
Discussiones Mathematicae

General Algebra and Applications 31 (2011 ) 27–45

PRE-STRONGLY SOLID VARIETIES

OF COMMUTATIVE SEMIGROUPS

Sarawut Phuapong

and

Sorasak Leeratanavalee∗

Department of Mathematics,
Faculty of Science, Chiang Mai University,

Chiang Mai 50200, Thailand

e-mail: phuapong.sa@hotmail.com

e-mail: scislrtt@chiangmai.ac.th

Abstract

Generalized hypersubstitutions are mappings from the set of all
fundamental operations into the set of all terms of the same language
do not necessarily preserve the arities. Strong hyperidentities are iden-
tities which are closed under the generalized hypersubstitutions and a
strongly solid variety is a variety which every its identity is a strong
hyperidentity. In this paper we give an example of pre-strongly solid
varieties of commutative semigroups and determine the least and the
greatest pre-strongly solid variety of commutative semigroups.

Keywords and phrases: generalized hypersubstitution, pre-strongly
solid variety, commutative semigroup.

2000 Mathematics Subject Classification: 20M07, 08B15, 08B25.

∗Corresponding author.



28 S. Phuapong and S. Leeratanavalee

1. Introduction

Hyperidentities were invented by Aczel, Belousov and Taylor. The notion of
hyperidentities and solid varieties of a given type as well as derived algebras
of given type were invented by E. Graczyńska and D. Schweigert in [3]. An
identity t ≈ t

′
of terms of any type τ is called a hyperidentity for an algebra

A = (A; (fA
i )i∈I) if t ≈ t

′
holds identically for every choice of n-ary term

operation to represent n-ary operation symbols occurring in t and t
′
. A

variety which every its identity is a hyperidentity is called solid variety.
Hyperidentities can be characterized more precisely using the concept of a
hypersubstitution which was introduced by K. Denecke, D. Lau, R. Pöschel
and D. Schweigert. A hypersubstitution of type τ is a mapping σ : {fi|i ∈
I} −→ Wτ (X) which assigns to every ni-ary operation symbol fi an ni-ary
term. The set of all hypersubstitutions of type τ is denoted by Hyp(τ).
For every σ ∈ Hyp(τ) induces a mapping σ̂ : Wτ (X) −→ Wτ (X) by the
following steps:

(i) σ̂[x] := x, for any variable x ∈ X, and

(ii) σ̂[fi(t1, . . . , tni
)] := σ(fi)(σ̂[t1], . . . , σ̂[tni

]), where σ̂[tj ], 1 ≤ j ≤ ni are
already defined.

A binary operation ◦h on Hyp(τ) is defined by σ1 ◦h σ2 := σ̂1 ◦ σ2 for every
σ1, σ2 ∈ Hyp(τ) where ◦ is the natural composition of mappings. Let σid
be the hypersubstitution where σid(fi) = fi(x1, ..., xni

). It turns out that
(Hyp(τ); ◦h, σid) is a monoid with σid is an identity element.

S. Leeratanavalee and K. Denecke generalized the concepts of hypersub-
stitutions, hyperidentities and solid varieties to generalized hypersubstitu-
tions, strong hyperidentities and strongly solid varieties [4]. A generalized
hypersubstitution of type τ is a mapping σ : {fi|i ∈ I} −→ Wτ (X) from
the set of all ni-ary operation symbols into the set of all terms built up
by elements of the alphabet X := {x1, x2, ...} and operation symbols from
{fi|i ∈ I} which does not necessarily preserve the arity.

We denoted the set of all generalized hypersubstitutions of type τ by
HypG(τ). To define a binary operation on HypG(τ), we defined firstly the
concept of generalized superposition of terms Sm : Wτ (X)m+1 −→ Wτ (X)
by the following steps:

for any term t ∈ Wτ (X),
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(i) if t = xj , 1 ≤ j ≤ m, then

Sm(xj , t1, . . . , tm) := tj,

(ii) if t = xj ,m < j ∈ IN, then

Sm(xj , t1, . . . , tm) := xj,

(iii) if t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).

