A NOTE ON GOOD PSEUDO BL-ALGEBRAS

MAGDALENA WOJCIECHOWSKA-RYSIAWA

Institute of Mathematics and Physics University of Podlasie 3 Maja 54, 08–110 Siedlce, Poland e-mail: magdawojciechowska6@wp.pl

Abstract

Pseudo BL-algebras are a noncommutative extention of BL-algebras. In this paper we study good pseudo BL-algebras and consider some classes of these algebras.

Keywords: pseudo BL-algebra, filter, (strongly) bipartite pseudo BL-algebra.

2000 Mathematics Subject Classification: 03G25, 06F05.

1. Introduction

Hájek [9] introduced BL-algebras in 1998. MV-algebras introduced by Chang [1] are contained in the class of BL-algebras. A noncommutative extention of MV-algebras, called pseudo MV-algebras, were introduced by Georgescu and Iorgulescu [6]. A concept of pseudo BL-algebras were firstly introduced by Georgescu and Iorgulescu in 2000 as noncommutative generalization of BL-algebras and pseudo MV-algebras. The basic properties of pseudo BLalgebras were given in [2] and [3]. The pseudo BL-algebras correspond to a pseudo-basic fuzzy logic (see [10] and [11]).

In [8], there were characterized some classes of pseudo BL-algebras. In this paper we give some interesting facts about good pseudo BL-algebras.

We study bipartite good pseudo BL-algebras and some connections between a good pseudo BL-algebra A and the set M(A) of elements $a \in A$ such that $a = (a^{-})^{\sim} = (a^{\sim})^{-}$.

2. Preliminaries

Definition 2.1. An algebra $(A, \lor, \land, \odot, \rightarrow, \rightsquigarrow, 0, 1)$ of type (2,2,2,2,2,0,0) is called *a pseudo BL-algebra* if it satisfies the following axioms for any $a, b, c \in A$:

- (C1) $(A, \lor, \land, 0, 1)$ is a bounded lattice,
- (C2) $(A, \odot, 1)$ is a monoid,
- (C3) $a \odot b \le c \Leftrightarrow a \le b \to c \Leftrightarrow b \le a \rightsquigarrow c$,
- (C4) $a \wedge b = (a \rightarrow b) \odot a = a \odot (a \rightsquigarrow b),$
- (C5) $(a \rightarrow b) \lor (b \rightarrow a) = (a \rightsquigarrow b) \lor (b \rightsquigarrow a) = 1.$

Throughout this paper A will denote a pseudo BL-algebra. For any $a \in A$ and $n = 0, 1, \ldots$, we put $a^0 = 1$ and $a^{n+1} = a^n \odot a$.

Proposition 2.2 ([2]). The following properties hold in A for all $a, b, c \in A$:

- (i) $a \leq b \Leftrightarrow a \to b = 1$,
- (ii) $b \leq a \rightarrow b and b \leq a \rightsquigarrow b$,
- (iii) $a \odot b \leq a \text{ and } a \odot b \leq b$,
- (iv) $a \to (b \to c) = a \odot b \to c \text{ and } a \rightsquigarrow (b \rightsquigarrow c) = b \odot a \rightsquigarrow c,$
- (v) $a \odot (b \lor c) = (a \odot b) \lor (a \odot c)$ and $(b \lor c) \odot a = (b \odot a) \lor (c \odot a)$,
- (vi) $a \leq b \Leftrightarrow a \odot c \leq b \odot c$.

