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Abstract

We introduce a special set of relations called clausal relations. We
study a Galois connection Pol−C Inv between the set of all finitary
operations on a finite set D and the set of clausal relations, which is
a restricted version of the Galois connection Pol− Inv. We define C -
clones as the Galois closed sets of operations with respect to Pol−C Inv
and describe the lattice of all C -clones for the Boolean caseD = {0, 1}.
Finally we prove certain results about C -clones over a larger set.
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Introduction

In this paper we introduce a special set CRD of relations on a finite set
D, called clausal relations (see Definition 1.4). The definition of clausal
relations is based on the notion of a clausal constraint as a disjunction of
inequalities of the form x ≥ d and x ≤ d, where d ∈ D = {0, 1, . . . , n−1} and
x belongs to a set X of variables. The latter were studied by N. Creignou,
M. Hermann, A. Krokhin and G. Salzer (see [1]).

A clone on a set D is a set of finitary operations on D that is closed
under composition and contains all projections. It is well known (see [3])
that the Galois closed classes of operations on a finite set D of the Galois
connection Pol− Inv are exactly all clones on D. In other words every clone
F on D can be described as F = PolQ for some set Q of relations.

∗Supported by the DAAD-CONACyT grant no. A/06/13410.
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In [1] N. Creignou, M. Hermann and collaborators classified the
complexity of clausal constraints. In this paper we will not deal with
such complexity problems. We are rather interested in describing clones
which are determined by sets of clausal relations, i.e. describing C-clones
(see Definition 1.14). The restriction to clausal relations implies a restric-
tion of the Galois connection Pol− Inv to a Galois connection Pol−C Inv
where C InvF = InvF ∩CRD for F ⊆ OD (see Definition 1.13). This leads
to a much smaller set of clones, a fact motivating us to investigate how
many C -clones exist on D and to describe them. In particular, this is a
contribution to the structure of the lattice of all clones.

The aim of this paper is to give a complete description of Boolean
C -clones, i.e. when D = {0, 1}, and to prove that contrary to the Boolean
case, we have infinitely many C -clones for 3 ≤ |D| < ∞.

The paper is organized as follows: In Section 1 we provide definitions
related to relations, clausal relations, C -clones and the Galois connection
Pol−C Inv. Furthermore, we present some properties of clausal relations.
In Section 2 we describe all Boolean C -clones, obtaining an only 5-element
sublattice of the lattice described by E. Post (see [2]). Finally, in Section 3
we investigate how many C -clones exist for an arbitrary finite set D. We
show that for |D| ≥ 3 there exist infinitely many C -clones by constructing
an infinite descending chain of such clones.

Throughout the paper, N = {0, 1, 2, . . .} denotes the set of natural num-
bers, and N+ = {1, 2, . . .} denotes the set of positive natural numbers. Fur-
thermore, the domain for our clones is the set D = {0, 1, . . . , n − 1} for a
fixed natural number n ≥ 2.

1. Clausal relations

In this section we provide definitions and some properties of clausal relations.

Definition 1.1. Let k,m ∈ N+. An m-ary relation ̺ on D is a subset
of the m-fold Cartesian product Dm. It is often convenient to represent
̺ = {r1, . . . , rk} as a matrix (rij)1≤i≤m

1≤j≤k

∈ Dm×k, whose columns are the

tuples in the relation, i.e. rj =
(
r1j , r2j , . . . , rmj

)
for all j ∈ {1, . . . , k}.
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We define R
(m)
D := {̺ | ̺ ⊆ Dm} as the set of all m-ary relations defined on

D and

RD :=
∞⋃

m=1

R
(m)
D

as the set of all finitary relations on D.

Definition 1.2. Let m ∈ N+, m := {1, . . . ,m}, ε be a partition of m and

∼ε be the corresponding equivalence relation on m. We define dε ∈ R
(m)
D to

be the relation

dε := {(x1, . . . xm) ∈ Dm | i ∼ε j ⇒ xi = xj}

and call it a trivial or diagonal relation. The set of all diagonal relations
together with the empty relation ∅ is denoted by diag(D).

Definition 1.3. Let p, q ∈ N+. For given parameters a = (a1, . . . , ap) ∈ Dp

and b = (b1, . . . , bq) ∈ Dq, the clausal relation Ra

b
of type (p, q), is the set of

all tuples (x1, . . . , xp, y1, . . . , yq) ∈ Dp+q satisfying

(1) (x1 ≥ a1) ∨ . . . ∨ (xp ≥ ap) ∨ (y1 ≤ b1) ∨ . . . ∨ (yq ≤ bq).