Then the generalized hypersubstitution σ can be extended to a mapping
σ̂ : Wτ (X) −→ Wτ (X) by the following steps:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary
operation symbol fi where σ̂[tj], 1 ≤ j ≤ ni are already defined.

We defined a binary operation ◦G on HypG(τ) by σ1◦Gσ2 := σ̂1 ◦σ2 where ◦
denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let σid be
the hypersubstitution mapping which maps each ni-ary operation symbol fi
to the term fi(x1, . . . , xni

). It turns out that (HypG(τ); ◦G, σid) is a monoid
and the monoid (Hyp(τ); ◦G, σid) of all arity preserving hypersubstitutions
of type τ forms a submonoid of (HypG(τ); ◦G, σid).

If M is a submonoid of HypG(τ) then an identity t ≈ t
′

is called an

M-strong hyperidentity if σ̂[t] ≈ σ̂[t
′
] are identities for every σ ∈ M . A

variety V is called M-strongly solid if every identity in it is an M-strong
hyperidentity. In case of M = HypG(τ) we will call a strong hyperidentity
and strongly solid respectively.

2. V -proper generalized hypersubstitutions and normal forms

In 2007, S. Leeratanavalee and S. Phatchat generalized the concept of V -
proper hypersubstitutions and normal forms of hypersubstitutions intro-
duced by J. P lonka [5] to V -proper generalized hypersubstitutions and nor-
mal forms of generalized hypersubstitutions.
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Definition 2.1 ([5]). Let V be a variety of type τ . A generalized hyper-
substitution σ of type τ is called a V-proper generalized hypersubstitution if
for every identity s ≈ t of V , the identity σ̂[s] ≈ σ̂[t] also holds in V . We use
PG(V ) for the set of all V-proper generalized hypersubstitutions of type τ .

Proposition 2.2 ([5]). For any variety V of type τ , (PG(V ); ◦G, σid) is a
submonoid of (HypG(τ); ◦G, σid).

Definition 2.3 ([5]). Let V be a variety of type τ . Two generalized hy-
persubstitutions σ1 and σ2 of type τ are called a V-generalized equivalent
if σ1(fi) ≈ σ2(fi) are identities in V for all i ∈ I. In this case we write
σ1 ∼V G σ2.

Theorem 2.4 ([5]). Let V be a variety of algebras of type τ ,and let σ1, σ2 ∈
HypG(τ). Then the following statements are equivalent:

(i) σ1 ∼V G σ2.

(ii) For all t ∈ Wτ (X), the equations σ̂1[t] ≈ σ̂2[t] are identities in V .

(iii) For all A ∈ V , σ1[A] = σ2[A] where σk[A] = (A; (σk(fi)
A)i∈I); k = 1, 2.

Proposition 2.5 ([5]). Let V be a variety of algebras of type τ . Then the
following statements hold:

(i) For all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then σ1 is a V -proper gener-
alized hypersubstitution iff σ2 is a V -proper generalized hypersubstitu-
tion.

(ii) For all s, t ∈ Wτ (X) and for all σ1, σ2 ∈ HypG(τ), if σ1 ∼V G σ2 then
σ̂1[s] ≈ σ̂1[t] is an identity in V iff σ̂2[s] ≈ σ̂2[t] is an identity in V .

The relation ∼V G is an equivalence relation on HypG(τ), but it is not nec-
cessary a congruence relation. We factorize HypG(τ) by ∼V G and consider
the submonoid PG(V ) of HypG(τ) is the union of equivalence classes of the
relation ∼V G. This is also true for a submonoid M of HypG(τ) and the
relation ∼V G|M

.