We define $a^- := a \to 0$ and $a^{\sim} := a \rightsquigarrow 0$. We have

Proposition 2.3 ([2]). The following properties hold in A for all $a, b, c \in A$:

- (i) $a \leq (a^{-})^{\sim}$ and $a \leq (a^{\sim})^{-}$, (ii) $a^{-} \odot a = a \odot a^{\sim} = 0$, (iii) $(a \odot b)^{-} = a \rightarrow b^{-}$ and $(a \odot b)^{\sim} = b \rightsquigarrow a^{\sim}$, (iv) $a \rightsquigarrow b \leq b^{\sim} \rightarrow a^{\sim}$ and $a \rightarrow b \leq b^{-} \rightsquigarrow a^{-}$, (v) $(a \lor b)^{-} = a^{-} \land b^{-}$ and $(a \lor b)^{\sim} = a^{\sim} \land b^{\sim}$,
- (vi) $(a \wedge b)^- = a^- \vee b^-$ and $(a \wedge b)^\sim = a^\sim \vee b^\sim$,
- (vii) $((a^{-})^{\sim})^{-} = a^{-} and ((a^{\sim})^{-})^{\sim} = a^{\sim},$
- (viii) $a \to b^{\sim} = b \rightsquigarrow a^{-},$
- (ix) $a \leq b$ implies $b^- \leq a^-$ and $b^\sim \leq a^\sim$.

Definition 2.4. A nonempty subset F of A is called *a filter* if it satisfies the following two conditions:

- (F1) If $a \in F$ and $a \leq b$, then $b \in F$,
- (F2) If $a, b \in F$, then $a \odot b \in F$.

A filter F is called *proper* if $F \neq A$. A proper filter F is called *maximal* or an *ultrafilter* if F is not contained in any other proper filter.

Let Max A denote the set of all ultrafilters of A. Denote $\mathcal{M}(A) = \bigcap \operatorname{Max} A$. For every filter F of A we define sets

$$F_{\sim}^* = \{ a \in A : a \le x^{\sim} \text{ for some } x \in F \},$$
$$F_{-}^* = \{ a \in A : a \le x^{-} \text{ for some } x \in F \}.$$

Proposition 2.5 ([8]).

- (a) $F^*_{\sim} = \{a \in A : a^- \in F\},\$
- (b) $F_{-}^{*} = \{a \in A : a^{\sim} \in F\}.$

Definition 2.6. *A* is called:

- (1) bipartite if $A = F \cup F^*_{\sim} = F \cup F^*_{-}$ for some ultrafilter F of A.
- (2) strongly bipartite if $A = F \cup F^*_{\sim} = F \cup F^*_{-}$ for all $F \in \text{Max } A$.

Proposition 2.7 ([13]). Let F be a proper filter of A. Then the following conditions are equivalent:

- (i) $A = F \cup F_{\sim}^* = F \cup F_{-}^*,$
- (ii) $F_{-}^{*} = F_{\sim}^{*} = A F,$
- (iii) $\forall a \in A \ (a \in F \ or \ (a^- \in F \ and \ a^\sim \in F)).$

Let $S(A) := \{a \lor a^{\sim} : a \in A\} \cup \{a \lor a^{-} : a \in A\}.$

Proposition 2.8 ([8]). $S(A) = \{a \in A : a \ge a^{\sim} \text{ or } a \ge a^{-}\}.$

Proposition 2.9 ([13]). $\mathcal{M}(A) \subseteq S(A)$.

Proposition 2.10 ([13]). The following conditions are equivalent:

- (i) A is strongly bipartite,
- (ii) $\forall_{F \in \operatorname{Max} A} A = F \cup F_{\sim}^* = F \cup F_{-}^*$,
- (iii) $\forall_{F \in \operatorname{Max} A} S(A) \subseteq F$,
- (iv) $S(A) = \mathcal{M}(A)$.

In the sequel, we need to recall same facts about pseudo MV-algebras, which are the noncommutative generalizations of MV-algebras.

