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1. INTRODUCTION

In 1958, C.C. Chang [1] introduced MV (Many Valued) algebras. In 1966,
Y. Imai and K. Iséki [12] introduced the notion of BCK-algebra. In 1996, P.
Haéjek (][9], [10]) invented Basic Logic (BL for short) and BL-algebras, struc-
tures that correspond to this logical system. The class of BL-algebras con-
tains the MV-algebras. G. Georgescu and A. Iorgulescu [5] (1999), and inde-
pendently J. Rachunek [20] introduced pseudo-MV-algebras which are a non-
commutative generalization of MV-algebras. After pseudo-MV-algebras,
the pseudo-BL-algebras [6] (2000), and the pseudo-BCK-algebras [7] (2001)
were introduced and studied. The paper [7] contains basic properties of
pseudo-BCK-algebras and their connections with pseudo-MV-algebras and
with pseudo-BL-algebras. Y.B. Jun [17] obtained some characterizations of

pseudo-BCK-algebras. A. Iorgulescu ([13], [14]) studied particular classes of
pseudo-BCK-algebras.
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K. Iséki and S. Tanaka ([16]) introduced the notion of ideals in BCK-algebras
and investigated some interesting and fundamental results. R. Halas and J.
Kiihr [11] applied this concept to pseudo-BCK-algebras. (They called ideals
as deductive systems.) In this paper, we give some characterizations of
maximal ideals in pseudo-BCK-algebras.

2. PRELIMINARIES

The notion of pseudo-BCK-algebras is defined by Georgescu and lorgulescu
[7] as follows:

Definition 2.1. A pseudo-BCK-algebra is a structure (A; <, *,0,0), where

“<” is a binary relation on a set A, “x” and “o” are binary operations on

A and “0” is an element of A, verifying the axioms: for all x,y,z € A,
(pBCK-1) (zxy)o(zxz2)<zxy, (xoy)x(xoz)<zoy,
(PBCK-2) zx(zoy) <y, wo(w+y) <y,

(pBCK-3) z <=,

(pBCK-4) 0 <z,

(pBCK-5) (z<yandy<z) = z=y,
(pBCK-6) z<y<zxy=0&z0y=0.

Note that every pseudo-BCK-algebra satisfying zxy = zoy for all z,y € A
is a BCK-algebra.

Proposition 2.2 ([7]). Let (A;<,%,0,0) be a pseudo-BCK-algebra. Then
forall x,y,z € A:

(a) z<yandy<z=uz<z

(b) zxy<z, =zoy<um
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(© @ry)oz=(woz)+y;
(d) zx0=z=1z00;

() z<y=>axxz<yx*xz, zoz<yoz.

If (A4;<,%,0,0) is a pseudo-BCK-algebra, then (A;<) is a poset by
(pBCK-3), (pBCK-5), and Proposition 2.2 (a). The underlying order < can
be retrieved via (pBCK-6) and hence we may equivalently regard
(A;<,%,0,0) to be an algebra (A4;%,0,0). J. Kiihr [18] showed that
pseudo-BCK-algebras as algebras (A;%,0,0) of type (2,2,0) form a
quasivariety which is not a variety.

Throughout this paper A will denote a pseudo-BCK-algebra. For z,y €
A and n € Ny (Ng = NU{0}) we define z *" y inductively

x*oy:x7 x*nJrly: (w*ny)*y (nzo,l,)
x o™y is defined in the same way.

Example 2.3 ([11], Example 2.4). Let A = {0,a,b,c} and define binary

Wy

operations “«” and “o” on A by the following tables:

x| 0]alb]|c o|0jalb]|ec
0[0|10]0|O0 0(0]0]0|O0
ala|0]0]0 alal|0]0]0
b|b|b|0]O0O blb|b|0]0
cle|b|b]|O0 clelclal0

Then (A;*,0,0) is a pseudo-BCK-algebra.

Example 2.4. Let (M;®,”,~,0,1) be a pseudo-MV-algebra and we put
xOy=(y @z7)" (=(y~®z~)" by Proposition 1.7 (1) of [8]). Define

rxy=x@y and zoy=y~ Ox.

By 4.1.3 of [18], (M;x*,0,0) is a pseudo-BCK-algebra.
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3. IDEALS

Definition 3.1. A subset I of a pseudo-BCK-algebra A is called an ideal
of A if it satisfies for all z,y € A:

(1) 0€l,
(I12) ifx+xyelandye€l,then z € l.
We will denote by Id(A) the set of all ideals of A.

Proposition 3.2. Let I € 1d(A). Then for any z,y € A, if y € I and
xz <y, then x € 1.