Lemma 2.6 ([5]). Let M be a submonoid of HypG(τ) and let V be a variety
of type τ . Then the monoid PG ∩M is the union of all equivalence classes
of the restricted relation ∼V G|M

.
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Definition 2.7 ([5]). Let M be a monoid of generalized hypersubstitutions
of type τ , and let V be a variety of type τ . Let φ be a choice function which
choosed from M one generalized hypersubstitution from each equivalence
class of the relation ∼V G|M

, and let NM
φ (V ) be the set of generalized hy-

persubstitutions which are chosen. Thus NM
φ (V ) is a set of distinguished

generalized hypersubstitutions from M , which we might call V-normal form
generalized hypersubstitutions. We will say that the variety V is NM

φ (V )-
strongly solid if for every identity s ≈ t ∈ IdV and for every generalized
hypersubstitution σ ∈ NM

φ (V ), σ̂[s] ≈ σ̂[t] ∈ IdV .

Theorem 2.8 ([5]). Let M be a monoid of generalized hypersubstitutions
of type τ and let V be a variety of type τ . For any choice function φ, V is
M -strongly solid if and only if V is NM

φ (V )-strongly solid.

3. Pre-strongly solid varieties of semigroups

The concept of pre-solid varieties was introduced by K. Denecke and S.L.
Wismath [2]. In 2007, S. Leeratanavalee and S. Phatchat generalized the
concept of pre-solid varieties to pre-strongly solid varieties [5]. Firstly, we
recall the definitions of a pre-generalized hypersubstitution and a pre-strong
hyperidentity. Let us fix a type τ = (2). So we have only one binary
operation symbol, say f . From now on, the generalized hypersubstitution σ

which maps f to the term t is denoted by σt.

Definition 3.1. A generalized hypersubstitution σ ∈ HypG(2) is called a
pre-generalized hypersubstitution if σ ∈ HypG(2) \ {σx1

, σx2
} where σx1

and
σx2

denoted the generalized hypersubstitutions which map f to x1 and to
x2, respectively. We denote the set of all pre-generalized hypersubstitutions
of type τ = (2) by PreG(2).

The reason to delete the generalized hypersubstitutions σx1
and σx2

from
HypG(2) is if we apply the generalized hypersubstitution σx1

or σx2
on the

both sides of the commutative law x1x2 ≈ x2x1 we obtain the equation
x1 ≈ x2 which satisfied only in a one-element semigroup.

Definition 3.2. An identity t ≈ t
′

is called a pre-strong hyperidentity in a
variety V if σ̂[t] ≈ σ̂[t

′
] ∈ IdV for all σ ∈ PreG(2).

A variety V is called a pre-strongly solid variety if every identity in V is
a pre-strong hyperidentity of V .
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For a class K of algebras of type τ and for a set
∑

of identities of this type
we fix the following notations:

IdK - the set of all identies of K,

HIdK - the set of all hyperidenties of K,

HPreGIdK - the set of all pre-strong hyperidenties of K,

Mod
∑

= {A ∈ Alg(τ)|A satisfies
∑

} - the variety defined by
∑

,

HMod
∑

= {A ∈ Alg(τ)|A hypersatisfies
∑

} - the hyperequa-
tional class defined by

∑
,

HPreGMod
∑

= {A ∈ Alg(τ)|A pre-strong hypersatisfies
∑

} - the
pre-strong hyperequational class defined by

∑
.

Proposition 3.3 ([5]). PreG(2) is a submonoid of HypG(2).

Remark 3.4 ([5]) . Every strongly solid variety of semigroups is a pre-
strongly solid variety.

Remark 3.5 ([5]). Every pre-strongly solid variety of semigroups is a pre-
solid variety of semigroups.

Lemma 3.6 ([5]). The variety Z := Mod{x1x2 ≈ x3x4} is the least non-
trivial pre-strongly solid variety of semigroups.

Theorem 3.7 ([5]) . The greatest non-trivial pre-strongly solid variety of
semigroups which is not strongly solid is Z := Mod{x1x2 ≈ x3x4}.

