ON MAXIMAL IDEALS OF PSEUDO-BCK-ALGEBRAS

ANDRZEJ WALENDZIAK

Institute of Mathematics and Physics University of Podlasie 3 Maja 54, 08–110 Siedlce, Poland

e-mail: walent@interia.pl

Abstract

We investigate maximal ideals of pseudo-BCK-algebras and give some characterizations of them.

Keywords: pseudo-BCK-algebra, (maximal) ideal.

2000 Mathematics Subject Classification: 03G25; 06F35.

1. INTRODUCTION

In 1958, C.C. Chang [1] introduced MV (Many Valued) algebras. In 1966, Y. Imai and K. Iséki [12] introduced the notion of BCK-algebra. In 1996, P. Hájek ([9], [10]) invented Basic Logic (BL for short) and BL-algebras, structures that correspond to this logical system. The class of BL-algebras contains the MV-algebras. G. Georgescu and A. Iorgulescu [5] (1999), and independently J. Rachůnek [20] introduced pseudo-MV-algebras which are a noncommutative generalization of MV-algebras. After pseudo-MV-algebras, the pseudo-BL-algebras [6] (2000), and the pseudo-BCK-algebras [7] (2001) were introduced and studied. The paper [7] contains basic properties of pseudo-BCK-algebras and their connections with pseudo-MV-algebras and with pseudo-BL-algebras. A. Iorgulescu ([13], [14]) studied particular classes of pseudo-BCK-algebras. K. Iséki and S. Tanaka ([16]) introduced the notion of ideals in BCK-algebras and investigated some interesting and fundamental results. R. Halaš and J. Kühr [11] applied this concept to pseudo-BCK-algebras. (They called ideals as deductive systems.) In this paper, we give some characterizations of maximal ideals in pseudo-BCK-algebras.

2. Preliminaries

The notion of pseudo-BCK-algebras is defined by Georgescu and Iorgulescu [7] as follows:

Definition 2.1. A pseudo-BCK-algebra is a structure $(A; \leq, *, \circ, 0)$, where " \leq " is a binary relation on a set A, "*" and " \circ " are binary operations on A and "0" is an element of A, verifying the axioms: for all $x, y, z \in A$,

 $\begin{array}{ll} (\mathrm{pBCK-1}) & (x*y) \circ (x*z) \leq z*y, & (x\circ y)*(x\circ z) \leq z\circ y, \\ (\mathrm{pBCK-2}) & x*(x\circ y) \leq y, & x\circ (x*y) \leq y, \\ (\mathrm{pBCK-3}) & x \leq x, \\ (\mathrm{pBCK-4}) & 0 \leq x, \\ (\mathrm{pBCK-5}) & (x \leq y \text{ and } y \leq x) \Rightarrow x = y, \\ (\mathrm{pBCK-6}) & x \leq y \Leftrightarrow x*y = 0 \Leftrightarrow x\circ y = 0. \end{array}$

Note that every pseudo-BCK-algebra satisfying $x * y = x \circ y$ for all $x, y \in A$ is a BCK-algebra.

Proposition 2.2 ([7]). Let $(A; \leq *, \circ, 0)$ be a pseudo-BCK-algebra. Then for all $x, y, z \in A$:

- (a) $x \leq y$ and $y \leq z \Rightarrow x \leq z$;
- (b) $x * y \le x, \quad x \circ y \le x;$

- (c) $(x * y) \circ z = (x \circ z) * y;$
- (d) $x * 0 = x = x \circ 0;$

(e)
$$x \le y \Rightarrow x * z \le y * z$$
, $x \circ z \le y \circ z$.

If $(A; \leq , *, \circ, 0)$ is a pseudo-BCK-algebra, then $(A; \leq)$ is a poset by (pBCK-3), (pBCK-5), and Proposition 2.2 (a). The underlying order \leq can be retrieved via (pBCK-6) and hence we may equivalently regard $(A; \leq , *, \circ, 0)$ to be an algebra $(A; *, \circ, 0)$. J. Kühr [18] showed that pseudo-BCK-algebras as algebras $(A; *, \circ, 0)$ of type $\langle 2, 2, 0 \rangle$ form a quasivariety which is not a variety.

Throughout this paper A will denote a pseudo-BCK-algebra. For $x, y \in A$ and $n \in \mathbb{N}_0$ ($\mathbb{N}_0 = \mathbb{N} \cup \{0\}$) we define $x *^n y$ inductively

$$x *^{0} y = x$$
, $x *^{n+1} y = (x *^{n} y) * y$ $(n = 0, 1, ...)$.

