutative hyper-
group.

Proof. Let a ∈ X, then 0 ∈ a # (−a)

⇒ a ∈ 0 # (−(−a)) [by Definition 2.4 ]

⇒ a ∈ 0 #a

we now show that 0 # a = {a}.

Let b ∈ 0 # a

⇒ 0 ∈ b# (−a) = (−a) #b

⇒ b = −(−a)

⇒ b = a.

This completes the proof.

Result 2.7 [5]. In a commutative hypergroup (X,#), 0 is unique.

Proof. Let there be another element e ∈ X such that

e ∈ a # (−a), e ∈ (−a) # a, ∀ a ∈ X.

⇒ a# e = {a}, ∀ a ∈ X.

⇒ 0# e = {0}. Again 0# e = {e}.

Hence e = 0.
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This completes the proof.

Note 2.8. In a hypergroup, if the element 0 is unique, then 0 is called the
zero element of the hypergroup and b is called the additive inverse of a if
0 ∈ a # b and 0 ∈ b #a.

3. Hypervector space

Definition 3.1. A hyperring is a non-empty set endowed with a hyper-
addition ‘⊕’ and a multiplication ‘.’ such that (X , ⊕) is a commutative
hypergroup and (X , .) is a semigroup and the multiplication is distributive
with respect of the hyperaddition, both from the left and from the right side
and a.0 = 0.a = 0, ∀ a ∈ X, where 0 is the zero element of the hyperring.

Definition 3.2. A hyperfield is a non-empty set X endowed with a hyper-
addition ‘⊕’ and a multiplication ‘.’such that

(i) (X , ⊕ , .) is a hyperring.

(ii) ∃ an element 1 ∈ X, called the identity element such that a.1 = a,
∀ a ∈ X.

(iii) For each non zero element a ∈ X, ∃ an element a−1 ∈ X such that
a.a−1 = 1.

(iv) a.b = b.a, ∀ a, b ∈ X.

Definition 3.3. Let (F ,⊕ , .) be a hyperfield and (V , #) be an additive
commutative hypergroup. Then V is said to be a hypervector space over the
hyperfield F if there exist a hyperoperation ∗ : F × V → P ∗ (V ) such
that

(i) a ∗ (α # β) ⊆ a ∗ α # a ∗ β, ∀ a ∈ F and ∀α , β ∈ V .

(ii) (a ⊕ b) ∗ α ⊆ a ∗ α # b ∗ α, ∀ a, b ∈ F and ∀α ∈V.

(iii) (a . b) ∗ α = a ∗ (b ∗ α), ∀ a, b ∈ F and ∀α ∈ V.

(iv) 1F ∗ α = {α} and 0 ∗ α = {θ}, ∀α ∈ V where 1F is the identity
element of F, 0 is the zero element of F and θ is the zero vector of V
and P ∗(V ) is the set of all non-empty subsets of V.



A note on hypervector spaces 79

A hypervector space is called strongly right distributive hypervector space

(respectively, strongly left distributive hypervector space), if eqality holds in
(i) (respectively, in (ii)).

A hypervector space is called a good hypervector space if equality holds
in both (i) and (ii).

Remark 3.4. By a hypervector space V, we mean a hypervector space
(V ,# , ∗) and by a hyperfield F, we mean a hyperfield (F ,⊕ , .).

Remark 3.5. Let V be a hypervector space over a hyperfield F. Let a , b ∈
F and α , β ∈ V, then by a ∗ α # b ∗ β, we mean (a ∗ α) # (b ∗ β).

Example 3.6. Let (F , ⊕ , .) be an hyperfield and V = F ×F. Let us define
a hyperoperation ′#′ on V as follows

(a1 , a2) # (b1 , b2) = (a1⊕b1 , a2⊕b2) = {(x, y) : x ∈ a1⊕b1 and y ∈ a2⊕b2}.

Then we prove that (V , #) is an additive commutative hypergroup.
Now we define a scalar multiplication ∗ : F × V → P ∗(V ) by a∗((a1 , a2))
= {(a.a1 , a.a2)}, where a ∈ F and (a1 , a2) ∈ V. Then we easily verify
that

(i) a ∗ ((a1 , a2) # (b1 , b2)) = (a ∗ (a1 , a2)) # (a ∗ (b1 , b2)),

(ii) (a⊕ b) ∗ (a1 , a2) = (a ∗ (a1 , a2)) # (b ∗ (a1 , a2)),

(iii) (a.b) ∗ (a1 , a2) = a ∗ (b ∗ (a1 , a2)),

(iv) 1F ∗ (a1 , a2) = (a1 , a2) and 0 ∗ (a1 , a2) = (0 , 0) = θ,

for all a, b ∈ F and for all (a1 , a2) , (b1 , b2) ∈ V.

Result 3.7. Let (V , # , ∗) be a hypervector space over a hyperfield
(F , ⊕ , .). Then

(i) k ∗ θ = {θ}, ∀ k ∈ F, θ being the zero vector of V.

