ON MAXIMAL IDEALS OF PSEUDO-BCK-ALGEBRAS

Andrzej Walendziak
Institute of Mathematics and Physics
University of Podlasie
3 Maja 54, 08-110 Siedlce, Poland
e-mail: walent@interia.pl

Abstract

We investigate maximal ideals of pseudo-BCK-algebras and give some characterizations of them.

Keywords: pseudo-BCK-algebra, (maximal) ideal.
2000 Mathematics Subject Classification: 03G25; 06F35.

1. Introduction

In 1958, C.C. Chang [1] introduced MV (Many Valued) algebras. In 1966, Y. Imai and K. Iséki [12] introduced the notion of BCK-algebra. In 1996, P. Hájek ([9], [10]) invented Basic Logic (BL for short) and BL-algebras, structures that correspond to this logical system. The class of BL-algebras contains the MV-algebras. G. Georgescu and A. Iorgulescu [5] (1999), and independently J. Rachůnek [20] introduced pseudo-MV-algebras which are a noncommutative generalization of MV-algebras. After pseudo-MV-algebras, the pseudo-BL-algebras [6] (2000), and the pseudo-BCK-algebras [7] (2001) were introduced and studied. The paper [7] contains basic properties of pseudo-BCK-algebras and their connections with pseudo-MV-algebras and with pseudo-BL-algebras. Y.B. Jun [17] obtained some characterizations of pseudo-BCK-algebras. A. Iorgulescu ([13], [14]) studied particular classes of pseudo-BCK-algebras.
K. Iséki and S. Tanaka ([16]) introduced the notion of ideals in BCK-algebras and investigated some interesting and fundamental results. R. Halaš and J. Kühr [11] applied this concept to pseudo-BCK-algebras. (They called ideals as deductive systems.) In this paper, we give some characterizations of maximal ideals in pseudo-BCK-algebras.

2. Preliminaries

The notion of pseudo-BCK-algebras is defined by Georgescu and Iorgulescu [7] as follows:

Definition 2.1. A pseudo- $B C K$-algebra is a structure $(A ; \leq, *, \circ, 0)$, where " \leq " is a binary relation on a set $A, " * "$ and " \circ " are binary operations on A and " 0 " is an element of A, verifying the axioms: for all $x, y, z \in A$,

$$
\begin{array}{ll}
(\mathrm{pBCK} & 1) \\
(\mathrm{pBCK}-2) & (x * y) \circ(x * z) \leq z * y, \quad(x \circ y) *(x \circ z) \leq z \circ y \\
(\mathrm{pBCK}-3) & x \leq x \\
(\mathrm{pBCK}-4) & 0 \leq x \\
(\mathrm{pBCK}-5) & \quad(x \leq y \text { and } y \leq x) \Rightarrow x=y \circ \\
(\mathrm{pBCK}-6) & x \leq y \Leftrightarrow x * y=0 \Leftrightarrow x \circ y=0
\end{array}
$$

Note that every pseudo-BCK-algebra satisfying $x * y=x \circ y$ for all $x, y \in A$ is a BCK-algebra.

Proposition $2.2([7])$. Let $(A ; \leq, *, \circ, 0)$ be a pseudo-BCK-algebra. Then for all $x, y, z \in A$:
(a) $x \leq y$ and $y \leq z \Rightarrow x \leq z$;
(b) $x * y \leq x, \quad x \circ y \leq x$;
(c) $(x * y) \circ z=(x \circ z) * y ;$
(d) $x * 0=x=x \circ 0$;
(e) $\quad x \leq y \Rightarrow x * z \leq y * z, \quad x \circ z \leq y \circ z$.

If $(A ; \leq, *, \circ, 0)$ is a pseudo-BCK-algebra, then $(A ; \leqslant)$ is a poset by (pBCK-3), (pBCK-5), and Proposition 2.2 (a). The underlying order \leqslant can be retrieved via (pBCK-6) and hence we may equivalently regard $(A ; \leq, *, \circ, 0)$ to be an algebra $(A ; *, \circ, 0)$. J. Kühr [18] showed that pseudo-BCK-algebras as algebras $(A ; *, \circ, 0)$ of type $\langle 2,2,0\rangle$ form a quasivariety which is not a variety.