We observe that if ai = 0 for some i ∈ {1, . . . , p} or bj = n − 1 for some
j ∈ {1, . . . , q}, then the relation Ra

b
is total, i.e. Ra

b
= Dp+q because (1) is

always satisfied.

Definition 1.4. Let p, q ∈ N+. We use

Rp
q := {Ra

b
| a ∈ Dp,b ∈ Dq}

to denote the set of all clausal relations of arity ∗ p+ q and

CRD :=
⋃

(p,q)∈N2
+

Rp
q

for the set of all finitary clausal relations on D.

∗If we speak of a clausual relation of arity p + q, we implicitely mean also that the
clausal relation is of type (p, q).
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We will write Ra
b
for R

(a)
b

in the case p = 1 and likewise Ra

b for Ra

(b) in the
case q = 1. We give two examples of clausal relations.

Examples 1.5.

a) Let D = {0, 1}, then

R0
1 = {(x1, y1) ∈ D2 | x1 ≥ 0 ∨ y1 ≤ 1} =

(

0 0 1 1

0 1 0 1

)

= D2

b) Let D = {0, 1, 2}, then

R
(2,2)
0 =

{
(x1, x2, y1) ∈ D3 | x1 ≥ 2 ∨ x2 ≥ 2 ∨ y1 ≤ 0

}

=








0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 2 2 2 2

0 1 2 2 2 0 1 2 2 2 0 0 0 1 1 1 2 2 2

0 0 0 1 2 0 0 0 1 2 0 1 2 0 1 2 0 1 2








Clausal relations are closed with respect to union but not with respect to
intersection as the next lemmata show.

Lemma 1.6. Let p, q ∈ N+. If Ra

b
and Ra

′

b′ are clausal relations of arity
p + q, where a = (a1, . . . , ap), a

′ = (a′1, . . . , a
′
p) ∈ Dp, b = (b1, . . . , bq) and

b′ = (b′1, . . . , b
′
q) ∈ Dq. Then it holds

Ra

b ∪Ra′

b′ = Rc

d

where c = (min{a1, a
′
1}, . . . ,min{ap, a

′
p}) and d = (max{b1, b

′
1}, . . . ,

max{bq, b
′
q}).

Proof. Let z = (x1, . . . , xp, y1, . . . , yq) ∈ Ra

b
∪ Ra′

b′ ,
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⇐⇒ x1 ≥ a1 ∨ . . . ∨ xp ≥ ap ∨ y1 ≤ b1 ∨ . . . ∨ yq ≤ bq ∨

x1 ≥ a′1 ∨ . . . ∨ xp ≥ a′p ∨ y1 ≤ b′1 ∨ . . . ∨ yq ≤ b′q

⇐⇒
∨

1≤i≤p

(xi ≥ ai ∨ xi ≥ a′i) ∨
∨

1≤j≤q

(yj ≤ bj ∨ yj ≤ b′j)

⇐⇒
∨

1≤i≤p

(xi ≥ min{ai, a
′
i}) ∨

∨

1≤j≤q

(yj ≤ max{bj , b
′
j}).

This is equivalent to z ∈ Rc

d
.

Similarly, following lemma can be proved.

Lemma 1.7. Let p, q ∈ N+. If Ra

b
and Ra

′

b′ are clausal relations of arity
p + q, where a = (a1, . . . , ap), a

′ = (a′1, . . . , a
′
p) ∈ Dp, b = (b1, . . . , bq) and

b′ = (b′1, . . . , b
′
q) ∈ Dq. Then it holds

Ra

b ∩Ra′

b′ ⊇ Rc

d

where c = (max{a1, a
′
1}, . . . ,max{ap, a

′
p}) and d = (min{b1, b

′
1}, . . . ,

min{bq, b
′
q}).

In general equality does not hold in 1.7, as the following example shows.

Example 1.8. Let D = {0, 1}, consider a = (0, 1),a′ = (1, 0), b1 = 0 and
b′1 = 1. Then, Ra

b1
= D3 = Ra′

b′
1

. Let z = (x1, x2, y1) = (0, 0, 1). z ∈ Ra

b1
∩Ra′

b′
1

,

but z /∈ R
(1,1)
0 .