(ii) Let k ∈ F and α ∈ V be such that k ∗ α = {θ}, then either k = 0, or
α = θ.

(iii) −α ∈ (−1F ) ∗ α , ∀ α ∈ V, 1F being the identity element of F.
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Proof.

(i) k ∗ θ = k ∗ (0 ∗ θ),

[ by axiom (iv), we have 0 ∗ α = θ , ∀ α ∈ V ] =(k . 0) ∗ θ = 0. θ = θ.

(ii) Let k ∈ F and α ∈ V be such that k ∗ α = {θ}.

If k = 0, then 0 ∗ α = θ.

If k 6= 0, then k−1 ∈ F.

Therefore k ∗ α = θ ⇒ k−1 ∗ (k ∗ α) = k−1 ∗ θ

⇒ (k−1 . k) ∗ α = θ ⇒ 1F ∗ α = θ ⇒ α = θ.

This completes the proof.

(iii) Let α ∈ V , then

(1F ⊕ (−1F )) ∗ α ⊆ 1F ∗ α # (−1F ) ∗ α = α # (−1F ) ∗ α.

Since 0 ∈ 1F ⊕ (−1F ) ⇒ θ = 0 ∗ α ∈ (1F ⊕ (−1F )) ∗ α

⇒ θ ∈ α # (−1F ) ∗ α.

Therefore −α ∈ (−1F ) ∗ α, ∀ α ∈ V.

4. Hypersubspaces

Definition 4.1. A subset W of a hypervector space V over a hyperfield F
is called a hypersubspace of V ifW is a hypervector space over F with the hy-
peroperations of addition and the scalar multiplication defined
on V .

Therefore a subset W of a hypervector space V is a hypersubspace of
V if and only if the following four properties hold.

(i) α # β ⊆ W, ∀α, β ∈ W ,

(ii) a ∗ α ⊆ W, ∀α ∈ W and ∀ a ∈ F,

(iii) W has a zero vector,

(iv) each vector of W has an additive inverse.
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Theorem 4.2. Let V be a hypervector space and W is a subset of V . Then

W is a hypersubspace of V if and only if the following three conditions hold:

(i) W is non-empty.

(ii) α # β ⊆ W , ∀α , β ∈ W.

(iii) a ∗ α ⊆ W,∀ a ∈ F and ∀α ∈ W.

Proof. If W is a hypersubspace of V , then obviously the conditions (i), (ii)
and (iii) hold.

Conversely, let W be a subset of V such that W satisfies the three
conditions (i), (ii) and (iii).

To proof that W is a hypersubspace of V . it is enough to prove that (1)
W has a zero vector. (2) Each vector in W has an additive inverse. Since
W is non-empty, let α ∈ W. Now 0 ∈ F , therefore by the condition (iii) we
get 0 ∗ α ⊆ W ⇒ θ ∈ W. Therefore W has a zero vector. Again, since
−1F ∈ F , therefore (−1F ) ∗ α ⊆ W ⇒ −α ∈ W. Hence each vector in W
has an additive inverse.

Theorem 4.3. W be a hypersubspace of a hypervector space V if and only

if (i) W is non-empty. (ii) a ∗ α # b ∗ β ⊆ W,∀a, b ∈ F and ∀ α, β ∈ W.

Proof. If W is a hypersubspace of V , then obviously W satisfies the con-
ditions (i) and (ii). Conversely, let W satisfy the conditions (i) and (ii).

Since 1F ∈ F, let α, β ∈ W , then by (ii) 1F ∗ α # 1F ∗ β ⊆ W ⇒
α # β ⊆ W. Let a ∈ F and α , β ∈ V , since 0 ∈ F , therefore by (ii)
a ∗ α # 0 ∗ β ⊆ W ⇒ a ∗ α # θ ⊆ W ⇒ a ∗ α ⊆ W [because (W , #) is
a commutative hypergroup]. Hence W is a hypersubspace of V .

Example 4.4. Let (F , ⊕ , .) be a hyperfield and V = F × F.

Then (V , # , ∗) is a hypervector space, where the hyperoperations
′#′ and ′∗′ are defined by (a1, a2) # (b1, b2) = (a1 ⊕ b1 , a2 ⊕ b2) =
{(x, y) : x ∈ a1 ⊕ b1 and y ∈ a2 ⊕ b2} and a ∗ (a1, a2) = {(a.a1, a.a2)},
∀ (a1, a2) , (b1, b2) ∈ V and ∀ a ∈ F .

Let W = F × {0} ⊆ V. We now show that W is a hypersubspace of V ,
since θ = (0, 0) ∈ W. Now let α = (a1, 0) , β = (b1, 0) ∈ W and a, b ∈ F .
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Then

a ∗ α # b ∗ β

= a∗(a1, 0) # b ∗ (b1, 0)

= {(a.a1, a.0)} # {(b.b1, b.0)}

= {(a.a1, 0)} # {(b.b1, 0)}

= (a.a1 ⊕ b.b1 , 0⊕ 0)

= (a.a1 ⊕ b.b1 , 0) ⊆ W [because a.a1 ⊕ b.b1 ⊆ F ].