Definition 2.11. A pseudo MV-algebra is an algebra $(M; \oplus, -, \sim, 0, 1)$ of type (2, 1, 1, 0, 0), which satisfies the following conditions for all $a, b, c \in M$:

- (A1) $a \oplus (b \oplus c) = (a \oplus b) \oplus c$,
- (A2) $a \oplus 0 = 0 \oplus a = a$,

- (A3) $a \oplus 1 = 1 \oplus a = 1$,
- (A4) $1^{\sim} = 0; 1^{-} = 0,$
- (A5) $(a^{\sim} \oplus b^{\sim})^{-} = (a^{-} \oplus b^{-})^{\sim},$
- (A6) $a \oplus a^{\sim} \cdot b = b \oplus b^{\sim} \cdot a = a \cdot b^{-} \oplus b = b \cdot a^{-} \oplus a$,
- (A7) $a \cdot (a^- \oplus b) = (a \oplus b^\sim) \cdot a$,
- (A8) $(a^{-})^{\sim} = a.$

where $a \cdot b = (b^- \oplus a^-)^{\sim}$ and the operation \cdot has a priority to the operation \oplus .

Recall that in a pseudo MV-algebra M the following conditions hold:

- (i) $(a^{\sim})^{-} = a$,
- (ii) $a \cdot b = (b^{\sim} \oplus a^{\sim})^{-},$
- (iii) $0^{-} = 1$.

Definition 2.12. The nonempty subset $I \subseteq M$ is called *an ideal* of a pseudo MV-algebra M if the following conditions hold for all $a, b \in M$:

- (I1) If $a \in I$, $b \in M$ and $b \leq a$, then $b \in I$;
- (I2) If $a, b \in I$, then $a \oplus b \in I$.

Definition 2.13. An ideal I of M is called *proper* if $I \neq M$. A proper ideal I of M is called *maximal* if I is not contained in any other proper ideal of M.

The set of all maximal ideals of a pseudo MV-algebra M is denoted by MaxM and the intersection of all maximal ideals of M by RadM.

Set $T(M) = \{a \land a^- : a \in M\}$. We have

Proposition 2.14 ([5]). Rad $M \subseteq T(M)$.

Let I be an ideal of a pseudo MV-algebra M. We set

$$I^{-} = \{a^{-} : a \in I\},\$$

 $I^{\sim} = \{a^{\sim} : a \in I\}.$

A pseudo MV-algebra M is called *bipartite* if there exists a maximal ideal I of M such that $M = I \cup I^- = I \cup I^\sim$. If $M = I \cup I^- = I \cup I^\sim$ for all $I \in \mathbf{Max}M$, then M is called *strongly bipartite*.

Proposition 2.15 ([4]). The following conditions are equivalent for pseudo MV-algebra M:

- (i) *M* is strongly bipartite,
- (ii) for all $I \in \mathbf{Max}M$, $M = I \cup I^- = I \cup I^\sim$,
- (iii) $T(M) = \operatorname{Rad} M$.

3. Good pseudo bl-algebras

Definition 3.1. A *good* pseudo BL-algebra is a pseudo BL-algebra which satisfies the following identity:

$$(a^{-})^{\sim} = (a^{\sim})^{-}.$$

From this place to the end of this paper, A will denote a good pseudo BL-algebra.

We consider the subset

$$M(A) = \{a \in A : a = (a^{-})^{\sim} = (a^{\sim})^{-}\}$$

of A.

For any $a, b, \in A$, we define

$$a \oplus b := (b^- \odot a^-)^{\sim}.$$

Proposition 3.2 ([8]). The following properties hold in A:

- (i) $0, 1 \in M(A),$
- (ii) $a^- \in M(A)$ and $a^{\sim} \in M(A)$ for any $a \in A$,

198

- (iii) If $a, b \in M(A)$, then $a \oplus b = b^{\sim} \to a = a^{-} \rightsquigarrow b$,
- (iv) If $a, b \in M(A)$, then $a \oplus b^- = b \to a, a \oplus b^- = a^- \rightsquigarrow b^-, a^- \oplus b = b^- \to a^-$ and $a^- \oplus b = a \rightsquigarrow b$.