 $x \circ^n y$ is defined in the same way.

Example 2.3 ([11], Example 2.4). Let $A = \{0, a, b, c\}$ and define binary operations "*" and " \circ " on A by the following tables:

*	0	a	b	c	0	0	a	b	c
0	0	0	0	0	0	0	0	0	0
a	a	0	0	0	a	a	0	0	0
b	b	b	0	0	b	b	b	0	0
c	с	b	b	0	с	с	с	a	0

Then $(A; *, \circ, 0)$ is a pseudo-BCK-algebra.

Example 2.4. Let $(M; \oplus, \bar{}, \sim, 0, 1)$ be a pseudo-MV-algebra and we put $x \odot y = (y^- \oplus x^-)^{\sim} (= (y^{\sim} \oplus x^{\sim})^-)$ by Proposition 1.7 (1) of [8]). Define

 $x * y = x \odot y^{-}$ and $x \circ y = y^{\sim} \odot x$.

By 4.1.3 of [18], $(M; *, \circ, 0)$ is a pseudo-BCK-algebra.

3. Ideals

Definition 3.1. A subset I of a pseudo-BCK-algebra A is called an *ideal* of A if it satisfies for all $x, y \in A$:

(I1) $0 \in I$,

(I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

We will denote by Id(A) the set of all ideals of A.

Proposition 3.2. Let $I \in Id(A)$. Then for any $x, y \in A$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proof. Straightforward.

Proposition 3.3. Let I be a subset of A. Then I is an ideal of A if and only if it satisfies conditions (I1) and

(I2') for all $x, y \in A$, if $x \circ y \in I$ and $y \in I$, then $x \in I$.

Proof. It suffices to prove that if (I2) is satisfied, then (I2') is also satisfied. The proof of the converse of this implication is analogous. Suppose that $x \circ y \in I$ and $y \in I$. From (pBCK-2) we know that $x * (x \circ y) \leq y$. Then, by Proposition 3.2, $x * (x \circ y) \in I$. Hence, since $x \circ y \in I$, (I2) shows that $x \in I$.

For every subset $X \subseteq A$, we denote by (X] the ideal of A generated by X, that is, (X] is the smallest ideal containing X. If $X = \{a\}$, we write (a] for $(\{a\}]$. By Lemma 2.2 of [11], $(\emptyset] = \{0\}$ and for every $\emptyset \neq X \subseteq A$,

$$(X] = \{x \in A : (\dots (x * a_1) * \dots) * a_n = 0 \text{ for some } a_1, \dots, a_n \in X\}$$
$$= \{x \in A : (\dots (x \circ a_1) \circ \dots) \circ a_n = 0 \text{ for some } a_1, \dots, a_n \in X\}.$$

Definition 3.4. An ideal I of A is called *normal* if it satisfies the following condition:

(N) for all $x, y \in A$, $x * y \in I \Leftrightarrow x \circ y \in I$.

Example 3.5. Let A be the pseudo-BCK-algebra from Example 2.3. Ideals of A are $\{0\}, \{0, a\}, A; \{0, a\}$ is not normal, because $c \circ b = a \in I$ while $c * b = b \notin I$.

Example 3.6 ([2], see also [15], 430). Let $A = \{(1, y) \in \mathbb{R}^2 : y \ge 0\} \cup \{(2, y) \in \mathbb{R}^2 : y \le 0\}$ and $\mathbf{0} = (1, 0), \mathbf{1} = (2, 0)$. For any $(a, b), (c, d) \in A$, we define operations $\oplus, \overline{}, \widetilde{}$ as follows:

$$(a,b) \oplus (c,d) = \begin{cases} (ac,bc+d) & \text{if } ac < 2 \text{ or } (ac=2 \text{ and } bc+d<0) \\ (2,0) & \text{otherwise,} \end{cases}$$

$$(a,b)^- = \left(\frac{2}{a}, \frac{-b}{a}\right), \quad (a,b)^\sim = \left(\frac{2}{a}, \frac{-2b}{a}\right).$$

Then $(A, \oplus, \bar{}, \sim, \mathbf{0}, \mathbf{1})$ is a pseudo-MV-algebra. For $x, y \in A$, we set

$$x * y = (y \oplus x^{\sim})^{-}$$
 and $x \circ y = (x^{-} \oplus y)^{\sim}$.