The set CRD can be separated in trivial and non-trivial clausal relations as
follows.

Lemma 1.9. The set CRD can be partitioned as

CRD = {D(p+q) | p, q ∈ N+}∪̇CR∗
D,

where
{D(p+q) | p, q ∈ N+} = CRD ∩ diag(D)
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are the trivial clausal relations and

CR∗
D = {Ra

b | a ∈ (D \ {0})p,b ∈ (D \ {n− 1})q; p, q ∈ N+}

are the non-trivial clausal relations.

Proof. Let p, q ∈ N+, a = (a1, . . . , ap) ∈ Dp, b = (b1, . . . , bq) ∈ Dq. We
have observed above that if one of the a1, . . . , ap equals 0, or one of the
b1, . . . , bq equals n− 1, then Ra

b
is a total relation, i.e. Ra

b
= Dp+q.

We have to show CR∗
D ∩ diag(D) = ∅. Let us assume the existence

of a relation ̺ ∈ CR∗
D ∩ diag(D). Then there exist a ∈ (D \ {0})p and

b ∈ (D \ {n− 1})q such that

̺ = Ra

b

and there exists a partition ε of m = {1, . . . ,m} (where m := p + q) such
that ̺ = dε. Let ∼ε be the corresponding equivalence relation. We show

∼ε= {(x, x) | x ∈ m} := ∆m,

thus

̺ = dǫ = Dm.

This is a contradiction to Ra

b
= ̺ = Dm, because (0, . . . , 0, n− 1, . . . , n− 1)

/∈ Ra

b
.

Let i, j ∈ {1, . . . , p} with i 6= j. Then

(0, . . . , 0,
i

0, 0 . . . , 0,
j

n− 1, 0, . . . , 0
︸ ︷︷ ︸

p

, 0, . . . , 0
︸ ︷︷ ︸

q

) ∈ Ra

b = dε.

Thus i 6∼ε j. Let i, j ∈ {1, . . . , q} with i 6= j. Then

(n− 1, . . . , n− 1
︸ ︷︷ ︸

p

, 0, . . . , 0,
i+p

0 , 0, . . . , 0,
j+p

n− 1, 0, . . . , 0
︸ ︷︷ ︸

q

) ∈ Ra

b = dε.
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Thus i+ p 6∼ε j + p. Let i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. Then

(n− 1, . . . , n − 1,
i

n− 1, n− 1, . . . , n− 1
︸ ︷︷ ︸

p

, 0, . . . , 0,
j+p

0 , 0, . . . , 0
︸ ︷︷ ︸

q

) ∈ Ra

b = dε.

Thus i 6∼ε j + p.

Hence, if i, j ∈ {1, . . . , p + q} with i ∼ε j then i = j. This shows
∼ε= ∆m.

An example of a non-trivial clausal relation can be found in 1.5 b).

Definition 1.10. Let k ∈ N+. A k-ary operation on D is a function f :

Dk −→ D. We denote O
(k)
D := {f | f : Dk −→ D} as the set of all k-ary

operations on D and OD :=
⋃∞

k=1O
(k)
D as the set of all finitary operations

on D. For each j ∈ {1, . . . , k} we denote ekj (d1, . . . , dk) := dj as the j-th

projection of arity k and JD := {ekj | k ∈ N+, 1 ≤ j ≤ k} as the set of all
projections on D.

An example of a k-ary operation on D is the k-ary constant operation (briefly,
constant) cka : Dk −→ D given by cka(x1, . . . , xk) := a for all x1, . . . , xk ∈ D,
where a is an arbitrary element of D.

Definition 1.11. We say that a k-ary operation f ∈ O
(k)
D preserves an

m-ary relation ̺ ∈ R
(m)
D , denoted by f ⊲ ̺, if whenever

r1 = (a11, . . . , am1) ∈ ̺, . . . , rk = (a1k, . . . , amk) ∈ ̺

it follows that also f applied to these tuples belongs to ̺, i.e.

f [r1, . . . , rk] := (f(a11, . . . , a1k), . . . , f(am1, . . . , amk)) ∈ ̺.

Definition 1.12. Let F ⊆ OD be a set of operations on D. Then we define
InvD F as the set of all relations that are invariant for all f ∈ F :

InvD F := {̺ ∈ RD | ∀f ∈ F : f ⊲ ̺}.
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Similarly, for a set Q ⊆ RD of relations, PolD Q is the set of all operations
that preserve every relation ̺ ∈ Q:

PolD Q := {f ∈ F | ∀̺ ∈ Q : f ⊲ ̺}.