Throughout this paper A will denote a pseudo-BCK-algebra. For $x, y \in$ A and $n \in \mathbb{N}_{0}\left(\mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ we define $x *^{n} y$ inductively

$$
x *^{0} y=x, \quad x *^{n+1} y=\left(x *^{n} y\right) * y \quad(n=0,1, \ldots)
$$

$x \circ^{n} y$ is defined in the same way.
Example 2.3 ([11], Example 2.4). Let $A=\{0, a, b, c\}$ and define binary operations "*" and "०" on A by the following tables:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	b	b	0

\circ	0	a	b	c
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
c	c	c	a	0

Then $(A ; *, \circ, 0)$ is a pseudo-BCK-algebra.
Example 2.4. Let $\left(M ; \oplus,,^{-} \sim, 0,1\right)$ be a pseudo-MV-algebra and we put $x \odot y=\left(y^{-} \oplus x^{-}\right)^{\sim}\left(=\left(y^{\sim} \oplus x^{\sim}\right)^{-}\right.$by Proposition 1.7 (1) of [8]). Define

$$
x * y=x \odot y^{-} \quad \text { and } \quad x \circ y=y^{\sim} \odot x
$$

By 4.1.3 of [18], $(M ; *, \circ, 0)$ is a pseudo-BCK-algebra.

3. IDEALS

Definition 3.1. A subset I of a pseudo-BCK-algebra A is called an ideal of A if it satisfies for all $x, y \in A$:
(I1) $0 \in I$,
(I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

We will denote by $\operatorname{Id}(A)$ the set of all ideals of A.

Proposition 3.2. Let $I \in \operatorname{Id}(A)$. Then for any $x, y \in A$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proof. Straightforward.

Proposition 3.3. Let I be a subset of A. Then I is an ideal of A if and only if it satisfies conditions (I1) and
(I2') for all $x, y \in A$, if $x \circ y \in I$ and $y \in I$, then $x \in I$.

Proof. It suffices to prove that if (I2) is satisfied, then (I2 ${ }^{\prime}$) is also satisfied. The proof of the converse of this implication is analogous. Suppose that $x \circ y \in I$ and $y \in I$. From (pBCK-2) we know that $x *(x \circ y) \leq y$. Then, by Proposition $3.2, x *(x \circ y) \in I$. Hence, since $x \circ y \in I$, (I2) shows that $x \in I$.

For every subset $X \subseteq A$, we denote by $(X]$ the ideal of A generated by X, that is, $(X]$ is the smallest ideal containing X. If $X=\{a\}$, we write $(a]$ for $(\{a\}]$. By Lemma 2.2 of $[11],(\emptyset]=\{0\}$ and for every $\emptyset \neq X \subseteq A$,

$$
\begin{aligned}
(X] & =\left\{x \in A:\left(\cdots\left(x * a_{1}\right) * \cdots\right) * a_{n}=0 \text { for some } a_{1}, \ldots, a_{n} \in X\right\} \\
& =\left\{x \in A:\left(\cdots\left(x \circ a_{1}\right) \circ \cdots\right) \circ a_{n}=0 \text { for some } a_{1}, \ldots, a_{n} \in X\right\}
\end{aligned}
$$

Definition 3.4. An ideal I of A is called normal if it satisfies the following condition:
(N) for all $x, y \in A, x * y \in I \Leftrightarrow x \circ y \in I$.

Example 3.5. Let A be the pseudo-BCK-algebra from Example 2.3. Ideals of A are $\{0\},\{0, a\}, A ;\{0, a\}$ is not normal, because $c \circ b=a \in I$ while $c * b=b \notin I$.