Theorem 3.8 ([5]). The variety Vbig := Mod{(x1x2)x3 ≈ x1(x2x3), x21x2 ≈
x1x

2
2 ≈ x1x2, x1x2x3x4 ≈ x1x3x2x4} is the greatest pre-strongly solid variety

of semigroups.

4. Pre-strongly solid varieties of commutative semigroups

Firstly, we recall the definition of a generalized hypersubstitution of type
τ is a mapping σ : {fi|i ∈ I} −→ Wτ (X) from the set of all ni-ary opera-
tion symbols into the set of all terms built up by elements of the alphabet
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X := {x1, x2, ...} and operation symbols from {fi|i ∈ I} which does not
necessarily preserve the arity. We denote the set of all generalized hyper-
substitutions of type τ by HypG(τ). A generalized superposition of terms
Sm : Wτ (X)m+1 −→ Wτ (X) is defined by the following steps:

for any term t ∈ Wτ (X),

(i) if t = xj , 1 ≤ j ≤ m, then

Sm(xj , t1, . . . , tm) := tj,

(ii) if t = xj ,m < j ∈ IN, then

Sm(xj , t1, . . . , tm) := xj,

(iii) if t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).

For every σ ∈ HypG(τ) induces a mapping σ̂ : Wτ (X) −→ Wτ (X) by the
following steps:

(i) σ̂[x] := x ∈ X,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary opera-
tion symbol fi where σ̂[tj], 1 ≤ j ≤ ni are already defined.

In this section, we give an example of pre-strongly solid varieties of commu-
tative semigroups and then determine the least and the greatest pre-strongly
solid variety of commuutative semigroups.

Theorem 4.1. The variety V1 := Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1,

x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22} is a pre-strongly solid variety of commutative

semigroups.

Proof. To show that the variety V1 is a pre-strongly solid variety of com-
mutative semigroups, we have to show that every identity satisfied in V1 is
a pre-strong hyperidentity of V1. By using Theorem 2.8 , we can restrict
our checking to the following pre-generalized hypersubstitutions σt where
t ∈ {xixj|i, j ∈ N}∪{xixjxk| i 6= j 6= k}∪{xi1xi2 ...xik | k, i1, ..., ik ∈ N, k > 3,
and all of i1, ..., ik are distinct}.
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; i, j ∈ N on the both sides of the associative law we have the following table.

i, j ∈ N σ̂xixj
[(x1x2)x3] = σ̂xixj

[x1(x2x3)] =

S2(xixj, S
2(xixj, x1, x2), x3) S2(xixj, x1, S

2(xixj, x2, x3))

i = j = 1 x1x1x1x1 x1x1

i = 1, j = 2 x1x2x3 x1x2x3

i = 1, j > 2 x1xjxj x1xj

i = j = 2 x3x3 x3x3x3x3

i = 2, j > 2 x3xj x3xjxj

i, j > 2 xixj xixj

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
If we apply σxixj

; i, j ∈ N on the both sides of the commutative law we have the following table.

i, j ∈ N σ̂xixj
[x1x2] = S2(xixj, x1, x2) σ̂xixj

[x2x1] = S2(xixj, x2, x1)

i = j = 1 x1x1 x2x2

i = 1, j = 2 x1x2 x2x1

i = 1, j > 2 x1xj x2xj

i = j = 2 x2x2 x1x1

i = 2, j > 2 x2xj x2xj

i, j > 2 xixj xixj

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
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If we apply σxixj
; i, j ∈ N on the both sides of the identity x21 ≈ x22 we have the following table.