Theorem 4.5. The intersection of two hypersubspaces of a hypervector

space V over a hyperfield F is again a hypersubspace of V .

Proof. Obvious.

Theorem 4.6. The intersection of any family of hypersubspaces of a hyper-

vector space V over a hyperfield F is again a hypersubspace of V .

Proof. Obvious.

In the above example, we take W1 = F ×{0} ⊆ V and W2 = {0}×F ⊆
V. Then by the same procedure of the above example, we can prove that W1

and W2 are hypersubspaces of V .

Let (a, 0) ∈ W1 and (0, b) ∈ W2.

Then (a, 0) # (0, b) = (a⊕ 0 , 0⊕ b) = (a , b).

But {(a, b)} is not a subset of W1 ∪W2.

Therefore W1 ∪W2 is not a hypersubspace of V .

Note 4.7. The union of two hypersubspaces of a hypervector space V is not

necessarily a hypersubspace of V .

Theorem 4.8. Let W1 and W2 be two hyperspaces of a hypervector space

V . Then we prove that W1 # W2 = ∪{α # β , α ∈ W1 , β ∈ W2} is a

hypersubspace of V .

Proof. Since θ ∈ W1 and θ ∈ W2. Then {θ # θ} ⊆ W1 # W2 ⇒ {θ} ⊆
W1 # W2 ⇒ θ ∈ W1 # W2, therefore W1 # W2 is non-empty.
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Let α, β ∈ W1 # W2, Then ∃α1, α2 ∈ W1 and β1, β2 ∈ W2 such that
α ∈ α1 # β1 and β ∈ α2 # β2. Let a, b ∈ F . Now

a ∗ α # b ∗ β ⊆ a ∗ (α1 # β1) # b ∗ (α2 # β2)

⊆ (a ∗ α1 # a ∗ β1) # (b ∗ α2 # b ∗ β2)

=a ∗ α1 # (a ∗ β1 # b ∗ α2) # b ∗ β2

=a ∗ α1 # (b ∗ α2 # a ∗ β1) # b ∗ β2

=(a ∗ α1 # b ∗ α2) # (a ∗ β1 # b ∗ β2)

⊆ W1 # W2.

Hence W1 # W2 is a hypersubspace of V .

Definition 4.9. If W1 and W2 are two hypersubspaces of a hypervector
space V , then the hypersubspace W1 # W2 is called the hyperlinear sum or
linear sum of the hyperspaces W1 and W2.

If W1 ∩W2 = {θ} then W1 # W2 is called the direct sum of the hyper-
subspaces W1 and W2.

Theorem 4.10. The hypersubspace W1 # W2 is the smallest hypersubspace

of V containing the hypersubspaces W1 and W2.

Proof. Let W be a hypersubspace of V such that W1 ⊆ W and W2 ⊆
W. Let γ ∈ W1 # W2, then ∃ α ∈ W1 and β ∈ W2 such that γ ∈ α # β.
Since W1 ⊆ W and W2 ⊆ W. Therefore α , β ∈ W. Again since W is a
hypersubspace of V .

Therefore α # β ⊆ W ⇒ γ ∈ W.

Hence W1 # W2 ⊆ W

This completes the proof.

If V is a strongly left distributive hypervector space over a hyperfield F , then
it can be easily prove that W = ∪{a ∗ α, a ∈ F} forms a hypersubspace of
V , where α ∈ V. This hypersubspace is said to be generated by the vector α
and α is said to be a generator of the hypersubspace W. This hypersubspace
is usually denoted by HL(α).
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Then from the previous theorem it can be easily proved that if α, β ∈ V,
then the set W =∪{a ∗ α # b ∗ β, a, b ∈ F} is a hypersubspace of V . This
hypersubspace is called the hyperlinear span of the vectors α and β, it is
usually denoted by HL(α, β).

Theorem 4.11. Let V be a strongly left distributive hypervector space over

the hyperfield F and α1, α2, . . . , αn ∈ V. Then

W = ∪{a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn / a1 , a2 , . . . , an ∈ F}

is a hypersubspace of V . In fact W is the smallest hypersubspace of V
containing α1, α2, . . . , αn.

Proof. Since F is non-empty, therefore W is non-empty. Let w1, w2 ∈ W.
Then ∃ a1, a2, . . . , an , b1, b2, . . . , bn ∈ F such that

w1 ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn

and

w2 ∈ b1 ∗ α1 # b2 ∗ α2 # . . .# bn ∗ αn,

therefore

w1#w2 ⊆ (a1 ∗ α1#a2 ∗ α2# . . .#an ∗ αn)#(b1 ∗ α1#b2 ∗ α2# . . .#bn ∗ αn)

or w1#w2 ⊆ (a1 ∗ α1#b1 ∗ α1)#(a2 ∗ α2#b2 ∗ α2)# . . .#(an ∗ αn#bn ∗ αn)

or w1 #w2 ⊆ (a1 ⊕ b1) ∗ α1 # (a2 ⊕ b2) ∗ α2 # . . .#(an ⊕ bn) ∗ αn.