Proposition 3.3 ([8]). The structure $(M(A), \oplus, \bar{a}, 0, 0, 1)$ is a pseudo MV-algebra. The order on A agrees with the one of M(A), defined by $a \leq_{M(A)} b$ iff $a^{\sim} \oplus b = 1$.

Following [8] we define two maps: $\varphi_1 : A \to M(A)$ by $\varphi_1(a) = a^-$ and $\varphi_2 : A \to M(A)$ by $\varphi_2(a) = a^{\sim}$.

Let $X \subseteq A$. Write $X^- = \varphi_1(X)$ and $X^- = \varphi_2(X)$. It is obvious that

$$X^{-} = \{a^{-} : a \in X\},\$$

 $X^{\sim} = \{a^{\sim} : a \in X\}.$

 Set

$$X_{\sim} = \{a : a^{\sim} \in X\},\$$

$$X_{-} = \{a : a^{-} \in X\}.$$

If $X \subseteq M(A)$, then $\varphi_1^{-1}(X) = X_-$ and $\varphi_2^{-1}(X) = X_{\sim}$.

Following [8] we have

Proposition 3.4. If F is a filter of A and I is an ideal of M(A), then:

- (i) F^- and F^{\sim} are ideals of M(A);
- (ii) I_{-} and I_{\sim} are filters of A;
- (iii) if I is proper, then I_{-} and I_{\sim} are proper filters of A;
- (iv) if F is proper, then F^- and F^{\sim} are proper ideals of M(A);

- (v) $F \subseteq (F^{-})_{-}$ and $F \subseteq (F^{\sim})_{\sim};$
- (vi) if F is an ultrafilter, then $(F^-)_- = (F^{\sim})_{\sim} = F$;
- (vii) $(I_{\sim})^{\sim} = (I_{-})^{-} = I;$
- (viii) if I is maximal, then I_{-} and I_{\sim} are ultrafilters of A;
- (ix) if F is an ultrafilter, then F^-, F^{\sim} are maximal ideals of M(A).

Proposition 3.5. Let F be a filter of A. Then $F^- = F^*_-$ and $F^\sim = F^*_{\sim}$.

Proof. Let $b \in F^-$. Then $b = a^-$, where $a \in F$. Obviously, $b^{\sim} = (a^-)^{\sim}$. Since $a \leq (a^-)^{\sim}$, $a \in F$ and F is a filter, we have $b^{\sim} \in F$ and hence $b \in F_-^*$.

Conversely, let $b \in F_-^*$. Then $b^{\sim} \in F$. So we have $(b^{\sim})^- \in F^-$. Since $b \leq (b^{\sim})^-, (b^{\sim})^- \in F^-$ and F^- is an ideal, we have $b \in F^-$.

Similarly we can show that
$$F^{\sim} = F_{\sim}^*$$
.

From Propositions 2.5 and 3.5 we obtain

Corrolary 3.6. Let F be a filter of A. Then $F^- = F_{\sim}$ and $F^{\sim} = F_{-}$.

Proposition 3.7. Let I be an ideal of M(A). Then $I^- = M(A) \cap I_{\sim}$ and $I^{\sim} = M(A) \cap I_{-}$.

Proof. Let $b \in I^-$. Then $b = a^-$, where $a \in I$. Hence $b^{\sim} = (a^-)^{\sim}$. Since $I \subseteq M(A)$ and $a \in I$, we have $b^{\sim} = a$. Therefore $b^{\sim} \in I$. Consequently $b \in I_{\sim}$. By Proposition 3.2 (ii), $b = a^- \in M(A)$. We obtain that $b \in M(A) \cap I_{\sim}$.

Conversely, let $b \in M(A) \cap I_{\sim}$. Then $b \in M(A)$ and $b \in I_{\sim}$, i.e., $b \in M(A)$ and $b^{\sim} \in I$. Hence $b = (b^{\sim})^{-} \in I^{-}$.