i, j ∈ N σ̂xixj
[x1x1] = S2(xixj, x1, x1) σ̂xixj

[x2x2] = S2(xixj, x2, x2)

i = j = 1 x1x1 x2x2

i = 1, j = 2 x1x1 x2x2

i = 1, j > 2 x1xj x2xj

i = j = 2 x1x1 x2x2

i = 2, j > 2 x1xj x2xj

i, j > 2 xixj xixj

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
If we apply σxixj

; i, j ∈ N on the both sides of the identity x21x2 ≈ x1x
2
2 ≈ x1x2 we have the following

table.

i, j ∈ N σ̂xixj
[(x1x1)x2] = σ̂xixj

[x1(x2x2)] = σ̂xixj
[x1x2] =

S2(xixj, S
2(xixj , x1, x1), x2) S2(xixj, x1, S

2(xixj , x2, x2)) S2(xixj , x1, x2)

i = j = 1 x1x1x1x1 x1x1 x1x1

i = 1, j = 2 x1x1x2 x1x2x2 x1x2

i = 1, j > 2 x1xjxj x1xj x1xj

i = j = 2 x2x2 x2x2x2x2 x2x2

i = 2, j > 2 x2xj x2xjxj x2xj

i, j > 2 xixj xixj xixj
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Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
If we apply σxixjxk

; i 6= j 6= k ∈ N on the both sides of the associative law we have the following table.

i, j, k ∈ N σ̂xixjxk
[(x1x2)x3] = σ̂xixjxk

[x1(x2x3)] =

S2(xixjxk, S
2(xixjxk, x1, x2), x3) S2(xixjxk, x1, S

2(xixjxk, x2, x3))

i = 1, j = 2, k > 2 x1x2xkx3xk x1x2x3xkxk

i = 1, j, k > 2 x1xjxkxjxk x1xjxk

i = 2, j, k > 2 x3xjxk x3xjxkxjxk

i, j, k > 2 xixjxk xixjxk

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
If we apply σxixjxk

; i 6= j 6= k ∈ N on the both sides of the commutative law we have the following table.

i, j, k ∈ N σ̂xixjxk
[x1x2] = S2(xixjxk, x1, x2) σ̂xixjxk

[x2x1] = S2(xixjxk, x2, x1)

i = 1, j = 2, k > 2 x1x2xk x2x1xk

i = 1, j, k > 2 x1xjxk x2xjxk

i = 2, j, k > 2 x2xjxk x2xjxk

i, j, k > 2 xixjxk xixjxk

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
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If we apply σxixjxk
; i 6= j 6= k ∈ N on the both sides of the identity x21 ≈ x22 we have the following table.

i, j, k ∈ N σ̂xixjxk
[x1x1] = S2(xixjxk, x1, x1) σ̂xixjxk

[x2x2] = S2(xixjxk, x2, x2)

i = 1, j = 2, k > 2 x1x2xk x2x1xk

i = 1, j, k > 2 x1xjxk x2xjxk

i = 2, j, k > 2 x2xjxk x1xjxk

i, j, k > 2 xixjxk xixjxk

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
If we apply σxixjxk

; i 6= j 6= k ∈ N on the both sides of the identity x21x2 ≈ x1x
2
2 ≈ x1x2 we have the

following table.

i, j, k ∈ N σ̂xixjxk
[(x1x1)x2] = σ̂xixjxk

[x1(x2x2)] = σ̂xixjxk
[x1x2] =

S2(xixjxk, S2(xixjxk, x1, S2(xixjxk, x2, x1)

S2(xixjxk, x1, x1), x2) S2(xixjxk, x2, x2))

i = 1, j = 2, k > 2 x1x1xkx2xk x1x2x2xkxk x1x2xk

i = 1, j, k > 2 x1xjxkxjxk x1xjxk x1xjxk

i = 2, j, k > 2 x2xjxk x2xjxkxjxk x2xjxk

i, j, k > 2 xixjxk xixjxk xixjxk

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈ x1x2, x

2
1 ≈ x22 we have both

sides are equal.
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If we apply σt where t = xi1xi2 ...xik and k, i1, ..., ik ∈ N, k > 3 on the both
sides of the associative law we have σ̂t[(x1x2)x3] = S2(t, S2(t, x1, x2), x3)
and σ̂t[x1(x2x3)] = S2(t, x1, S

2(t, x2, x3)).