Furthermore, for k ∈ N+ we abbreviate

Pol
(k)
D Q := O

(k)
D ∩ PolD Q.

If D is known from the context we write Pol instead of PolD, and Inv instead
of InvD. The operators Pol and Inv define the Galois connection Pol− Inv,
which is induced by the relation ⊲.

It is well known that for F ⊆ OD the Galois closed set Pol InvF of
operations onD is precisely the clone 〈F 〉OD

generated by F , i.e. Pol InvF =
〈F 〉OD

. Let LD be the set of clones on D, we denote LD := (LD,⊆) as the
lattice of all clones on D, with greatest element OD and least element JD.

Note that by virtue of the Galois connection Pol− Inv the study of the
Galois closed sets of operations is equivalent to the study of the Galois closed
sets of relations, Inv PolQ =

[
Q
]

RD
for Q ⊆ RD.

Next we present a restriction of the Galois connection Pol− Inv where
the relations are confined to be clausal relations. This restriction gives us a
much smaller number of Galois closed sets of operations, so called C -clones.

Definition 1.13. For F ⊆ OD we define C InvF := InvF ∩ CRD.
The operators

C Inv : P(OD) −→ P(CRD) : F 7→ C InvF

and

Pol : P(CRD) −→ P(OD) : Q 7→ PolQ

define a Galois connection Pol−C Inv between operations and clausal rela-
tions.

We will call the Galois closed sets of operations of this Galois connection
C -clones, more formally:

Definition 1.14. A set F ⊆ OD of operations is called a C-clone if F =
PolQ for some set Q ⊆ CRD of clausal relations, and a set Q ⊆ CRD is
called relational C -clone if Q = C InvF for a set F of operations.
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Every Galois connection naturally gives rise to a pair of closure operators.
For one of them we introduce a special notation.

Definition 1.15. For any F ⊆ OD we define 〈F 〉C := PolC InvF .

We finish this section with a lemma clarifying the relationship of this closure
operator and the clone generation, i.e. the corresponding closure operator
of the Galois connection Pol− Inv.

Lemma 1.16. For any F ⊆ OD it holds:

(a) 〈F 〉OD
⊆ 〈F 〉C.

(b) 〈〈F 〉C〉OD
= 〈F 〉C, in particular every C -clone is a clone.

Proof. The first statement follows from C InvF ⊆ InvF for any F ⊆ OD,
hence 〈F 〉OD

= Pol InvF ⊆ PolC InvF = 〈F 〉C . For the second statement
observe that Pol Inv 〈F 〉C = 〈F 〉C .

Let CLD = {PolQ | Q ⊆ CRD} be the set of all C -clones on D, we denote
CLD := (CLD,⊆) as the lattice of all C -clones on D, with greatest element
OD and least element PolCRD. The main goal is to describe the lattice of
all C -clones on D, the first step towards this goal is to describe the lattice
of all C -clones for D = {0, 1}.

2. Boolean C -clones

In this section we will describe all Boolean C -clones, i.e. when D is the set
{0, 1} that we also denote by 2 for short.

From Lemma 1.9, the set CR2 can be written as in the following corol-
lary.

Corollary 2.1.

CR2 = {2p+q | p, q ∈ N+}∪̇CR∗
2,

where

CR∗
2 = {R1,p

0,q | p, q ∈ N+}
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and

R1,p
0,q := R

(

p times

︷ ︸︸ ︷

1, . . . , 1)
(0, . . . , 0
︸ ︷︷ ︸
q times

)
.

Observe that

R1,p
0,q = {(x,y) ∈ 2p × 2q | ∃i ∈ {1, . . . , p} : xi = 1 ∨ ∃j ∈ {1, . . . , q} : yj = 0}

= 2p+q \ {(0, . . . , 0, 1, . . . , 1)}.

The following lemma shows that every Boolean C -clone can be determined
by sets of non-trivial Boolean clausal relations.

Lemma 2.2. For Q ⊆ CR2, it holds Pol(Q) = Pol(Q ∩ CR∗
2
).