Therefore w1 # w2 ⊆ W.

Next let w ∈ W and a ∈ F .

Then ∃ a1, a2 , . . . , an ∈ F such that

w ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn.

Therefore a ∗ w ⊆ a ∗ (a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn)

⊆ a ∗ (a1 ∗ α1) # a ∗ (a2 ∗ α2) # . . .# a ∗ (an ∗ αn)

= (a.a1) ∗ α1 # (a.a2) ∗ α2 # . . .#(a.an) ∗ αn ⊆ W .
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Therefore a ∗ w ⊆ W , ∀ a ∈ F and ∀ w ∈ W.

Hence W is a hypersubspace of V .

Next, since 0, 1 ∈ F . Let i ∈ {1, 2, 3, ..., n}.

Therefore

0 ∗ α1 # 0 ∗ α2 # . . .# 0 ∗ αi−1 # 1 ∗ αi # 0 ∗ αi+1 # . . .# 0 ∗ αn ⊆ W

⇒ θ # θ # . . .# θ # αi # θ . . .# θ ⊆ W

⇒ αi ∈ W , [ As θ # θ = {θ} and θ # αi = αi # θ = αi],

therefore αi ∈ W , for all i = 1, 2, ..., n.

Let P be a hypersubspace of V containing α1 , α2 , . . . , αn.

Let α ∈ W , then ∃ a1, a2, . . . , an ∈ F such that

α ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn ⊆ P.

Therefore α ∈ P ⇒ W ⊆ P.

Hence W is the smallest hyperspace of V containing α1, α2, . . . , αn.

Note 4.12. The linear combination of a null vector is the set {θ}.

5. Linear dependence and linear independence

Definition 5.1. Let V be a hypervector space over a hyperfield F and
S = {α1, α2, . . . , αn} be a finite subset of V . Then S is said to be linearly

dependent if there exist the scalars a1, a2, . . . , an ∈ F (not all zero) such
that θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn.

Otherwise S is said to be linearly independent. i.e, if S is linearly
independent and θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn.

Then a1 = a2 = . . . = an = 0

Definition 5.2. Let V be a hypervector space over a hyperfield F and
S ⊆ V. Then S is said to be linearly dependent if S contains a finite subset
which is linearly dependent. Otherwise S is linearly independent.
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Result 5.3. Any singleton set of non-null vector of a hypervector space V
is linearly independent.

Proof. Let α be a non-null vector of a hypervector space V . If possible let
θ ∈ a∗α for some a ∈ F . We now show that a = 0. If a 6= 0, then a−1 ∈ F .

Now, since θ ∈ a ∗ α ⇒ a−1 ∗ θ ⊆ a−1 ∗ (a ∗ α)

⇒ θ ∈ a−1 ∗ (a ∗ α) [ As a−1 ∗ θ = θ]

⇒ θ ∈ (a−1.a) ∗ α

⇒ θ ∈ 1F ∗ α

⇒ θ ∈ {α} ⇒ α = θ, which is a contradiction.

Hence a = 0. This completes the proof.

Result 5.4. Any set of vectors containing the null vector is always linearly
dependent.

Proof. Obvious.

Definition 5.5. Let V be a hypervector space over a hyperfield F. Then the
vector α ∈ V is said to be a linear combination of the vectors α1, α2, . . . , αn ∈
V if there exist a1, a2, . . . , an ∈ F such that

α ∈ a1 ∗ α1 # a2 ∗ α2 # . . . # an ∗ αn.

Theorem 5.6. Let V be a hypervector space over a hyperfield F and S =
{α1, α2, . . . , αn} be a subset of V . Then S is linearly dependent if and only

if at least one of S can be expressed as a linear combination of the remaining

other members of S.

Proof. Let S is linearly dependent. Then there exist a1, a2, . . . , an (not all
zero) ∈ F such that

(i) θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn, · · ·

since # is commutative. Therefore without loss of generality we assume that
a1 6= 0. Then a−1

1
∈ F . Therefore from (i) we get
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a−1

1
∗ θ ⊆ a−1

1
∗ (a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn)

⇒ {θ} ⊆
{

a−1

1
∗
(

a1 ∗ α1

)}

#
{

a−1

1
∗
(

a2∗α2

)}

# . . .#
{

a−1

1
∗
(

an∗αn

)}

=
(

a−1

1
.a1

)

∗ α1 #
(

a−1

1
.a2

)

∗ α2 # . . .#
(

a−1

1
.an

)

∗ αn

=1F ∗ α1 #
(

a−1

1
.a2

)

∗ α2 # . . .#
(

a−1

1
.an

)

∗ αn

=α1 #
(

a−1

1
.a2

)

∗ α2 # . . .#
(

a−1

1
.an

)

∗ αn

=α1 #
((

a−1

1
.a2

)

∗ α2 # . . .#
(

a−1

1
.an

)

∗ αn

)

.