Example 3.6 ([2], see also [15], 430). Let $A=\left\{(1, y) \in \mathbb{R}^{2}: y \geqslant 0\right\} \cup$ $\left\{(2, y) \in \mathbb{R}^{2}: y \leqslant 0\right\}$ and $\mathbf{0}=(1,0), \mathbf{1}=(2,0)$. For any $(a, b),(c, d) \in A$, we define operations $\oplus,^{-}, \sim$ as follows:

$$
\begin{gathered}
(a, b) \oplus(c, d)=\left\{\begin{array}{cc}
(a c, b c+d) & \text { if } a c<2 \text { or }(a c=2 \text { and } b c+d<0) \\
(2,0) & \text { otherwise }
\end{array}\right. \\
(a, b)^{-}=\left(\frac{2}{a}, \frac{-b}{a}\right), \quad(a, b)^{\sim}=\left(\frac{2}{a}, \frac{-2 b}{a}\right) .
\end{gathered}
$$

Then $(A, \oplus,-\sim, \mathbf{0}, \mathbf{1})$ is a pseudo-MV-algebra. For $x, y \in A$, we set

$$
x * y=\left(y \oplus x^{\sim}\right)^{-} \quad \text { and } \quad x \circ y=\left(x^{-} \oplus y\right)^{\sim} .
$$

Therefore $(A ; *, \circ, \mathbf{0})$ is a pseudo-BCK-algebra (see Example 2.4). We have

$$
(a, b) *(c, d)=\left((c, d) \oplus\left(\frac{2}{a}, \frac{-2 b}{a}\right)\right)^{-}
$$

and hence

$$
(a, b) *(c, d)=\left\{\begin{array}{cc}
\left(\frac{a}{c}, \frac{b-d}{c}\right) & \text { if } a=2 c \text { or }(a=c \text { and } d<b) \\
(1,0) & \text { otherwise }
\end{array}\right.
$$

Similarly,

$$
(a, b) \circ(c, d)=\left\{\begin{array}{cc}
\left(\frac{a}{c}, b-\frac{a d}{c}\right) & \text { if } a=2 c \text { or }(a=c \text { and } d<b) \\
(1,0) & \text { otherwise }
\end{array}\right.
$$

It is easy to see that $I=\{(1, y): y \geqslant 0\}$ is an ideal of A. Observe that I is normal. Indeed,

$$
(a, b) *(c, d) \notin I \Leftrightarrow a=2 c \Leftrightarrow(a, b) \circ(c, d) \notin I
$$

Lemma 3.7. Let I be a normal ideal of A. Then

$$
x *^{n} a \in I \Leftrightarrow x \circ^{n} a \in I
$$

for all $x, a \in A$ and $n \in \mathbb{N}$.

Proof. The proof is by induction on n.
Following [18] (see also [19], p. 357), for any normal ideal I of A, we define the congruence on A :

$$
x \sim_{I} y \Leftrightarrow x * y \in I \text { and } y * x \in I
$$

We denote by x / I the congruence class of an element $x \in A$ and on the set $A / I=\{x / I: x \in A\}$ we define the operations:

$$
x / I * y / I=(x * y) / I, x / I \circ y / I=(x \circ y) / I
$$

($*$ and \circ are well defined on A / I, because \sim_{I} is a congruence on A). The resulting quotient algebra $(A / I ; *, \circ, I)$ becomes a pseudo-BCK-algebra (see Proposition 2.2.4 of [18]), called the quotient algebra of A by the normal ideal I. It is clear that

$$
\begin{equation*}
x / I=0 / I \Leftrightarrow x \in I \tag{1}
\end{equation*}
$$

Proposition 3.8. Let I be a normal ideal of A and let $J \subseteq A / I$. Then $J \in \operatorname{Id}(A / I)$ if and only if $J=I_{0} / I$ for some $I_{0} \in \operatorname{Id}(A)$ such that $I \subseteq I_{0}$.

Proof. Suppose that $J \in \operatorname{Id}(A / I)$. Let $I_{0}=\{x \in A: x / I \in J\}$. By (1), $I \subseteq I_{0}$. Observe that I_{0} is an ideal of A. Indeed, $0 \in I_{0}$ and let $x * y, y \in I_{0}$. Then $(x * y) / I \in J$ and $y / I \in J$. Hence $x / I \in J$ and therefore $x \in I_{0}$. Thus $I_{0} \in \operatorname{Id}(A)$. It is easy to see that $J=I_{0} / I$.