We shall describe {PolQ | Q ⊆ CR2}. Since Pol−C Inv is a Galois connec-
tion, this set is dually isomorphic to {C InvF | F ⊆ O2}, and furthermore,
we have

C InvF =
⋂

f∈F

C Inv f

for F ⊆ O2. Consequently, it suffices to regard the closed relational sets
C Inv f for f ∈ O2. Since there is a one to one correspondence between
C Inv f and 〈f〉C via the operators Pol and C Inv, we will first consider one-
generated C -clones. By Lemma 2.2 and Definition 1.15,

〈f〉C = PolC Inv f = Pol(C Inv f ∩ CR∗
2)

i.e. 〈f〉C is the set of all the functions that preserve all the non-trivial
invariant clausal relations of f .

For the rest of this section we are going to characterize, one-generated
C -clones for some special functions f ∈ O2, (namely f ∈ {¬, h,∨,∧, g}).
We also use the notation from Figure 1 without further explanation.

Lemma 2.3. Let ¬ : 2 −→ 2 be the negation operation, i.e. ¬(0) = 1 and
¬(1) = 0. Then it holds

〈¬〉C = O2.
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Proof. By Definition 1.15 and Lemma 2.2, we have

〈¬〉C = {f ∈ O2 | ∀p, q ∈ N+ : ¬⊲ R1,p
0,q =⇒ f ⊲ R1,p

0,q}.(2)

Because of (2) it is enough to show ¬ ⋫ R1,p
0,q for all p, q ∈ N+. In-

deed, the tuple r = (1, . . . , 1, 0, . . . , 0) ∈ R1,p
0,q = 2p+q \ {(0, . . . , 0, 1, . . . , 1)}

for all p, q ∈ N+ but

¬[r] = (¬(1), . . . ,¬(1),¬(0), . . . ,¬(0)) = (0, . . . , 0, 1, . . . , 1) /∈ R1,p
0,q.

Note that for p = q = 1 it holds

R1,p
0,q = R1

0 = {(0, 0), (1, 0), (1, 1)} =≧,

and hence
Pol

(
R1

0

)
= Pol(≧) = Pol(≦) = M,

where M is the clone of all monotone Boolean functions.

Lemma 2.4. Let h ∈ O
(3)
2

be the ternary majority function on 2 (median),
i.e. h(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) for x, y, z ∈ 2. Then it holds

〈h〉C = Pol
(
R1

0

)
.

Proof. We show that h ⋫ R1,p
0,q, unless p = 1, q = 1. We consider several

cases:

• p ≥ 2, q ≥ 1 : The schema

h(1 0 0) = 0

h(0 1 0) = 0

h(0 0 0) = 0

...

h(0 0 0) = 0 (row p)

h(1 1 0) = 1

h(1 1 1) = 1

...

h(1 1 1) = 1 (row p+ q)
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shows that h ⋫ R1,p
0,q, because the tuples (columns of the arguments of

h) all belong to R1,p
0,q, but after applying h to the tuples, one obtains a

tuple (column) that does not belong to R1,p
0,q.

• p ≥ 1, q ≥ 2 : Likewise, the schema

h(1 0 0) = 0

h(0 0 0) = 0

...

h(0 0 0) = 0 (row p)

h(1 0 1) = 1

h(1 1 0) = 1

h(1 1 1) = 1

...

h(1 1 1) = 1 (row p+ q)

shows that h ⋫ R1,p
0,q.

If p = q = 1, then h ⊲ R1
0, because h is a monotone operation and M =

Pol(R1
0).

Lemma 2.5. It holds

〈∧〉C = Pol{R1,p
0,q | p = 1, q ∈ N+} and 〈∨〉C = Pol{R1,p

0,q | q = 1, p ∈ N+}.

Proof. At first we have a look at ∧. We show that ∧ ⋫ R1,p
0,q, unless p = 1

and q ∈ N+. We consider two cases:

• p ≥ 2 : The schema

1 ∧ 0 = 0

0 ∧ 1 = 0

0 ∧ 0 = 0

...

0 ∧ 0 = 0 (row p)

1 ∧ 1 = 1

...

1 ∧ 1 = 1 (row p+ q)
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shows that ∧ ⋫ R1,p
0,q.

• p = 1, q ∈ N+: We show

∧⊲ R1,p
0,q.

We assume the existence of tuples

(x1, y1, . . . , yq), (x2, z1, . . . , zq) ∈ R1,p
0,q

such that

x1 ∧ x2 = 0

and for all j ∈ {1, . . . , q}

yj ∧ zj = 1.