Then ∃ an element β ∈ (a−1

1
.a2) ∗ α2 # . . .# (a−1

1
.an) ∗ αn such that θ ∈

α1 # β = β # α1.

This implies that α1 = −β. So α1 ∈ (−1F ) ∗ β. Therefore

α1 ∈ (−1F ) ∗ β ⊆ (−1F ) ∗
((

a−1

1
.a2

)

∗ α2 # . . .#
(

a−1

1
.an

)

∗ αn

)

⊆ (−1F )∗
((

a−1

1
.a2

)

∗α2

)

# . . .#
(

−1F
)

∗
((

a−1

1
.an

)

∗αn

)

=
((

−1F ).
(

a−1

1
.a2

))

∗α2

)

# . . .#
((

−1F ).
(

a−1

1
.an

))

∗αn

)

=
(

− a−1

1
.a2

)

∗ α2 # . . .#
(

− a−1

1
.an

)

∗ αn

i.e α1 ∈
(

−a−1

1
.a2

)

∗α2 # . . .#
(

−a−1

1
.an

)

∗αn ⇒ α1 ∈ HL(α2, α2, . . . , αn).

This completes the proof of the necessary part of the theorem.

Converse part.

Without loss of generality we assume that α1 ∈ Hl(α2, α3, . . . , αn).
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Then ∃ a2, a3, . . . , an ∈ F such that

α1 ∈ a2 ∗ α2 # a3 ∗ α3 # . . .# an ∗ αn

⇒ −α1 # α1 ⊆ −α1 # a2 ∗ α2 # a3 ∗ α3 # . . . # an ∗ αn

⇒ θ ∈ −α1 # a2 ∗ α2 # a3 ∗ α3 # . . .# an ∗ αn [ as θ ∈ −α1 # α1]

⇒ θ ∈ (−1F ) ∗ α1 # a2 ∗ α2 # a3 ∗ α3 # . . .# an ∗ αn

⇒ θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn, where a1 = −1F (6= 0).

Therefore the set S = {α1, α2, . . . , αn} is linearly dependent.

Theorem 5.7. The non-zero vectors α1, α2, . . . , αn of a hypervector space

are linearly dependent if and only if one of them, say αi, is a linear combi-

nation of the previous vectors, i.e αi ∈ a1 ∗α1 # a2 ∗α2 # . . .# ai−1 ∗αi−1,

for some a1, a2, . . . , ai−1 ∈ F .

Proof. First we suppose that α1, α2, . . . , αn are linearly dependent. Then
we get a set of scalars a1, a2, . . . , an(not all zero) ∈ F such that

(i) θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn · · ·

Let k be the largest integer such that ak 6= 0, here we see that k 6=1.

If k = 1, then we see that α1 = θ, which contradicts the fact that
α1, α2, . . . , αn are non-zero vectors. Since k be the largest integer such that
ak 6= 0, it follows that ai = 0 for all i, k < i ≤ n. Hence (i) reduces to the
following form

θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# ak ∗ αk

⇒ αk ∈ (−a−1

k
.a1) ∗ α1 # (−a−1

k
.a2) ∗ α2 # . . .# (−a−1

k
.ak−1) ∗ αk−1,

[By the procedure of the proof of the Theorem 5.6] conversely, we sup-
pose that αi ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# ai−1 ∗ αi−1, for some scalars
a1, a2, . . . , ai−1 ∈ F .
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Therefore the set {α1, α2, . . . , αi−1, αi} of vectors is linearly dependent.
So {α1, α2, . . . , αi−1, αi, αi+1, . . . , αn} of vectors is also linearly dependent.
This completes the proof.

Theorem 5.8 (Deletion Theorem). Let V be a strongly left distributive

hypervector space over the hyperfield F and V be generated by a linearly

dependent set {α1, α2, . . . , αn} ⊆ V. Then V can also be generated by a suit-

able proper subset of {α1, α2, . . . , αn}.

Proof. Since V is generated by α1, α2, . . . , αn, therefore we have V =
HL(α1, α2, . . . , αn).

Again, since {α1, α2, . . . , αn} is linearly dependent. It follows that one
of the vectors α1, α2, . . . , αn, say αi, can be expressed as a linear combination
of the remaining others.

Then we get the scalars c1, c2, . . . , ci−1, ci+1, . . . , cn ∈ F such that

αi ∈ c1 ∗ α1 # c2 ∗ α2 # . . .# ci−1 ∗ αi−1 # ci+1 ∗ αi+1 # . . .#cn ∗ αn.