(i) If there exists a unique n ∈ {1, ..., k} such that in = 1 and im > 2 for
all m 6= n, then

σ̂t[(x1x2)x3] = xi1 ...xin−1
xi1 ...xin−1

x1xin+1
...xikxin+1

...xik .

σ̂t[x1(x2x3)] = xi1 ...xin−1
x1xin+1

...xik .

(ii) If there exists a unique n ∈ {1, ..., k} such that in = 2 and im > 2 for
all m 6= n, then

σ̂t[(x1x2)x3] = xi1 ...xin−1
x3xin+1

...xik .

σ̂t[x1(x2x3)] = xi1 ...xin−1
xi1 ...xin−1

x3xin+1
...xikxin+1

...xik .

(iii) If there exists a unique n ∈ {1, ..., k} such that in = 1 and there exists
a unique l ∈ {1, ..., k} such that il = 2, im > 2 for all m 6= n 6= l and
n < l, then

σ̂t[(x1x2)x3]

=xi1 ...xin−1
xi1 ...xin−1

x1xin+1
...xil−1

x2xil+1
...xikxin+1

...xil−1
x3xil+1

...xik .

σ̂t[x1(x2x3)]

= xi1 ...xin−1
x1xil−1

xi1 ...xin−1
x2xin+1

...xil−1
x3xil+1

...xikxil+1
...xik .

(iv) If im > 2 for all m ∈ {1, 2, ..., k}, then

σ̂t[(x1x2)x3] = xi1 ...xik .

σ̂t[x1(x2x3)] = xi1 ...xik .

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈

x1x2, x
2
1 ≈ x22 we have both sides are equal.
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If we apply σt where t = xi1xi2 ...xik and k, i1, ..., ik ∈ N, k > 3 on the
both sides of the commutative law we have σ̂t[x1x2] = S2(t, x1, x2) and
σ̂t[x2x1] = S2(t, x2, x1).

(i) If there exists a unique n ∈ {1, ..., k} such that in = 1 and im > 2 for
all m 6= n, then

σ̂t[x1x2] = xi1 ...xin−1
x1xin+1

...xik .

σ̂t[x2x1] = xi1 ...xin−1
x2xin+1

...xik .

(ii) If there exists a unique n ∈ {1, ..., k} such that in = 2 and im > 2 for
all m 6= n, then

σ̂t[x1x2] = xi1 ...xin−1
x2xin+1

...xik .

σ̂t[x2x1] = xi1 ...xin−1
x1xin+1

...xik .

(iii) If there exists a unique n ∈ {1, ..., k} such that in = 1 and there exists
a unique l ∈ {1, ..., k} such that il = 2, im > 2 for all m 6= n 6= l and
n < l, then

σ̂t[x1x2] = xi1 ...xin−1
x1xin+1

...xil−1
x2xil+1

...xik .

σ̂t[x2x1] = xi1 ...xin−1
x2xin+1

...xil−1
x1xil+1

...xik .

(iv) If im > 2 for all m ∈ {1, 2, ..., k}, then

σ̂t[x1x2] = xi1 ...xik .

σ̂t[x2x1] = xi1 ...xik .

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈

x1x2, x
2
1 ≈ x22 we have both sides are equal.



40 S. Phuapong and S. Leeratanavalee

If we apply σt where t = xi1xi2 ...xik and k, i1, ..., ik ∈ N, k > 3 on the
both sides of the identity x21 ≈ x22 we have σ̂t[x1x1] = S2(t, x1, x1) and
σ̂t[x2x2] = S2(t, x2, x2).

(i) If there exists a unique n ∈ {1, ..., k} such that in = 1 and im > 2 for
all m 6= n, then

σ̂t[x1x1] = xi1 ...xin−1
x1xin+1

...xik .