Because of x1 ∧ x2 = 0 w.l.o.g. x1 = 0. Then our assumption

(x1, y1, . . . , yq) ∈ R1,p
0,q

implies that there is one j ∈ {1, . . . , q} such that yj = 0. Thus,
yj ∧ zj = 0, a contradiction.

Similarly, the result for ∨ can be proved.

In 2.1 we saw that clausal relations are either total or total without one tuple,
and none of the diagonals except for total relations are clausal relations.
Furthermore, C InvO2 = InvO2 ∩ CR2 = diag(2) ∩ CR2, hence we obtain
the following lemma.

Lemma 2.6. It holds

C InvO2 = {2(p+q) | p, q ∈ N+}.

Let c0, c1 be the unary constant operations on 2. For any p, q ∈ N+ we have

c0 ⊲R1,p
0,q and c1 ⊲ R1,p

0,q

because c0(y1) = 0 and c1(x1) = 1 for any (x1, . . . , xp, y1, . . . , yq) ∈ R1,p
0,q.
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In the rest of the section we will freely use ∨ to denote supremum of two
clones in Post’s Lattice (see Figure 1). Nevertheless, we hope not to confuse
the reader and be clear.

Lemma 2.7. The least C -clone is

〈∅〉C = Pol(CR2) = {f ∈ O2 | ∀p, q ∈ N+ : f ⊲ R1,p
0,q}.

It holds

〈∅〉C ⊇ 〈c0〉O2
∨ 〈c1〉O2

F ig.1
= 〈c0, c1〉O2

,

and

〈∅〉C $ 〈∧〉C $ M,

〈∅〉C $ 〈∨〉C $ M.

Furthermore, 〈∧〉C and 〈∨〉C are incomparable C -clones.

Proof. From the previous observation we obtain c0, c1 ∈ 〈∅〉C . Because
〈∅〉C is a Boolean clone, we have

〈c0〉O2
, 〈c1〉O2

⊆ 〈〈∅〉C〉O2

1.16
= 〈∅〉C .

Thus, 〈∅〉C is an upper bound for 〈c0〉O2
and 〈c1〉O2

. Hence,

〈c0〉O2
∨ 〈c1〉O2

⊆ 〈∅〉C .

Because 〈∅〉C = Pol(CR2), we have that neither ∧ ∈ 〈∅〉C nor ∨ ∈ 〈∅〉C ,

because ∧ ⋫ R1,p
0,q for p ≥ 2 and ∨ ⋫ R1,p

0,q for q ≥ 2. Thus,

∧ ∈ 〈∧〉C \ 〈∅〉C ,

∨ ∈ 〈∨〉C \ 〈∅〉C .
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Lemma 2.4 implies M = Pol(R1
0). Thence, (cf. 2.5)

〈∧〉C , 〈∨〉C ⊆ M
2.4
= 〈h〉C .

This inclusion is proper since

h ∈ (M \ 〈∧〉C) ∩ (M \ 〈∨〉C).

This holds because h is a monotone operation and h ⋫ R1,p
0,q for p = 1, q > 1

and for q = 1, p > 1.

Because of ∧ ⋫ R1,p
0,q for p ≥ 2 and q = 1, we have ∧ ∈ 〈∧〉C \ 〈∨〉C ,

and because of ∨ ⋫ R1,p
0,q for p = 1 and q ≥ 2 we have ∨ ∈ 〈∨〉C \ 〈∧〉C .

Consequently, the two C -clones are incomparable.

Lemma 2.8. For any subset F ⊆ O2 it holds

〈c0, c1〉O2
∨ 〈F 〉O2

⊆ 〈F 〉C .

Proof. From 2.7 we infer

〈c0, c1〉O2
⊆ 〈∅〉C ⊆ 〈F 〉C .

Because of 〈F 〉C ∈ L2 and F ⊆ 〈F 〉C we have

〈F 〉O2
⊆ 〈〈F 〉C〉O2

1.16
= 〈F 〉C .

Consequently, we obtain 〈c0, c1〉O2
∨ 〈F 〉O2

⊆ 〈F 〉C .

Lemma 2.9. It holds

〈c0, c1,∧〉O2
= 〈∧〉C and 〈c0, c1,∨〉O2

= 〈∨〉C .