Proof. Straightforward.

Proposition 3.3. Let I be a subset of A. Then I is an ideal of A if and
only if it satisfies conditions (I1) and

(12") forall z,y € A, if roy el and y € I, then x € I.

Proof. It suffices to prove that if (I2) is satisfied, then (I12') is also satisfied.
The proof of the converse of this implication is analogous. Suppose that
zoy € [ and y € I. From (pBCK-2) we know that z % (x o y) < y. Then,
by Proposition 3.2, x * (x oy) € I. Hence, since x oy € I, (12) shows that
el [

For every subset X C A, we denote by (X] the ideal of A generated by X,
that is, (X] is the smallest ideal containing X. If X = {a}, we write (a] for
({a}]. By Lemma 2.2 of [11], (0] = {0} and for every ) # X C A,

(X] ={ze€A: (- (x*xay)*--)*a, =0 for some ay,...,a, € X}

={zre€eA: (- (xoa)o---)oa, =0 for some ay,...,a, € X}.
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Definition 3.4. An ideal I of A is called normal if it satisfies the following
condition:

(N) forallz,yc A,xxyel < xoyel.

Example 3.5. Let A be the pseudo-BCK-algebra from Example 2.3. Ideals
of A are {0},{0,a}, A; {0,a} is not normal, because cob = a € [ while
cxb=>b¢ .

Example 3.6 (]2], see also [15], 430). Let A = {(1,y) € R? : y
{(2,y) € R?:y <0} and 0 = (1,0),1 = (2,0). For any (a,b), (c,d)
define operations @,” ,~ as follows:

> 0} U
€A, we

(ac,bc+d) if ac <2 or (ac =2 and be+ d < 0)
(a,0) @ (¢, d) =
(2,0) otherwise,

2 —b 2 —2b
(a7 ) <a? a > ) (a7 ) <a7 a >
Then (A, ®,”,~,0,1) is a pseudo-MV-algebra. For z,y € A, we set

zxy=(y®dz~)” and zoy=(z" dy)"~.

Therefore (A;x*,0,0) is a pseudo-BCK-algebra (see Example 2.4). We have

(a,) # (¢, d) = <(C’d) © <§_72b>>_

and hence

(a,b) * (c,d) = (g’b;d

(1,0) otherwise.

> ifa=2cor (a=candd<b)
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Similarly,

(g,b—ﬁ> ifa=2cor (a=candd<b)
(a,b) o (c,d) = ¢ \¢ ¢

(1,0) otherwise.

It is easy to see that I = {(1,y) : y > 0} is an ideal of A. Observe that I is
normal. Indeed,

(a,b) % (c,d) ¢ I & a=2c < (a,b)o(c,d) ¢ 1.

Lemma 3.7. Let I be a normal ideal of A. Then
xx"aelsroacel
for all x,a € A and n € N.
Proof. The proof is by induction on n. [ |

Following [18] (see also [19], p. 357), for any normal ideal I of A, we define
the congruence on A:

r~jy<srckyelandyxx € 1.

We denote by x/I the congruence class of an element 2 € A and on the set
AJI ={z/I:x € A} we define the operations:

x/Ixy/l = (xxy)/I, x/Ioy/I = (xoy)/I

(* and o are well defined on A/I, because ~ is a congruence on A). The
resulting quotient algebra (A/I;*,o0,I) becomes a pseudo-BCK-algebra (see
Proposition 2.2.4 of [18]), called the quotient algebra of A by the normal
ideal I. It is clear that

(1) 2/I=0/I s zel

Proposition 3.8. Let I be a normal ideal of A and let J C A/I. Then
J € Id(A/I) if and only if J = Iy/I for some Iy € Id(A) such that I C Iy.
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Proof. Suppose that J € Id(A/I). Let Iy = {x € A: z/I € J}. By (1),
I C Iy. Observe that I is an ideal of A. Indeed, 0 € Iy and let x xy,y € Iy.
Then (zxy)/I € J and y/I € J. Hence z/I € J and therefore = € Iy. Thus
Iy € Id(A). Tt is easy to see that J = Iy/I.