σ̂t[x2x2] = xi1 ...xin−1
x2xin+1

...xik .

(ii) If there exists a unique n ∈ {1, ..., k} such that in = 2 and im > 2 for
all m 6= n, then

σ̂t[x1x1] = xi1 ...xin−1
x1xin+1

...xik .

σ̂t[x2x2] = xi1 ...xin−1
x2xin+1

...xik .

(iii) If there exists a unique n ∈ {1, ..., k} such that in = 1 and there exists
a unique l ∈ {1, ..., k} such that il = 2, im > 2 for all m 6= n 6= l and
n < l, then

σ̂t[x1x1] = xi1 ...xin−1
x1xin+1

...xil−1
x1xil+1

...xik .

σ̂t[x2x2] = xi1 ...xin−1
x2xin+1

...xil−1
x2xil+1

...xik .

(iv) If im > 2 for all m ∈ {1, 2, ..., k}, then

σ̂t[x1x1] = xi1 ...xik .

σ̂t[x2x2] = xi1 ...xik .

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈

x1x2, x
2
1 ≈ x22 we have both sides are equal.
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If we apply σt where t = xi1xi2 ...xik and k, i1, ..., ik ∈ N, k > 3 on the
both sides of the identity x21x2 ≈ x1x

2
2 ≈ x1x2 we have σ̂t[(x1x1)x2] =

S2(t, S2(t, x1, x1), x2) and σ̂t[x1(x2x2)] = S2(t, x1, S
2(t, x1, x2)) and σ̂t[x1x2]

= S2(t, x1, x2).

(i) If there exists a unique n ∈ {1, ..., k} such that in = 1 and im > 2 for
all m 6= n, then

σ̂t[(x1x1)x2] = xi1 ...xin−1
xi1 ...xin−1

x1xin+1
...xikxin+1

...xik .

σ̂t[x1(x2x2)] = xi1 ...xin−1
x1xin+1

...xik .

σ̂t[x1x2] = xi1 ...xin−1
x1xin+1

...xik .

(ii) If there exists a unique n ∈ {1, ..., k} such that in = 2 and im > 2 for
all m 6= n, then

σ̂t[(x1x1)x2] = xi1 ...xin−1
x2xin+1

...xik .

σ̂t[x1(x2x2)] = xi1 ...xin−1
xi1 ...xin−1

x2xin+1
...xikxin+1

...xik .

σ̂t[x1x2] = xi1 ...xin−1
x2xin+1

...xik .

(iii) If there exists a unique n ∈ {1, ..., k} such that in = 1 and there exists
a unique l ∈ {1, ..., k} such that il = 2, im > 2 for all m 6= n 6= l and
n < l, then

σ̂t[(x1x1)x2]

= xi1 ...xin−1
xi1 ...xin−1

x1xin+1
...xil−1

x1xil+1
...xikxin+1

...xil−1
x2xil+1

...xik .

σ̂t[x1(x2x2)]

=xi1 ...xin−1
x1xil−1

xi1 ...xin−1
x2xin+1

...xil−1
x2xil+1

...xikxil+1
...xik .

σ̂t[x1x2] = xi1 ...xin−1
x1xin+1

...xil−1
x2xil+1

...xik .
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(iv) If im > 2 for all m ∈ {1, 2, ..., k}, then

σ̂t[(x1x1)x2] = xi1 ...xik .

σ̂t[x1(x2x2)] = xi1 ...xik .

σ̂t[x1x2] = xi1 ...xik .

Using the associative law, the commutative law and identities x21x2 ≈ x1x
2
2 ≈

x1x2, x
2
1 ≈ x22 we have both sides are equal.

Theorem 4.2. The variety Z := Mod{x1x2 ≈ x3x4} is the least pre-
strongly solid variety of commutative semigroups.