We now show that

HL(α1, α2, . . . , αi−1, αi+1, . . . , αn) =HL(α1, α2, . . . , αi−1, αi, αi+1, ..., αn).

It is obvious that

HL(α1, α2, . . . , αi−1, αi+1, . . . , αn) ⊆ HL(α1, α2, . . . , αi, . . . , αn) = V.

Let α ∈ V, then there exist the scalars a1, a2, . . . , an such that

α ∈ a1 ∗ α1 # a2 ∗ α2 # . . . # ai ∗ αi# . . . # an ∗ αn

⇒ α ∈ a1 ∗ α1# a2 ∗ α2 # . . . # ai−1 ∗ αi−1# ai ∗ (c1 ∗ α1 # c2 ∗ α2 # . . .

# ci−1 ∗ αi−1 # ci+1 ∗ αi+1# . . . # cn ∗ αn)# ai+1 ∗ αi+1 # . . . # an ∗ αn

⇒ α ∈ a1∗α1 # a2∗α2 # . . . # ai−1∗αi−1 #(ai.c1)∗α1 #(ai.c2)∗α2 # . . .#

(ai.ci−1)∗αi−1#(ai.ci+1)∗αi+1# . . .#(ai.cn)∗αn)#ai+1∗αi+1# . . .#an∗αn

⇒ α ∈ (a1 ⊕ ai.c1) ∗ α1 #(a2 ⊕ ai.c2) ∗ α2# . . . #(ai−1 ⊕ ai.ci−1) ∗ αi−1#

(ai+1 ⊕ ai.ci+1) ∗ αi+1# . . . #(an ⊕ ai.cn) ∗ αn.
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Hence α ∈ HL(α1, α2, . . . , αi−1, αi+1, . . . , αn).

Therefore V =HL(α1, α2, . . . , αi−1, αi+1, . . . , αn).

This completes the proof.

Theorem 5.9. If S = {α1, α2, . . . , αn} is a linearly independent set of

generators of a hypervector space V , then no proper subset of S can be a

spanning set of V .

Proof. Obvious.

Theorem 5.10. Suppose {α1, α2, . . . , αn} generates a hypervector space V .

If {β1, β2, . . . , βm} is linearly independent, then m≤ n and V is generated

by a set of the form {β1, β2, . . . , βm, αi1 , αi2 , . . . , αin−m
}.

Proof. Obvious.

6. Basis or Hamel basis

Definition 6.1 Let V be a hypervector space over the hyperfield F and S
be a subset of V . S is said to be a basis, or Hamel basis if

(i) S is linearly independent.

(ii) Every elements of V can be expressed as a finite linear combination
of a few elements of S.

If S is a basis of the hypervector space V and S is finite, then the hypervector
space V is said to be a finite dimensional hypervector space and the number
of elements in S is called the dimension of the hypervector space V . Usually
the dimension of V is denoted by dim(V ).

Again if S is infinite Set, then V is said to be an infinite dimensional
hypervector space.

Theorem 6.2. If S = {α1, α2, . . . , αn} is a basis of a finite dimensional

strongly left distributive hypervector space V over a hyperfield F, then every

non-null vector α ∈ V has a unique representation.

Proof. Since S is a basis of V and α ∈ V, there exist a1, a2, . . . , an ∈ F
such that

(i) α ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# an ∗ αn. · · ·
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If possible let α ∈ b1∗α1 # b2∗α2 # . . .# bn∗αn, for some b1, b2, . . . , bn ∈ F .

Therefore

−α ∈ (−1F ∗ α) ⊆ (−1F ) ∗ (b1 ∗ α1 # b2 ∗ α2 # . . .# bn ∗ αn)

⇒ −α ∈ ((−1F ) ∗ (b1 ∗ α1)) # ((−1F ) ∗ (b2 ∗α2))# . . .# ((−1F ) ∗ (bn ∗αn))

= ((−1F ).b1) ∗ α1 # ((−1F ).b2) ∗ α2# . . .# ((−1F ).bn) ∗ αn

= (−b1) ∗ α1 # (−b2) ∗ α2# . . .# (−bn) ∗ αn.

Therefore

(ii) −α ∈ (−b1) ∗ α1 # (−b2) ∗ α2# . . .# (−bn) ∗ αn. · · ·

From (i) and (ii) we get

α#− α ⊆ a1 ∗ α1 # a2 ∗ α2 # . . .#an ∗ αn

# (−b1) ∗ α1 # (−b2) ∗ α2# . . .# (−bn) ∗ αn

Therefore

θ ∈ α#−α ⊆ (a1⊕ (−b1))∗α1 # (a2⊕ (−b2))∗α2 # . . .#(an⊕ (−bn))∗αn.

Since {α1, α2, . . . , αn} is a basis of V and

θ ∈ (a1 ⊕ (−b1)) ∗ α1 # (a2 ⊕ (−b2)) ∗ α2 # . . .#(an ⊕ (−bn)) ∗ αn.