Proof. From 2.8 and Figure 1 we obtain 〈c0, c1,∧〉O2

F ig.1
= 〈c0, c1〉O2

∨
〈∧〉O2

⊆ 〈∧〉C . Let us assume

〈c0, c1,∧〉O2
$ 〈∧〉C .
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Then, 〈∧〉C has to be a clone in L2 being above 〈c0, c1,∧〉O2
. Because the

upper cover of 〈c0, c1,∧〉O2
in L2 is M (see Post’s Lattice, Figure 1), it

follows
M ⊆ 〈∧〉C ,

which is a contradiction to M ⊃ 〈∧〉C (cf. Lemma 2.7). Similarly, the claim
for 〈∨〉C can be proved.
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Figure 1. Post’s Lattice

Lemma 2.10. For any two subsets F,G ⊆ O2 the following implication
holds

F ⊆ G ⊆ 〈F 〉C =⇒ 〈G〉C = 〈F 〉C .

Proof.

F ⊆ G =⇒ 〈F 〉C ⊆ 〈G〉C

G ⊆ 〈F 〉C =⇒ 〈G〉C ⊆ 〈〈F 〉C〉C = 〈F 〉C .
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Lemma 2.11. Let c0, c1 be the unary constant operations on 2. Then it
holds

〈∅〉C = 〈c0, c1〉O2
.

Proof. 〈∅〉C ⊆ 〈∨〉C ∩ 〈∧〉C
2.9
= 〈c0, c1,∧〉O2

∩ 〈c0, c1,∨〉O2

F ig.1
=

〈c0, c1〉O2

2.7
⊆ 〈∅〉C .

Lemma 2.12. Let g be the ternary minority operation, i.e.

g(x, x, y) = g(x, y, x) = g(y, x, x) = y.

Then it holds:

〈g〉C = 〈L〉C = O2.

Proof. Because of ¬ ∈ L, it follows that

O2

2.3
= 〈¬〉C ⊆ 〈L〉C ⊆ O2,

hence 〈L〉C = O2. Applying Lemma 2.8 to {g} leads to

L
F ig.1
= 〈c0, c1〉O2

∨ 〈g〉O2
⊆ 〈g〉C .

Together with 2.10 we infer

〈g〉C = 〈L〉C .

Remark 2.13. Let F ≤ O2 denote a clone in Post’s Lattice. Then we have

CL2 = {Pol(C Inv(F )) | F ⊆ O2} = {Pol(C Inv(F )) | F ≤ O2}.

Proof. It is obvious that

{Pol(C Inv(F )) | F ≤ O2} ⊆ {Pol(C Inv(F )) | F ⊆ O2}.
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To show the other inclusion we regard F ⊆ O2. Let G := Pol Inv(F ) ≤ O2.

PolC Inv(G) = Pol((Inv(G)) ∩ CRD) = Pol((Inv(Pol Inv(F ))) ∩ CRD)

= Pol(Inv(F ) ∩ CRD) = PolC Inv(F ).

In the following we prove that there are no more Boolean C -clones than the
ones already described in the previous Lemmata 2.4, 2.9, 2.11, 2.12.

Theorem 2.14. The lattice of all Boolean C-clones is

CL2 = {⊥, 〈∧〉C , 〈∨〉C , 〈h〉C ,O2},

where

⊥ := 〈c0, c1〉O2
〈∧〉C = 〈c0, c1,∧〉O2

〈∨〉C = 〈c0, c1,∨〉O2
〈h〉C = M.

Proof. The next six equalities are consequences of Lemma 2.10 and the
previous lemmata.

{

〈C〉C | C ∈
[
J2, 〈c0, c1〉O2

]

L2

}

=
{
〈c0, c1〉O2

}

{

〈C〉C | C ∈
[
〈∧〉O2

, 〈∧, c0, c1〉O2

]

L2

}

=
{
〈∧, c0, c1〉O2

}

{

〈C〉C | C ∈
[
〈∨〉O2

, 〈∨, c0, c1〉O2

]

L2

}

=
{
〈∨, c0, c1〉O2

}

{

〈C〉C | C ∈
[
〈¬〉O2

,O2

]

L2

}

= {O2}

{

〈C〉C | C ∈
[
〈g〉O2

,O2

]

L2

}

= {O2}

{

〈C〉C | C ∈
[
〈h〉O2

,M
]

L2

}

= {M} .
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The next four equalities will be shown below.