Similarly we can prove that $I^{\sim} = M(A) \cap I_{-}$

Proposition 3.8. $(\operatorname{Rad}M(A))_{-} = (\operatorname{Rad}M(A))_{\sim} = \mathcal{M}(A).$

Proof. Let us notice that:

200

$$a \notin \mathcal{M}(A) \Leftrightarrow a \notin \bigcap_{F \in \operatorname{Max} A} F \Leftrightarrow \exists_{F \in \operatorname{Max} A} a \notin F \Leftrightarrow$$
$$\Leftrightarrow \exists_{F \in \operatorname{Max} A} a \notin (F^{\sim})_{\sim} \Leftrightarrow \exists_{F \in \operatorname{Max} A} a^{\sim} \notin F^{\sim} \Leftrightarrow$$
$$\Leftrightarrow \exists_{I = F^{\sim} \in \operatorname{Max}(M(A))} a^{\sim} \notin I \Leftrightarrow a^{\sim} \notin \operatorname{Rad}(A) \Leftrightarrow$$
$$\Leftrightarrow a \notin (\operatorname{Rad}(A))_{\sim}.$$

Similarly, we can prove that $(\operatorname{Rad}M(A))_{-} = \mathcal{M}(A)$.

Proposition 3.9. Rad
$$M(A) = (\mathcal{M}(A))^{-} = (\mathcal{M}(A))^{\sim}$$
.

Proof. RadM(A) is an ideal. By Proposition 3.4 (vii) Rad $M(A) = ((\operatorname{Rad}M(A))_{-})^{-}$. From Proposition 3.8 we obtain Rad $M(A) = (\mathcal{M}(A))^{-}$. Similarly, Rad $M(A) = (\mathcal{M}(A))^{\sim}$.

Corrolary 3.10.

- (i) $((\mathcal{M}(A))^{-}) = ((\mathcal{M}(A))^{\sim})_{\sim} = \mathcal{M}(A),$
- (ii) $((\operatorname{Rad}M(A))_{-})^{-} = ((\operatorname{Rad}M(A))_{\sim})^{\sim} = \operatorname{Rad}M(A).$

Proof. By Propositions 3.8 and 3.9 $((\mathcal{M}(A))^{-})_{-} = (\operatorname{Rad}M(A))_{-} = \mathcal{M}(A)$ and $((\mathcal{M}(A))^{\sim})_{\sim} = (\operatorname{Rad}M(A))_{\sim} = \mathcal{M}(A)$.

(ii) Follows from Proposition 3.4 (vii).

Proposition 3.11. If M(A) is bipartite by I, then $I_{-} = I_{\sim}$.

Proof. By assumption, $M(A) = I \cup I^{\sim} = I \cup I^{-}$. Hence $I^{-} = M(A) - I = I^{\sim}$.

Let $a \in I_{\sim}$, then $a^{\sim} \in I$, which implies $(a^{\sim})^{-} = (a^{-})^{\sim} \in I^{-} = I^{\sim}$. Hence $(a^{-})^{\sim} = b^{\sim}$ for some $b \in I$. Since $b \in M(A)$, we conclude that $b = (b^{\sim})^{-} = [(a^{-})^{\sim}]^{-} = a^{-}$. Therefore $a^{-} \in I$. Thus $a \in I_{-}$. We have $I_{\sim} \subseteq I_{-}$. Similarly we can show that $I_{-} \subseteq I_{\sim}$. Consequently, $I_{-} = I_{\sim}$.

Proposition 3.12. If A is bipartite by F, then $F^- = F^{\sim}$.

Proof. Let F be an ultrafilter such that $A = F \cup F_{-}^* = F \cup F_{\sim}^*$. By Proposition 2.7, $F_{\sim}^* = F_{-}^* = A - F$. Then from Proposition 3.5 we have $F^- = F^{\sim}$.

Theorem 3.13. A good pseudo BL-algebra A is bipartite iff M(A) is a bipartite pseudo MV-algebra.