Conversly, let J = Iy/1I for some I € Id(A) such that I C I. Of course,
0/I € J. Let /I xy/I,y/I € J. Then z xy € Iy and y € Iy. Since I
is an ideal of A, we see that x € Iy, hence that x/I € J. Consequently,
J eld(A/I). [ ]

Proposition 3.9. Let I be a normal ideal of A and let a € A. Denote by
I,={xe€A:x+"a el for some n € N}.
Then I, = (I U{a}].
Proof. We first show that
(2) I, C (I1U{a}].
Let x ™ a € I for some n € N. We have (z " a) % (x +" a) = 0. Thus
((+++ ((zxby) xbg) %+ ) xby) xbypp1 =0,
where by = --- =b, =a and by,y1 = " a € I. Thus z € (I U {a}]. This
gives (2).
Since axa =0 € I, we see that a € I,. Let x € I. Then x xa € I,
because x * a < x. Therefore x € I, and hence I, contains I. Suppose now
that x xy € I, and y € I,. It follows that there exist k,I € N such that

(rxy)+*a €I and y+ ac I ByLemma 3.7, (x*y)o*ac I. Applying
Proposition 2.2 (¢) we conclude that

(xy)ota=((zoa)xy) o ta=((zo’a)xy) o Pa=--=(zo"a)xy.
Therefore b := (x 0¥ a) xy € I. Then ((z oF a) * y) ob = 0 and hence
((x ok a)ob) xy = 0. Thus (z o* a) o b < y. By Proposition 2.2 (e),
((z 0¥ a) o b) ¥ a < y+' a € I. Consequently, ((x o* a)ob) ' a € I.
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According to Proposition 2.2 (c) we have ((z o* a)*! a)ob € I. Since b € I,
we see that (zo¥a)+'a € I. Lemma 3.7 now shows that z+**!a € I, that is,
x € I,. This proves that I, is an ideal of A. Thus

(3) (Iu{a}] C I,.

From (2) and (3) we obtain I, = (I U {a}]. ]

Proposition 3.9 and Lemma 3.7 give.

Corollary 3.10. Let I be a normal ideal of A and let a € A. Then

(Iu{a}]={x e A:z+"a eI for some n € N}

={re€eA:zo"ac€ [ for some n € N}.

Corollary 3.11. Let a € A. Then (a] = {x € A: x«" a = 0 for some
n € N}.

Proof. This follows from Proposition 3.9 when we put I = {0}. [

Let A and B be pseudo-BCK-algebras and let f : A — B be a homomor-
phism. The kernel of f is the set

Kerf:={zx € A: f(z) =0},

that is, Kerf = f<({0}), where f<(X) denote the f-inverse image of X C
B. 1t is easy to see that the next lemma holds.

Lemma 3.12. Let f : A — B be a homomorphism and let x,y € A. If
f(@) = f(y), then x xy,y+x € Kerf.

Proposition 3.13. Let f: A — B be a homomorphism and let I € 1d(B).
Then f<(I) € Id(A).

Proof. The proof is straightforward. [
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Proposition 3.14. Let f: A — B be a surjective homomorphism and let
I be an ideal of A containing Kerf. Then f(I) € 1d(B).

Proof. Obviously, 0 € f(I). Let x € B,y € f(I), and let zxy € f(I). Then
there are a,b € I such that y = f(a) and x xy = f(b). Since f is surjective,
x = f(c) for some c € A. We have f(b) = f(c) * f(a) = f(c*a) and hence,
by Lemma 3.12, (c*xa)*xb € Kerf C I. Since a,b € I, we conclude that
c € I. Therefore z = f(c) € f(I). Consequently, f(I) € Id(B). |

4. MAXIMAL IDEALS

Definition 4.1. Let I be a proper ideal of A (i.e., [ # A).

(a) I is called prime if, for all I, I, € 1d(A), I = I N I implies [ = I3
or I = 1I.

(b) I is maximal iff whenever J is an ideal such that I C J C A, then
either J =1 or J = A.

Next lemma is obvious and its proof will be omitted.
Lemma 4.2. Every proper ideal of A can be extended to a mazximal ideal.
Lemma 4.3. If I € 1d(A) is mazimal, then I is prime.

Proof. Let I be a maximal ideal of A and let I = I1 N I for some Iy, 15 €
Id(A). Then I C I; and I C I». Suppose that I # I;. Since I is maximal,
we conclude that Iy = A and hence I = AN Iy = I,. By definition, I is
prime. ]

Theorem 4.4.

(i) For each t € T, let I; be an ideal of the pseudo-BCK-algebra
(Ag;#¢,04,0¢).  Then I := [[,erp It is an ideal of A := [l As.
Conversely, if I is an ideal of A, then I := my(I), where Ty is the
t-th projection of A onto Ay, is an ideal of Ay, and I = [[,cp It

il) Anideal I := I} is maximal in A := Ay if and only if there
teT teT
is an unique index s € T such that I is a maximal ideal of As and

Ii = Ay for any t # s.
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Proof.