Therefore $(A; *, \circ, \mathbf{0})$ is a pseudo-BCK-algebra (see Example 2.4). We have

$$(a,b)*(c,d) = \left((c,d) \oplus \left(\frac{2}{a}, \frac{-2b}{a}\right)\right)^{-1}$$

and hence

$$(a,b) * (c,d) = \begin{cases} \left(\frac{a}{c}, \frac{b-d}{c}\right) & \text{if } a = 2c \text{ or } (a = c \text{ and } d < b) \\ (1,0) & \text{otherwise.} \end{cases}$$

Similarly,

$$(a,b) \circ (c,d) = \begin{cases} \left(\frac{a}{c}, b - \frac{ad}{c}\right) & \text{if } a = 2c \text{ or } (a = c \text{ and } d < b) \\ (1,0) & \text{otherwise.} \end{cases}$$

It is easy to see that $I = \{(1, y) : y \ge 0\}$ is an ideal of A. Observe that I is normal. Indeed,

$$(a,b) * (c,d) \notin I \Leftrightarrow a = 2c \Leftrightarrow (a,b) \circ (c,d) \notin I.$$

Lemma 3.7. Let I be a normal ideal of A. Then

$$x *^n a \in I \Leftrightarrow x \circ^n a \in I$$

for all $x, a \in A$ and $n \in \mathbb{N}$.

Proof. The proof is by induction on n.

Following [18] (see also [19], p. 357), for any normal ideal I of A, we define the congruence on A:

$$x \sim_I y \Leftrightarrow x * y \in I \text{ and } y * x \in I.$$

We denote by x/I the congruence class of an element $x \in A$ and on the set $A/I = \{x/I : x \in A\}$ we define the operations:

$$x/I*y/I = (x*y)/I, \ x/I \circ y/I = (x \circ y)/I$$

(* and \circ are well defined on A/I, because \sim_I is a congruence on A). The resulting quotient algebra $(A/I; *, \circ, I)$ becomes a pseudo-BCK-algebra (see Proposition 2.2.4 of [18]), called the *quotient algebra of* A by the normal ideal I. It is clear that

(1)
$$x/I = 0/I \Leftrightarrow x \in I.$$

Proposition 3.8. Let I be a normal ideal of A and let $J \subseteq A/I$. Then $J \in Id(A/I)$ if and only if $J = I_0/I$ for some $I_0 \in Id(A)$ such that $I \subseteq I_0$.

66

Proof. Suppose that $J \in \mathrm{Id}(A/I)$. Let $I_0 = \{x \in A : x/I \in J\}$. By (1), $I \subseteq I_0$. Observe that I_0 is an ideal of A. Indeed, $0 \in I_0$ and let $x * y, y \in I_0$. Then $(x * y)/I \in J$ and $y/I \in J$. Hence $x/I \in J$ and therefore $x \in I_0$. Thus $I_0 \in \mathrm{Id}(A)$. It is easy to see that $J = I_0/I$.

Conversely, let $J = I_0/I$ for some $I_0 \in Id(A)$ such that $I \subseteq I_0$. Of course, $0/I \in J$. Let $x/I * y/I, y/I \in J$. Then $x * y \in I_0$ and $y \in I_0$. Since I_0 is an ideal of A, we see that $x \in I_0$, hence that $x/I \in J$. Consequently, $J \in Id(A/I)$.

Proposition 3.9. Let I be a normal ideal of A and let $a \in A$. Denote by

$$I_a = \{ x \in A : x *^n a \in I \text{ for some } n \in \mathbb{N} \}.$$

Then $I_a = (I \cup \{a\}].$

Proof. We first show that

$$(2) I_a \subseteq (I \cup \{a\}].$$

Let $x *^n a \in I$ for some $n \in \mathbb{N}$. We have $(x *^n a) * (x *^n a) = 0$. Thus

$$((\cdots ((x * b_1) * b_2) * \cdots) * b_n) * b_{n+1} = 0,$$

where $b_1 = \cdots = b_n = a$ and $b_{n+1} = x *^n a \in I$. Thus $x \in (I \cup \{a\}]$. This gives (2).