Conversly, let $J=I_{0} / I$ for some $I_{0} \in \operatorname{Id}(A)$ such that $I \subseteq I_{0}$. Of course, $0 / I \in J$. Let $x / I * y / I, y / I \in J$. Then $x * y \in I_{0}$ and $y \in I_{0}$. Since I_{0} is an ideal of A, we see that $x \in I_{0}$, hence that $x / I \in J$. Consequently, $J \in \operatorname{Id}(A / I)$.

Proposition 3.9. Let I be a normal ideal of A and let $a \in A$. Denote by

$$
I_{a}=\left\{x \in A: x *^{n} a \in I \text { for some } n \in \mathbb{N}\right\} .
$$

Then $I_{a}=(I \cup\{a\}]$.
Proof. We first show that

$$
\begin{equation*}
I_{a} \subseteq(I \cup\{a\}] . \tag{2}
\end{equation*}
$$

Let $x *^{n} a \in I$ for some $n \in \mathbb{N}$. We have $\left(x *^{n} a\right) *\left(x *^{n} a\right)=0$. Thus

$$
\left(\left(\cdots\left(\left(x * b_{1}\right) * b_{2}\right) * \cdots\right) * b_{n}\right) * b_{n+1}=0,
$$

where $b_{1}=\cdots=b_{n}=a$ and $b_{n+1}=x *^{n} a \in I$. Thus $x \in(I \cup\{a\}]$. This gives (2).

Since $a * a=0 \in I$, we see that $a \in I_{a}$. Let $x \in I$. Then $x * a \in I$, because $x * a \leqslant x$. Therefore $x \in I_{a}$ and hence I_{a} contains I. Suppose now that $x * y \in I_{a}$ and $y \in I_{a}$. It follows that there exist $k, l \in \mathbb{N}$ such that $(x * y) *^{k} a \in I$ and $y *^{l} a \in I$. By Lemma 3.7, $(x * y) \circ^{k} a \in I$. Applying Proposition 2.2 (c) we conclude that

$$
(x * y) \circ^{k} a=((x \circ a) * y) \circ^{k-1} a=\left(\left(x \circ^{2} a\right) * y\right) \circ^{k-2} a=\cdots=\left(x \circ^{k} a\right) * y .
$$

Therefore $b:=\left(x \circ^{k} a\right) * y \in I$. Then $\left(\left(x \circ^{k} a\right) * y\right) \circ b=0$ and hence $\left(\left(x \circ^{k} a\right) \circ b\right) * y=0$. Thus $\left(x \circ^{k} a\right) \circ b \leqslant y$. By Proposition 2.2 (e), $\left(\left(x \circ^{k} a\right) \circ b\right) *^{l} a \leqslant y *^{l} a \in I$. Consequently, $\left(\left(x \circ^{k} a\right) \circ b\right) *^{l} a \in I$.

According to Proposition 2.2 (c) we have $\left(\left(x \circ^{k} a\right) *^{l} a\right) \circ b \in I$. Since $b \in I$, we see that $\left(x \circ^{k} a\right) *^{l} a \in I$. Lemma 3.7 now shows that $x *^{k+l} a \in I$, that is, $x \in I_{a}$. This proves that I_{a} is an ideal of A. Thus

$$
\begin{equation*}
(I \cup\{a\}] \subseteq I_{a} \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain $I_{a}=(I \cup\{a\}]$.
Proposition 3.9 and Lemma 3.7 give.

Corollary 3.10. Let I be a normal ideal of A and let $a \in A$. Then

$$
\begin{aligned}
(I \cup\{a\}] & =\left\{x \in A: x *^{n} a \in I \text { for some } n \in \mathbb{N}\right\} \\
& =\left\{x \in A: x \circ^{n} a \in I \text { for some } n \in \mathbb{N}\right\}
\end{aligned}
$$

Corollary 3.11. Let $a \in A$. Then $(a]=\left\{x \in A: x *^{n} a=0\right.$ for some $n \in \mathbb{N}\}$.

Proof. This follows from Proposition 3.9 when we put $I=\{0\}$.

Let A and B be pseudo-BCK-algebras and let $f: A \rightarrow B$ be a homomorphism. The kernel of f is the set

$$
\operatorname{Ker} f:=\{x \in A: f(x)=0\}
$$

that is, $\operatorname{Ker} f=f^{\leftarrow}(\{0\})$, where $f^{\leftarrow}(X)$ denote the f-inverse image of $X \subseteq$ B. It is easy to see that the next lemma holds.