Theorem 4.3. The variety V2 := Mod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1,

x1x2x3 ≈ x1x3} is the greatest pre-strongly solid variety of commutative
semigroups.

Proof. The greatest pre-strongly solid variety of commutative semigroups
is the class of all commutative semigroups for which the associative law and
the commutative law are satisfied as pre-strong hyperidentities, i.e the class
HPreGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}. Applying σx1x2

, σx1xi
, σxix1

(i > 2) ∈ PreG on the associative law, σx1x2
gives (x1x2)x3 ≈ x1(x2x3),

σx1xi
gives x1x

2
i ≈ x1xi, σxix1

gives x2i x ≈ xix. If we substitute for xi a new
variable x2, then we have the identities x1x

2
2 ≈ x1x2, x

2
2x1 ≈ x2x1. That

means x21x2 ≈ x1x
2
2 ≈ x1x2 ∈Id(HPreGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈

x2x1}). Applying σx1x2
, σx1xi

(i > 2) on the commutative law, σx1x2
gives

x1x2 ≈ x2x1, σx1xi
gives xix1 ≈ xix2. Then xix1x2 ≈ xix2x2 ≈ xix2, so

xix1x2 ≈ xix2. If we substitute xi by x1, x1 by x2 and x2 by x3. Then we
have x1x2x3 ≈ x1x3. Thus HPreGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈ x2x1}
satisfies all identities of V2, i.e HPreGMod{(x1x2)x3 ≈ x1(x2x3), x1x2 ≈
x2x1} ⊆ V2. To prove the converse inclusion we have to check the associative
law , the commutative law and the rectangular law, i.e. x1x2x3 ≈ x1x3 using
all pre-generalized hypersubstitutions. We can restrict our checking to the
following pre-generalized hypersubstitutions σxixj

(i, j ∈ N).
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If we apply σxixj
; i, j ∈ N on the both sides of the associative law we have

the following table.

i, j ∈ N σ̂xixj
[(x1x2)x3] = σ̂xixj

[x1(x2x3)] =

S2(xixj , S
2(xixj, x1, x2), x3) S2(xixj , x1, S

2(xixj, x2, x3))

i = j = 1 x1x1x1x1 x1x1

i = 1, j = 2 x1x2x3 x1x2x3

i = j = 2 x3x3 x3x3x3x3

i = 1, j > 2 x1xjxj x1xj

i = 2, j > 2 x3xj x3xjxj

i, j > 2 xixj xixj

Using the associative law, the commutative law and the identity x1x2x3 ≈
x1x3 we have both sides are equal.

If we apply σxixj
; i, j ∈ N on the both sides of the commutative law we

have the following table.

i, j ∈ N σ̂xixj
[x1x2] = S2(xixj , x1, x2) σ̂xixj

[x2x1] = S2(xixj , x2, x1)

i = j = 1 x1x1 x2x2

i = 1, j = 2 x1x2 x2x1

i = j = 2 x2x2 x1x1

i = 1, j > 2 x1xj x2xj

i = 2, j > 2 x2xj x1xj

i, j > 2 xixj xixj

Using the associative law, the commutative law and the identity x1x2x3 ≈
x1x3 we have both sides are equal.
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If we apply σxixj
; i, j ∈ N on the both sides of the identity x1x2x3 ≈ x1x3 we have the following table.

i, j ∈ N σ̂xixj
[(x1x2)x3] = S2(xixj, S

2(xixj, x1, x2), x3) σ̂xixj
[x1x3] = S2(xixj, x1, x3)

i = j = 1 x1x1x1x1 x1x1

i = 1, j = 2 x1x2x3 x1x3

i = j = 2 x3x3 x3x3

i = 1, j > 2 x1xjxj x1xj

i = 2, j > 2 x3xj x3xj

i, j > 2 xixj xixj

Using the associative law, the commutative law and the identity x1x2x3 ≈ x1x3 we have both sides are equal.
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