Since $a * a = 0 \in I$, we see that $a \in I_a$. Let $x \in I$. Then $x * a \in I$, because $x * a \leq x$. Therefore $x \in I_a$ and hence I_a contains I. Suppose now that $x * y \in I_a$ and $y \in I_a$. It follows that there exist $k, l \in \mathbb{N}$ such that $(x * y) *^k a \in I$ and $y *^l a \in I$. By Lemma 3.7, $(x * y) \circ^k a \in I$. Applying Proposition 2.2 (c) we conclude that

$$(x * y) \circ^{k} a = ((x \circ a) * y) \circ^{k-1} a = ((x \circ^{2} a) * y) \circ^{k-2} a = \dots = (x \circ^{k} a) * y.$$

Therefore $b := (x \circ^k a) * y \in I$. Then $((x \circ^k a) * y) \circ b = 0$ and hence $((x \circ^k a) \circ b) * y = 0$. Thus $(x \circ^k a) \circ b \leq y$. By Proposition 2.2 (e), $((x \circ^k a) \circ b) *^l a \leq y *^l a \in I$. Consequently, $((x \circ^k a) \circ b) *^l a \in I$.

According to Proposition 2.2 (c) we have $((x \circ^k a) *^l a) \circ b \in I$. Since $b \in I$, we see that $(x \circ^k a) *^l a \in I$. Lemma 3.7 now shows that $x *^{k+l} a \in I$, that is, $x \in I_a$. This proves that I_a is an ideal of A. Thus

$$(3) (I \cup \{a\}] \subseteq I_a.$$

From (2) and (3) we obtain $I_a = (I \cup \{a\}]$.

Proposition 3.9 and Lemma 3.7 give.

Corollary 3.10. Let I be a normal ideal of A and let $a \in A$. Then

$$(I \cup \{a\}] = \{x \in A : x *^n a \in I \text{ for some } n \in \mathbb{N}\}$$
$$= \{x \in A : x \circ^n a \in I \text{ for some } n \in \mathbb{N}\}.$$

Corollary 3.11. Let $a \in A$. Then $(a] = \{x \in A : x *^n a = 0 \text{ for some } n \in \mathbb{N}\}.$

Proof. This follows from Proposition 3.9 when we put $I = \{0\}$.

Let A and B be pseudo-BCK-algebras and let $f:A\to B$ be a homomorphism. The kernel of f is the set

$$Ker f := \{ x \in A : f(x) = 0 \},\$$

that is, $\operatorname{Ker} f = f^{\leftarrow}(\{0\})$, where $f^{\leftarrow}(X)$ denote the *f*-inverse image of $X \subseteq B$. It is easy to see that the next lemma holds.

Lemma 3.12. Let $f : A \to B$ be a homomorphism and let $x, y \in A$. If f(x) = f(y), then $x * y, y * x \in \text{Ker} f$.

Proposition 3.13. Let $f : A \to B$ be a homomorphism and let $I \in Id(B)$. Then $f^{\leftarrow}(I) \in Id(A)$.

Proof. The proof is straightforward.

Proposition 3.14. Let $f : A \to B$ be a surjective homomorphism and let I be an ideal of A containing Kerf. Then $f(I) \in Id(B)$.

Proof. Obviously, $0 \in f(I)$. Let $x \in B$, $y \in f(I)$, and let $x * y \in f(I)$. Then there are $a, b \in I$ such that y = f(a) and x * y = f(b). Since f is surjective, x = f(c) for some $c \in A$. We have f(b) = f(c) * f(a) = f(c * a) and hence, by Lemma 3.12, $(c * a) * b \in \text{Ker} f \subseteq I$. Since $a, b \in I$, we conclude that $c \in I$. Therefore $x = f(c) \in f(I)$. Consequently, $f(I) \in \text{Id}(B)$.

4. MAXIMAL IDEALS

Definition 4.1. Let *I* be a proper ideal of *A* (i.e., $I \neq A$).

- (a) I is called *prime* if, for all $I_1, I_2 \in Id(A)$, $I = I_1 \cap I_2$ implies $I = I_1$ or $I = I_2$.
- (b) I is maximal iff whenever J is an ideal such that $I \subseteq J \subseteq A$, then either J = I or J = A.

Next lemma is obvious and its proof will be omitted.

Lemma 4.2. Every proper ideal of A can be extended to a maximal ideal.

Lemma 4.3. If $I \in Id(A)$ is maximal, then I is prime.

Proof. Let I be a maximal ideal of A and let $I = I_1 \cap I_2$ for some $I_1, I_2 \in Id(A)$. Then $I \subseteq I_1$ and $I \subseteq I_2$. Suppose that $I \neq I_1$. Since I is maximal, we conclude that $I_1 = A$ and hence $I = A \cap I_2 = I_2$. By definition, I is prime.

Theorem 4.4.