Lemma 3.12. Let $f: A \rightarrow B$ be a homomorphism and let $x, y \in A$. If $f(x)=f(y)$, then $x * y, y * x \in \operatorname{Ker} f$.

Proposition 3.13. Let $f: A \rightarrow B$ be a homomorphism and let $I \in \operatorname{Id}(B)$. Then $f^{\leftarrow}(I) \in \operatorname{Id}(A)$.

Proof. The proof is straightforward.

Proposition 3.14. Let $f: A \rightarrow B$ be a surjective homomorphism and let I be an ideal of A containing $\operatorname{Ker} f$. Then $f(I) \in \operatorname{Id}(B)$.

Proof. Obviously, $0 \in f(I)$. Let $x \in B, y \in f(I)$, and let $x * y \in f(I)$. Then there are $a, b \in I$ such that $y=f(a)$ and $x * y=f(b)$. Since f is surjective, $x=f(c)$ for some $c \in A$. We have $f(b)=f(c) * f(a)=f(c * a)$ and hence, by Lemma $3.12,(c * a) * b \in \operatorname{Ker} f \subseteq I$. Since $a, b \in I$, we conclude that $c \in I$. Therefore $x=f(c) \in f(I)$. Consequently, $f(I) \in \operatorname{Id}(B)$.

4. Maximal ideals

Definition 4.1. Let I be a proper ideal of A (i.e., $I \neq A$).
(a) I is called prime if, for all $I_{1}, I_{2} \in \operatorname{Id}(A), I=I_{1} \cap I_{2}$ implies $I=I_{1}$ or $I=I_{2}$.
(b) I is maximal iff whenever J is an ideal such that $I \subseteq J \subseteq A$, then either $J=I$ or $J=A$.

Next lemma is obvious and its proof will be omitted.
Lemma 4.2. Every proper ideal of A can be extended to a maximal ideal.
Lemma 4.3. If $I \in \operatorname{Id}(A)$ is maximal, then I is prime.
Proof. Let I be a maximal ideal of A and let $I=I_{1} \cap I_{2}$ for some $I_{1}, I_{2} \in$ $\operatorname{Id}(A)$. Then $I \subseteq I_{1}$ and $I \subseteq I_{2}$. Suppose that $I \neq I_{1}$. Since I is maximal, we conclude that $I_{1}=A$ and hence $I=A \cap I_{2}=I_{2}$. By definition, I is prime.

Theorem 4.4.
(i) For each $t \in T$, let I_{t} be an ideal of the pseudo-BCK-algebra $\left(A_{t} ;{ }_{t}, o_{t}, 0_{t}\right)$. Then $I:=\prod_{t \in T} I_{t}$ is an ideal of $A:=\prod_{t \in T} A_{t}$. Conversely, if I is an ideal of A, then $I_{t}:=\pi_{t}(I)$, where π_{t} is the t-th projection of A onto A_{t}, is an ideal of A_{t}, and $I=\prod_{t \in T} I_{t}$.
(ii) An ideal $I:=\prod_{t \in T} I_{t}$ is maximal in $A:=\prod_{t \in T} A_{t}$ if and only if there is an unique index $s \in T$ such that I_{s} is a maximal ideal of A_{s} and $I_{t}=A_{t}$ for any $t \neq s$.

Proof.

(i) The first part of the assertion is obvious. Suppose now that I is an ideal of A and let $I_{t}=\pi_{t}(I)$. Then $0_{t}=\pi_{t}(0) \in I_{t}$. Let $x_{t} *_{t} y_{t} \in I_{t}$ and $y_{t} \in I_{t}$. We define $x, y \in A$ by:

$$
x(s)=\left\{\begin{array}{lll}
x_{t} & \text { for } & s=t \\
0_{s} & \text { for } & s \neq t
\end{array} \text { and } y(s)=\left\{\begin{array}{lll}
y_{t} & \text { for } & s=t \\
0_{s} & \text { for } & s \neq t
\end{array}\right.\right.
$$