Then 0 ∈ ai ⊕ (−bi), for all i = 1, 2, . . . , n. Again (F , ⊕) is commutative.

Therefore

ai = −(−bi), for all i = 1, 2, . . . , n i.e ai = bi, for all i = 1, 2, . . . , n.

This completes the proof.
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Theorem 6.3 (Extension Theorem). A linearly independent set of vectors

in a finite dimension hypervector space V over a hyperfield F is either a

basis, or it can be extended to a basis of V.

Proof. Let S = {α1, α2, . . . , αn} be a linearly independent set of vectors
in V.

Now HL(S) being a smallest hypersubspace of V containing S. It
therefore follows that HL(S) ⊆ V.

If HL(S) = V, then S is a basis of V.

If HL(S) is a proper hypersubspace of V, we show that S can be extended
to a basis of V.

Let α ∈ V \ HL(S) and S1 = {α1, α2, . . . , αn, α}. Now we consider the
following relation:

(i) θ ∈ c1 ∗ α1 # c2 ∗ α2 # . . . . #cn ∗ αn # c ∗ α, · · ·

for some c1, c2, . . . , cn, c ∈ F. We now claim that c = 0.

If c6= 0, then c−1 ∈ F.

Therefore

c−1 ∗ θ ⊆ c−1 ∗ (c1 ∗ α1 # c2 ∗ α2 # . . . . #cn ∗ αn # c ∗ α)

⇒ θ ∈ (c−1.c1) ∗ α1 # (c−1.c2) ∗ α2 # . . . . #(c−1.cn) ∗ αn # (c−1.c) ∗ α

⇒ θ ∈ (c−1.c1) ∗ α1 # (c−1.c2) ∗ α2 # . . . . #(c−1.cn) ∗ αn # 1F ∗ α

⇒ θ ∈ (c−1.c1) ∗ α1 # (c−1.c2) ∗ α2 # . . . . #(c−1.cn) ∗ αn # α.

Then ∃ β ∈ (c−1.c1) ∗ α1 # (c−1.c2) ∗ α2 # . . . . #(c−1.cn) ∗ αn such that
θ ∈ β # α = α # β ⇒ α = −β ∈ (−1F ∗ β).

Therefore

α ∈ (−1F ) ∗ ((c
−1.c1) ∗ α1 # (c−1.c2) ∗ α2 # . . . . #(c−1.cn) ∗ αn)
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⇒ α ∈ (−c−1.c1) ∗ α1 # (−c−1.c2) ∗ α2 # . . . . #(−c−1.cn) ∗ αn

⇒ α ∈ HL(α1, α2, . . . , αn)

i.e α ∈ HL(S), which is contradiction, since α ∈ V \HL(S).

Hence we see that c = 0.

Substituting c = 0 in (i) we get

θ ∈ c1 ∗ α1 # c2 ∗ α2 # . . . . #cn ∗ αn # 0 ∗ α

⇒ θ ∈ c1 ∗ α1 # c2 ∗ α2 # . . . . #cn ∗ αn # θ

⇒ θ ∈ c1 ∗ α1 # c2 ∗ α2 # . . . . #cn ∗ αn

⇒ c1 = c2 = . . . = cn = 0, as α1, α2, . . . , αn are linearly independent.

Thus we observe that S1 is linearly independent.

If HL(S1) = V, then S1 is a basis of V and the theorem is proved.

If HL(S1) is a proper subspace of V, then again we can take a vector
β ∈ V \HL(S1) and proceed as before.

Since V is a finite dimensional hypervector space, after a finite number
of steps we come to a finite set of linearly independent vectors which gener-
ate the hypervector space V.

This completes the proof.

Theorem 6.4. If {α1, α2, . . . , αn} is a maximal linearly independent subset

of a hypervector space V, then {α1, α2, . . . , αn} is a basis of V.

Proof. Obvious.

Theorem 6.5. Let U and W be two finite dimensional hypersubspace of

a strongly left distributive hypervector space V over the hyperfield F, then
U # W is also a finite dimensional hypersubspace of V and

dim(U # W ) = dim(U) + dim(W )− dim(U ∩W ).
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Proof. Here we see that U ∩ W is a hypersubspace of both U
and W. So U ∩ W is a finite dimensional hypersubspace of V. Let
dim(U ∩W ) = r, dim(U) = m and dim(W )=n. then we have r ≤ m,n.

Again let {α1, α2, . . . , αr} be a basis of U ∩W .

Since {α1, α2, . . . , αr} is a linearly independent set of vectors in U and
r ≤ m = dim(U), then it follows that either {α1, α2, . . . , αr} is a basis of U
or it can be extended to a basis for U.

Let {α1, α2, . . . , αr, β1, β2, . . . , βm−r} be a basis for U.

By similar arguments we can suppose that {α1, α2, . . . , αr, γ1, γ2, . . . , γn−r}
is a basis of W.