- (i) For each $t \in T$, let I_t be an ideal of the pseudo-BCK-algebra $(A_t; *_t, \circ_t, 0_t)$. Then $I := \prod_{t \in T} I_t$ is an ideal of $A := \prod_{t \in T} A_t$. Conversely, if I is an ideal of A, then $I_t := \pi_t(I)$, where π_t is the t-th projection of A onto A_t , is an ideal of A_t , and $I = \prod_{t \in T} I_t$.
- (ii) An ideal $I := \prod_{t \in T} I_t$ is maximal in $A := \prod_{t \in T} A_t$ if and only if there is an unique index $s \in T$ such that I_s is a maximal ideal of A_s and $I_t = A_t$ for any $t \neq s$.

Proof.

(i) The first part of the assertion is obvious. Suppose now that I is an ideal of A and let $I_t = \pi_t(I)$. Then $0_t = \pi_t(0) \in I_t$. Let $x_t *_t y_t \in I_t$ and $y_t \in I_t$. We define $x, y \in A$ by:

$$x(s) = \begin{cases} x_t & \text{for } s = t \\ 0_s & \text{for } s \neq t \end{cases} \text{ and } y(s) = \begin{cases} y_t & \text{for } s = t \\ 0_s & \text{for } s \neq t. \end{cases}$$

Since $I_t = \pi_t(I)$, there exists an element $z \in I$ such that $\pi_t(z) = x_t *_t y_t$. We have $(x * y)(t) = x(t) *_t y(t) = x_t *_t y_t = z(t)$ and $(x * y)(s) = 0_s *_s 0_s = 0_s \leq z(s)$ for any $s \neq t$. Therefore $x * y \leq z$ which implies that $x * y \in I$. Similarly there is an element $v \in I$ such that $\pi_t(v) = y_t \in I_t$. Obviously, $y \leq v$ and hence $y \in I$. This means that I_t is an ideal of A_t . Since $\pi_t(I) = I_t$ for all $t \in T$, we see that $I = \prod_{t \in T} I_t$.

(ii) Let $I = \prod_{t \in T} I_t$ be a maximal ideal of A. It is easily seen that there is at least one index t such that I_t is a maximal ideal of A_t . Assume that there are two indices t_1 and t_2 such that I_{t_1} and I_{t_2} are proper ideals of A_{t_1} and A_{t_2} , respectively. Then $J := \prod_{t \in T} I'_t$, where $I'_t = I_t$ if $t \neq t_1$ and $I'_{t_1} = A_{t_1}$, is a proper ideal of Acontaining I, which contradicts the maximality of I. Suppose that $I = \prod_{t \in T} I_t$, where I_s is a maximal ideal of A_s and $I_t = A_t$ for all $t \neq s$. By (i), $I \in Id(A)$. Observe that I is maximal. Indeed, let $K \in Id(A)$ and $K \supset I$. Then $\pi_s(K) \supset I_s$ and $\pi_t(K) = A_t$ for all $t \neq s$. Since I_s is maximal in A_s , we see that $\pi_s(K) = A_s$, and therefore $\pi_t(K) = A_t$ for all $t \in T$. Thus K = A and consequently, I is a maximal ideal of A.

The following two theorems give the homomorphic properties of maximal ideals.

Theorem 4.5. Let $f : A \to B$ be a surjective homomorphism and let I be a maximal ideal of A containing Kerf. Then f(I) is a maximal ideal of B.

Proof. By Proposition 3.14, $f(I) \in Id(B)$. Let $x \in A - I$ and suppose that f(I) = B. Then f(x) = f(y) for some $y \in I$. Applying Lemma 3.12 we conclude that $x * y \in I$, and hence $x \in I$, a contradiction. Therefore $f(I) \neq B$. We take a proper ideal J of B such that $J \supseteq f(I)$. From Proposition 3.13 we deduce that $f^{\leftarrow}(J) \in Id(A)$. It is easy to see that $I \subseteq f^{\leftarrow}(J) \subset A$. Since I is maximal, $f^{\leftarrow}(J) = I$. Consequently, $f(I) = f(f^{\leftarrow}(J)) = J$. Thus f(I) is a maximal ideal of B.

Theorem 4.6. Let $f : A \to B$ be a surjective homomorphism and let J be a maximal ideal of B. Then $f^{\leftarrow}(J)$ is a maximal ideal of A.