Since $I_{t}=\pi_{t}(I)$, there exists an element $z \in I$ such that $\pi_{t}(z)=$ $x_{t} *_{t} y_{t}$. We have $(x * y)(t)=x(t) *_{t} y(t)=x_{t} *_{t} y_{t}=z(t)$ and $(x * y)(s)=0_{s} *_{s} 0_{s}=0_{s} \leqslant z(s)$ for any $s \neq t$. Therefore $x * y \leqslant z$ which implies that $x * y \in I$. Similarly there is an element $v \in I$ such that $\pi_{t}(v)=y_{t} \in I_{t}$. Obviously, $y \leqslant v$ and hence $y \in I$. This means that I_{t} is an ideal of A_{t}. Since $\pi_{t}(I)=I_{t}$ for all $t \in T$, we see that $I=\prod_{t \in T} I_{t}$.
(ii) Let $I=\prod_{t \in T} I_{t}$ be a maximal ideal of A. It is easily seen that there is at least one index t such that I_{t} is a maximal ideal of A_{t}. Assume that there are two indices t_{1} and t_{2} such that $I_{t_{1}}$ and $I_{t_{2}}$ are proper ideals of $A_{t_{1}}$ and $A_{t_{2}}$, respectively. Then $J:=\prod_{t \in T} I_{t}^{\prime}$, where $I_{t}^{\prime}=I_{t}$ if $t \neq t_{1}$ and $I_{t_{1}}^{\prime}=A_{t_{1}}$, is a proper ideal of A containing I, which contradicts the maximality of I. Suppose that $I=\prod_{t \in T} I_{t}$, where I_{s} is a maximal ideal of A_{s} and $I_{t}=A_{t}$ for all $t \neq s$. By (i), $I \in \operatorname{Id}(A)$. Observe that I is maximal. Indeed, let $K \in \operatorname{Id}(A)$ and $K \supset I$. Then $\pi_{s}(K) \supset I_{s}$ and $\pi_{t}(K)=A_{t}$ for all $t \neq s$. Since I_{s} is maximal in A_{s}, we see that $\pi_{s}(K)=A_{s}$, and therefore $\pi_{t}(K)=A_{t}$ for all $t \in T$. Thus $K=A$ and consequently, I is a maximal ideal of A.

The following two theorems give the homomorphic properties of maximal ideals.

Theorem 4.5. Let $f: A \rightarrow B$ be a surjective homomorphism and let I be a maximal ideal of A containing $\operatorname{Ker} f$. Then $f(I)$ is a maximal ideal of B.

Proof. By Proposition 3.14, $f(I) \in \operatorname{Id}(B)$. Let $x \in A-I$ and suppose that $f(I)=B$. Then $f(x)=f(y)$ for some $y \in I$. Applying Lemma 3.12 we conclude that $x * y \in I$, and hence $x \in I$, a contradiction. Therefore $f(I) \neq$ B. We take a proper ideal J of B such that $J \supseteq f(I)$. From Proposition 3.13 we deduce that $f \leftarrow(J) \in \operatorname{Id}(A)$. It is easy to see that $I \subseteq f \leftarrow(J) \subset A$. Since I is maximal, $f^{\leftarrow}(J)=I$. Consequently, $f(I)=f\left(f^{\leftarrow}(J)\right)=J$. Thus $f(I)$ is a maximal ideal of B.

Theorem 4.6. Let $f: A \rightarrow B$ be a surjective homomorphism and let J be a maximal ideal of B. Then $f \leftarrow(J)$ is a maximal ideal of A.

Proof. From Proposition 3.13 it follows that $I:=f^{\leftarrow}(J) \in \operatorname{Id}(A)$. It is easily seen that $I \neq A$. By Lemma 4.2 there is a maximal ideal I^{\prime} of A containing I. We have

$$
I=f^{\leftarrow}(J) \supseteq f^{\leftarrow}(\{0\})=\operatorname{Ker} f
$$

Since $I^{\prime} \supseteq I \supseteq \operatorname{Ker} f$, Theorem 4.5 shows that $f\left(I^{\prime}\right)$ is a maximal ideal of B. Obviously, $f\left(I^{\prime}\right) \supseteq f\left(f^{\leftarrow}(J)\right)=J$ and hence $f\left(I^{\prime}\right)=J$. Then $I^{\prime} \subseteq f^{\leftarrow}\left(f\left(I^{\prime}\right)\right)=f^{\leftarrow}(J)=I \subseteq I^{\prime}$, that is, $f^{\leftarrow}(J)=I^{\prime}$. Thus $f^{\leftarrow}(J)$ is a maximal ideal of A.