Let S = {α1, α2, . . . , αr, β1, β2, . . . , βm−r, γ1, γ2, . . . , γn−r}.We now show
that S is a basis of U # W.

First we consider the following relation

(i)
θ ∈ a1 ∗ α1#a2 ∗ α2# . . .#ar ∗ αr # b1 ∗ β1 # b2 ∗ β2

# . . .#bm−r ∗ βm−r # c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r, · · ·

for some a1, a2, . . . , ar, b1, b2, . . . , bm−r, c1, c2, . . . , cn−r ∈ F .

Then

(ii)
∃α ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# ar ∗ αr

# b1 ∗ β1 # b2 ∗ β2 # . . .# bm−r ∗ βm−r · · ·

So θ ∈ α # c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r.

Then ∃β ∈ c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r.

So θ ∈ α # β = β # α, as # is commutative.
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(iii)
⇒ −α = β

⇒ −α ∈ c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r · · ·

(iv)

⇒ (−1F ) ∗ (−α) ⊆ (−1F ) ∗ (c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r)

⇒ −(−α) ∈ ((−1F ).c1) ∗ γ1 # ((−1F .c2)

∗ γ2 # . . .# ((−1F ).cn−r) ∗ γn−r

⇒ α ∈ (−c1) ∗ γ1 # (−c2) ∗ γ2 # . . .# (−cn−r) ∗ γn−r · · ·

From (ii) and (iv) we see that α ∈ U ∩W .

Since α ∈ U ∩W and {α1, α2, . . . , αr} is a basis of U ∩W, we have

(v) α ∈ d1 ∗ α1 # d2 ∗ α2 # . . .# dr ∗ αr, · · ·

for some d1, d2, . . . , dr ∈ F .

Therefore from (iii) and (v) we get

α # (−α) ⊆ d1 ∗ α1 # d2 ∗ α2 # . . .# dr

∗ αr # c1 ∗ γ1 # c2 ∗ γ2# . . .# cn−r ∗ γn−r

⇒ θ ∈ d1 ∗ α1 # d2 ∗ α2 # . . .# dr

∗ αr # c1 ∗ γ1 # c2 ∗ γ2 # . . .# cn−r ∗ γn−r

⇒ d1 = d2 = . . . = dr = c1 = c2 = . . . = cn−r = 0,

as {α1, α2, . . . , αr, γ1, γ2, . . . , γn−r}
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is a linearly independent set of vectors.

Then the relation (i) reduces to the following

θ ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# ar

∗αr # b1 ∗ β1 # b2 ∗ β2 # . . .# bm−r ∗ βm−r

⇒ a1 = a2 = . . . = ar = b1 = b2 = . . . = bm−r = 0,

as {α1, α2, . . . , αr, β1, β2, . . . , βm−r}

is a linearly independent set of vectors.

Thus S is a linearly independent set of vectors V.

We now show that S generates U # W.

Let α ∈ U # W.

Then we have α ∈ β # γ, for some β ∈ U and for some γ ∈ W.

Since β ∈ U and {α1, α2, . . . , αr, β1, β2, . . . , βm−r} is a basis of U.

Therefore

β ∈ a1 ∗ α1 # a2 ∗ α2 # . . .# ar ∗ αr # b1 ∗ β1 # b2 ∗ β2

# . . .# bm−r ∗ βm−r, for some a1, a2, . . . , ar, b1, b2, . . . , bm−r ∈ F.

Again since γ ∈ W and {α1, α2, . . . , αr, γ1, γ2, . . . , γn−r} is a basis of W.

Therefore

γ ∈ c1 ∗ α1 # c2 ∗ α2 # . . .# cr ∗ αr # d1 ∗ γ1# d2 ∗ γ2

# . . .# dn−r ∗ γn−r, for some c1, c2, . . . , cr, d1, d2, . . . , dn−r ∈ F.

Now α ∈ β # γ.
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Therefore

α ∈ a1 ∗ α1#a2 ∗ α2# . . .#ar ∗ αr#b1 ∗ β1#b2 ∗ β2# . . .#bm−r ∗ βm−r

# c1 ∗ α1 # c2 ∗ α2 # . . .# cr ∗ αr # d1 ∗ γ1 # d2 ∗ γ2 # . . .# dn−r ∗ γn−r

⇒ α ∈ (a1 ⊕ c1) ∗ α1 # (a2 ⊕ c2) ∗ α2 # . . .# (ar ⊕ cr) ∗ αr # b1

∗ β1 # b2 ∗ β2 # . . .# bm−r ∗ βm−r # d1 ∗ γ1 # d2 ∗ γ2 # . . .# dn−r ∗ γn−r.

This shows that every vector of U # W can be expressed as a linear combi-
nation of the vectors of S. Hence S is a basis of U # W, which proves that
U # W is a finite dimensional hypervector space of V.

Now

dim(U # W ) = |S|

= r +m− r + n− r

= m+ n− r

= dim(U) + dim(W )− dim(U ∩W ).

This completes the proof.
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