Proof. Let A be bipartite, i.e. there exists an ultrafilter F such that $A = F \cup F_{-}^{*} = F \cup F_{-}^{*}$. Then we have $M(A) = (F \cap M(A)) \cup F^{-}$.

By Propositions 3.4 and 3.7, $F \cap M(A) = (F^{-})_{-} \cap M(A) = (F^{-})^{\sim}$.

So we obtain, $M(A) = (F^-)^{\sim} \cup F^-$ and by Proposition 3.4 (ix), F^- is a maximal ideal of M(A). From Propositions 3.4, 3.7 and 3.12 we have $F \cap M(A) = (F^{\sim})_{\sim} \cap M(A) = (F^{\sim})^- = (F^-)^-$. Then we have $M(A) = (F \cap M(A)) \cup F^- = (F^-)^- \cup F^-$, thus M(A) is bipartite.

Conversely, let $M(A) = I \cup I^{\sim} = I \cup I^{-}$, where I is a maximal ideal of M(A). Now we prove that

(1)
$$\forall_{a \in A} [a \in I_{-} \text{ or } (a^{\sim} \in I_{-} \text{ and } a^{-} \in I_{-})]$$

holds. Suppose $a \notin I_- = I_{\sim}$ (see Proposition 3.11) we have $a^{\sim} \notin I$. Hence $a^{\sim} \in I^{\sim}$. Then $a^{\sim} \in I_-$, by Proposition 3.7. Thus (1) satisfied. I_- is proper due to Proposition 3.4 (iii). Applying Proposition 2.7 we get $A = I_- \cup (I_-)^*_{\sim} = I_- \cup (I_-)^*_{-}$ where, by Proposition 3.4 (viii), I_- is an ultrafilter of A.

Corrolary 3.14.

- (i) If M(A) is a strongly bipartite pseudo MV-algebra, then I_− = I_∼ for any maximal ideal I of M(A).
- (ii) If A is strongly bipartite pseudo BL-algebra, then $F^- = F^{\sim}$ for any ultrafilter F of A.

Proof. By Propositions 3.11 and 3.12.

Theorem 3.15. A good pseudo BL-algebra A is strongly bipartite iff M(A) is a strongly bipartite pseudo MV-algebra.

Proof. Let A be a strongly bipartite pseudo BL-algebra and suppose that M(A) is not strongly bipartite. Then there exists a maximal ideal I of M(A) such that $M(A) \neq I \cup I^-$ or $M(A) \neq I \cup I^-$. Without less of generality we can assume that there is $a_0 \in M(A) - (I \cup I^-)$. Let $F = I_-$. By Proposition 3.4 (viii), F is an ultrafilter of A. From Proposition 3.4 (viii) and Corrolary 3.14 we have $I = (I_-)^- = (I_-)^-$. Observe that

(2)
$$a \in M(A) - I \Rightarrow a^- \notin I_-.$$

Indeed, suppose that $a \in M(A) - I$ and $a^- \in I_-$. Then $a = (a^-)^{\sim} \in (I_-)^{\sim} = I$, a contradiction. Thus (2) holds. Since $a_0 \in M(A) - I$, we conclude that $a_0^- \notin I_-$. It is easy to see that $a_0^{\sim} \notin I$. Applying (2) yields $a_0 = (a_0^{\sim})^- \notin I_-$. Consequently, $a_0 \notin F$ and $a_0^- \notin F$. By Propositions 2.7 and 2.10, A is not strongly bipartite. A contradiction.