Proof. From Proposition 3.13 it follows that $I := f^{\leftarrow}(J) \in \mathrm{Id}(A)$. It is easily seen that $I \neq A$. By Lemma 4.2 there is a maximal ideal I' of A containing I. We have

$$I = f^{\leftarrow}(J) \supseteq f^{\leftarrow}(\{0\}) = \operatorname{Ker} f.$$

Since $I' \supseteq I \supseteq$ Ker f, Theorem 4.5 shows that f(I') is a maximal ideal of B. Obviously, $f(I') \supseteq f(f^{\leftarrow}(J)) = J$ and hence f(I') = J. Then $I' \subseteq f^{\leftarrow}(f(I')) = f^{\leftarrow}(J) = I \subseteq I'$, that is, $f^{\leftarrow}(J) = I'$. Thus $f^{\leftarrow}(J)$ is a maximal ideal of A.

Theorem 4.7. For every proper normal ideal I of a pseudo-BCK-algebra A, the following conditions are equivalent:

- (a) I is a maximal ideal of A;
- (b) for any $x \in A$, $y \in A I$, $x *^n y \in I$ for some $n \in \mathbb{N}$;
- (c) for any $x \in A$, $y \in A I$, $x \circ^n y \in I$ for some $n \in \mathbb{N}$;
- (d) |Id(A/I)| = 2.

Proof. (a) \Rightarrow (b): Let $x \in A$. Suppose that I is a maximal ideal of A and let $y \in A - I$. Then $(I \cup \{y\}] = A$ and hence $x \in (I \cup \{y\}]$. By Proposition 3.9, $x *^n y \in I$ for some $n \in \mathbb{N}$.

(b) \Leftrightarrow (c): The equivalence of (b) and (c) follows from the fact that I is a normal ideal.

(c) \Rightarrow (a): Let J be an ideal of A containing I. Suppose that $J \neq I$ and let $y \in J - I$. For every $x \in A$, by assumption, $x \circ^n y \in I$ for some $n \in \mathbb{N}$. Then $x \circ^n y \in J$ and hence $x \in J$, because $y \in J$. Therefore J = A.

(a) \Rightarrow (d): Let *I* be a normal and maximal ideal of *A*, and let *J* be an ideal of *A*/*I*. By Proposition 3.8, $J = I_0/I$ for some $I_0 \in \text{Id}(A)$ such that $I \subseteq I_0$. Since *I* is maximal, $I_0 = I$ or $I_0 = A$. Consequently, $J = \{0/I\}$ or J = A/I.

(d) \Rightarrow (a): Let I_0 be a proper ideal of A containing I. From Proposition 3,8 it follows that $J = I_0/I$ is an ideal of A/I. Therefore $J = \{0/I\}$, that is, $I_0 = I$, which proves that I is maximal.

Acknowledgements

The author thanks the referee for his remarks which were incorporated into this revised version.

References

- C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. doi:10.1090/S0002-9947-1958-0094302-9
- [2] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Commentationes Mathematicae 42 (2007), 117–126.
- [3] G. Dymek and A. Walendziak, *Fuzzy ideals of pseudo-BCK-algebras*, submitted.
- [4] A. Dvurečenskij and S. Pulmannová, New Trends in Quantum Structures, Dordrecht-Boston-London 2000.
- [5] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, p. 961–968 in: "The Proc. of the Fourth International Symp. on Economic Informatics", Bucharest, Romania 1999.
- [6] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, p. 90–92 in: "Abstracts of the Fifth International Conference FSTA 2000", Slovakia 2000.
- [7] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, p. 97–114 in: "Proc. of DMTCS'01: Combinatorics, Computability and Logic", Springer, London 2001. doi:10.1007/978-1-4471-0717-0_9

- [8] G. Georgescu and A. Iorgulescu, *Pseudo-MV algebras*, Multiplae-Valued Logic 6 (2001), 95–135.
- [9] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
- [10] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
- [11] R. Halaš and J. Kühr, Deductive systems and annihilators of pseudo-BCK algebras, Ital. J. Pure Appl. Math., submitted.
- [12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19–22. doi:10.3792/pja/1195522169
- [13] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 71–130.
- [14] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of Multiplae-Valued Logic and Soft Computing 12 (2006), 575–629.
- [15] A. Iorgulescu, Algebras of logic as BCK algebras, submitted.
- [16] K. Isěki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonicae 21 (1976), 351–366.
- [17] Y.B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae 57 (2003), 265–270.
- [18] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci 2007.
- [19] J. Kühr, Representable pseudo-BCK-algebras and integral residuated lattices, Journal of Algebra 317 (2007), 354–364. doi:10.1016/j.jalgebra.2007.07.003
- [20] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J. 52 (2002), 255–273.

Received 8 March 2010 Revised 14 June 2010