(i) The first part of the assertion is obvious. Suppose now that I is an
ideal of A and let Iy = m4(I). Then 0, = m4(0) € I;. Let xy % 3y € I
and y; € I;. We define x,y € A by:

x; for s=t yr for s=t
x(s) = and y(s) =
0s for s#t 0s for s#t.

Since I; = my(I), there exists an element z € I such that m(z) =
xp *¢ Y. We have (z * y)(t) = x(t) % y(t) = x4 % y¢ = 2(t) and
(x *xy)(s) = 05 %5 05 = 05 < 2(s) for any s # t. Therefore x *x y < z
which implies that x xy € I. Similarly there is an element v € I such
that m4(v) = y¢ € I;. Obviously, y < v and hence y € I. This means
that I; is an ideal of A;. Since m4(I) = I for all t € T, we see that

(i) Let I = [[,cp Iy be a maximal ideal of A. It is easily seen that
there is at least one index t such that I; is a maximal ideal of A;.
Assume that there are two indices ¢; and tp such that I;, and I,
are proper ideals of A;, and Ay,, respectively. Then J := [, I},
where I{ = I if t # t; and Ij, = A, is a proper ideal of A
containing I, which contradicts the maximality of I. Suppose that
I = [l;er It, where I is a maximal ideal of Ay and I; = A; for
all t # s. By (i), I € Id(A). Observe that I is maximal. Indeed,
let K € Id(A) and K D I. Then ns(K) D I, and m(K) = A; for all
t # s. Since I is maximal in Ay, we see that 74(K) = Ay, and there-
fore my(K) = Ay for all t € T. Thus K = A and consequently, [ is a
maximal ideal of A. [

The following two theorems give the homomorphic properties of maximal
ideals.

Theorem 4.5. Let f : A — B be a surjective homomorphism and let I
be a mazimal ideal of A containing Kerf. Then f(I) is a maximal ideal

of B.
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Proof. By Proposition 3.14, f(I) € 1d(B). Let © € A — I and suppose
that f(I) = B. Then f(z) = f(y) for some y € I. Applying Lemma 3.12 we
conclude that x xy € I, and hence = € I, a contradiction. Therefore f(I) #
B. We take a proper ideal J of B such that J 2O f(I). From Proposition
3.13 we deduce that f(J) € Id(A). It is easy to see that I C f<(J) C A.
Since [ is maximal, f<(J) = I. Consequently, f(I) = f(f<(J)) = J. Thus
f(I) is a maximal ideal of B. |

Theorem 4.6. Let f: A — B be a surjective homomorphism and let J be
a mazimal ideal of B. Then f<(J) is a maximal ideal of A.

Proof. From Proposition 3.13 it follows that I := f<(J) € Id(A). It is
easily seen that I # A. By Lemma 4.2 there is a maximal ideal I’ of A
containing 1. We have

I=f=(J)2 f({0}) = Ker .

Since I’ O I D Kerf, Theorem 4.5 shows that f(I') is a maximal ideal
of B. Obviously, f(I') 2 f(f(J)) = J and hence f(I') = J. Then
I' Cfo(f(I") = fo(J)=I1CUTI, thatis, f<(J) =1 Thus f<(J) is a
maximal ideal of A. ]

Theorem 4.7. For every proper normal ideal I of a pseudo-BCK-algebra
A, the following conditions are equivalent:

(a) Iis a mazimal ideal of A;

(b) foranyx e A,ye A—1I, x«"y €I for some n € N;

(¢) foranyxe Ajye A—I,xo"y €I for some n € N;

(@) [d(A/1)| = 2.
Proof. (a) = (b): Let x € A. Suppose that I is a maximal ideal of A and
let y € A— 1. Then (I U{y}] = A and hence = € (I U{y}]. By Proposition
3.9, z«" y € I for some n € N.

(b) < (c): The equivalence of (b) and (c) follows from the fact that I
is a normal ideal.
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(c) = (a): Let J be an ideal of A containing I. Suppose that J # I and
let y € J —I. For every x € A, by assumption, z o™ y € I for some n € N.
Then x o"™ y € J and hence = € J, because y € J. Therefore J = A.

(a) = (d): Let I be a normal and maximal ideal of A, and let J be an
ideal of A/I. By Proposition 3.8, J = Iy/I for some Iy € Id(A) such that
I C Iy. Since I is maximal, Iy = I or Iy = A. Consequently, J = {0/} or
J=A/I

(d) = (a): Let Iy be a proper ideal of A containing I. From Proposition
3,8 it follows that J = Iy/I is an ideal of A/I. Therefore J = {0/I}, that
is, Ip = I, which proves that I is maximal. [ |
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