Theorem 4.7. For every proper normal ideal I of a pseudo-BCK-algebra A, the following conditions are equivalent:
(a) I is a maximal ideal of A;
(b) for any $x \in A, y \in A-I, x *^{n} y \in I$ for some $n \in \mathbb{N}$;
(c) for any $x \in A, y \in A-I, x \circ^{n} y \in I$ for some $n \in \mathbb{N}$;
(d) $|\operatorname{Id}(A / I)|=2$.

Proof. (a) $\Rightarrow(\mathrm{b})$: Let $x \in A$. Suppose that I is a maximal ideal of A and let $y \in A-I$. Then $(I \cup\{y\}]=A$ and hence $x \in(I \cup\{y\}]$. By Proposition $3.9, x *^{n} y \in I$ for some $n \in \mathbb{N}$.
(b) $\Leftrightarrow(\mathrm{c})$: The equivalence of (b) and (c) follows from the fact that I is a normal ideal.
(c) \Rightarrow (a): Let J be an ideal of A containing I. Suppose that $J \neq I$ and let $y \in J-I$. For every $x \in A$, by assumption, $x \circ^{n} y \in I$ for some $n \in \mathbb{N}$. Then $x \circ^{n} y \in J$ and hence $x \in J$, because $y \in J$. Therefore $J=A$.
(a) $\Rightarrow(\mathrm{d})$: Let I be a normal and maximal ideal of A, and let J be an ideal of A / I. By Proposition 3.8, $J=I_{0} / I$ for some $I_{0} \in \operatorname{Id}(A)$ such that $I \subseteq I_{0}$. Since I is maximal, $I_{0}=I$ or $I_{0}=A$. Consequently, $J=\{0 / I\}$ or $J=A / I$.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$: Let I_{0} be a proper ideal of A containing I. From Proposition 3,8 it follows that $J=I_{0} / I$ is an ideal of A / I. Therefore $J=\{0 / I\}$, that is, $I_{0}=I$, which proves that I is maximal.

Acknowledgements

The author thanks the referee for his remarks which were incorporated into this revised version.

References

[1] C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467-490. doi:10.1090/S0002-9947-1958-0094302-9
[2] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Commentationes Mathematicae 42 (2007), 117-126.
[3] G. Dymek and A. Walendziak, Fuzzy ideals of pseudo-BCK-algebras, submitted.
[4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Dordrecht-Boston-London 2000.
[5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, p. 961-968 in: "The Proc. of the Fourth International Symp. on Economic Informatics", Bucharest, Romania 1999.
[6] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, p. 90-92 in: "Abstracts of the Fifth International Conference FSTA 2000", Slovakia 2000.
[7] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, p. 97-114 in: "Proc. of DMTCS'01: Combinatorics, Computability and Logic", Springer, London 2001. doi:10.1007/978-1-4471-0717-0_9
[8] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras, Multiplae-Valued Logic 6 (2001), 95-135.
[9] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
[10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
[11] R. Halaš and J. Kühr, Deductive systems and annihilators of pseudo-BCK algebras, Ital. J. Pure Appl. Math., submitted.
[12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22. doi:10.3792/pja/1195522169
[13] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of MultiplaeValued Logic and Soft Computing 12 (2006), 71-130.
[14] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of MultiplaeValued Logic and Soft Computing 12 (2006), 575-629.
[15] A. Iorgulescu, Algebras of logic as BCK algebras, submitted.
[16] K. Isěki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonicae 21 (1976), 351-366.
[17] Y.B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 57 (2003), 265-270.
[18] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci 2007.
[19] J. Kühr, Representable pseudo-BCK-algebras and integral residuated lattices, Journal of Algebra 317 (2007), 354-364. doi:10.1016/j.jalgebra.2007.07.003
[20] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002), 255-273.