Conversely, let M(A) be a strongly bipartite pseudo MV-algebra and A is not bipartite. Then there exists an ultrafilter F of A such that

$$\exists_{a \in A} \ [a \notin F \text{ and } (a^- \notin F \text{ or } a^\sim \notin F)].$$

Suppose that $b, b^- \notin F$. Let $I = F^-$. Then I is a maximal ideal of M(A), by Proposition 3.4 (ix). From Proposition 3.2 we see that $b^- \notin M(A)$. Observe that $b^- \notin I$. Indeed, $b \notin F = (F^-)^-$ and hence $b^- \notin F^- = I$. Since $I_- = (F^-)_- = F$ (see Proposition 3.4) and $b^- \notin F$, we have $b^- \notin I_$ and hence $b^- \notin M(A) \cap I_- = I^-$. Thus $b^- \in M(A) - (I \cup I^-)$ Therefore $M(A) \neq I \cup I^-$. It is a contradiction.

Corrolary 3.16. Let A be strongly bipartite. Then:

- (a) $T(M(A))_{-} = (T(M(A))_{\sim} = S(A)),$
- (b) $(S(A))^{-} = (S(A))^{\sim} = T(M(A)).$

Proof. (a) By Theorem 3.15, M(A) is a strongly bipartite pseudo MValgebra and hence $T(M(A)) = \operatorname{Rad} M(A)$ (see Proposition 2.15). Applying Propositions 3.8 and 2.10 we obtain

$$(T(M(A)))_{-} = (\operatorname{Rad}M(A))_{-} = \mathcal{M}(A) = S(A).$$

Similarly, $(T(M(A)))_{\sim} = S(A)$.

(b) From the proof of (a) and by Proposition 3.4 (vii) we have

$$(S(A))^{-} = ((\operatorname{Rad}M(A))_{-})^{-} = \operatorname{Rad}M(A) = T(M(A))$$

and similarly, $(S(A))^{\sim} = T(M(A))$.

Acknowledgements

The author is heartily thankful to Professor A. Walendziak for his valuable comments.

References

- C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), 467–490. doi:10.1090/S0002-9947-1958-0094302-9
- [2] A. Di Nola, G. Georgescu and A. Iorgulescu, Pseudo-BL algebras I, Multiple-Valued Logic 8 (2002), 673–714.
- [3] A. Di Nola, G. Georgescu and A. Iorgulescu, *Pseudo-BL algebras II*, Multiple-Valued Logic 8 (2002), 717–750.
- [4] G. Dymek, *Bipartite pseudo MV-algebras*, Discussiones Math., General Algebra and Appl. 26 (2006), 183–197.
- [5] G. Dymek and A. Walendziak, On maximal ideals of pseudo MV-algebras, Comment. Math. 47 (2007), 117–126.
- [6] G. Georgescu and A. Iorgulescu, Pseudo MV-algebras: a noncommutative extension of MV-algebras, "The Proceedings of the Fourth International Symposium on Economic Informatics", Bucharest, Romania, May (1999), 961–968.
- [7] G. Georgescu and A. Iorgulescu, Pseudo BL-algebras: a noncommutative extension of BL-algebras, "Abstracts of the Fifth International Conference FSTA 2000", Slovakia (2000), 90–92.
- [8] G. Georgescu and L.L. Leuştean, Some classes of pseudo-BL algebras, J. Austral. Math. Soc. 73 (2002), 127–153. doi:10.1017/S144678870000851X
- P. Hájek, Metamathematics of fuzzy logic, Kluwer, Amsterdam 1998. doi:10.1007/978-94-011-5300-3
- [10] P. Hájek, Fuzzy logics with noncommutative conjuctions, Journal of Logic and Computation 13 (2003), 469–479. doi:10.1093/logcom/13.4.469

204

- P. Hájek, Observations on non-commutative fuzzy logic, Soft Computing 8 (2003), 38–43. doi:10.1007/s00500-002-0246-y
- [12] J. Rachůnek, A non-commutative generalisations of MV-algebras, Math. Slovaca 52 (2002), 255–273.
- [13] A. Walendziak and M. Wojciechowska, *Bipartite pseudo BL-algebras*, Demonstratio Mathematica XLIII (3) (2010), 487–496.

Received 10 November 2009 Revised 17 November 2009