{

〈C〉C | C ∈
[
〈∧〉O2

,M
]

L2

\
[
〈∧〉O2

, 〈∧, c0, c1〉O2

]

L2

}

= {M}

{

〈C〉C | C ∈
[
〈∧〉O2

,O2

]

L2

\
[
〈∧〉O2

, 〈∧, c0, c1〉O2

]

L2

, C 6⊆ M
}

= {O2}

{

〈C〉C | C ∈
[
〈∨〉O2

,M
]

L2

\
[
〈∨〉O2

, 〈∨, c0, c1〉O2

]

L2

}

= {M}

{

〈C〉C | C ∈
[
〈∨〉O2

,O2

]

L2

\
[
〈∨〉O2

, 〈∨, c0, c1〉O2

]

L2

, C 6⊆ M
}

= {O2} .

Regarding a clone C ≤ O2 with 〈∧〉O2
⊆ C, but C /∈

[
〈∧〉O2

, 〈∧, c0, c1〉O2

]

L2

yields (using Lemma 2.8)

C1 := 〈c0, c1〉O2
∨ C ⊆ 〈C〉C .

If C ⊆ M then we have that M = C1 ⊆ 〈C〉C , and because of monotonicity
of 〈·〉C yields 〈C〉C ⊆ 〈M〉C = M . Thus,

〈C〉C = M.

Otherwise, (i. e. C 6⊆ M) leads to

O2 = C1 ⊆ 〈C〉C ⊆ O2.

The proof for ∨ instead of ∧ is similar. Knowing all those 10 equalities and
applying Remark 2.13, one obtains

CL2 = {⊥, 〈∧〉C , 〈∨〉C ,M,O2},

the clones of which are described in the previous lemmata.

The previous theorem does not only describes the set of all the Boolean
C -clones but also the operations that these contain. For example, 〈∨〉C
contains the operations c0, c1,∨, all the projections and compositions of
these fuctions.
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As we mentioned, when we describe C -clones at the same time we are
describing relational C -clones. The lattices of C -clones and of relational
C -clones are dually isomorphic as is shown in the next figure.

O2

M

〈∧〉C

DD
DD

DD
DD

zzzzzzzz

〈∨〉C

DDDDDDDD

⊥

zzzzzzzz

C Inv⊥

C Inv 〈∧〉C

NN
NN

NN
NN

NN

ppppppppppp

C Inv 〈∨〉C

NNNNNNNNNNN

C InvM

pppppppppp

C InvO2

For the remainder of this section, we restrict ourselves to the following:
Given a C -clone Pol(Q) with Q ⊆ CR∗

2
, find a minimal subset Q1 ⊆ Q, such

that Pol(Q) = Pol(Q1). The motivation for the restriction is to establish
that all Boolean C -clones can be described by a finite number of clausal
relations.

Lemma 2.15. The following equalities hold

O2 = Pol (∅) ,

M = Pol
(
R1

0

)
,

〈∧〉C = Pol{R1,p
0,q | p = 1, q ∈ N+} = Pol

(

R1
(0,0)

)

,

〈∨〉C = Pol{R1,p
0,q | q = 1, p ∈ N+} = Pol

(

R
(1,1)
0

)

,

〈c0, c1〉O2
= Pol{R1,p

0,q | p, q ∈ N+} = Pol
(

R
(1,1)
(0,0)

)

.

Proof. The characterization of O2 is trivial. The second statement follows
from Lemma 2.4. The arguments for the rest of the equalities are very
similar, so w.l.o.g. we will only deal with the characterization of 〈∧〉C .
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“⊆”: We have

{R1
(0,0)} ⊆ {R1,p

0,q | p = 1, q ∈ N+}

hence
W := Pol{R1

(0,0)} ⊇ Pol{R1,p
0,q | p = 1, q ∈ N+} = 〈∧〉C .

“⊇”: From the proof of Lemma 2.4 we know M = 〈h〉C * W , applying

the above-established facts that 〈c0, c1,∧〉O2

2.9
= 〈∧〉C ⊆ W and C -clones are

clones, one can read off of Post’s Lattice that W = 〈c0, c1,∧〉O2
= 〈∧〉C .

3. C -clones

In the previous section we showed that there are five different Boolean
C -clones. Next we show that for |D| ≥ 3 there are infinitely many C -clones
by exhibiting an infinite descending chain of such clones.

Let D ⊇ {0, 1, 2} and m ∈ N+. Consider the following clausal relation:

R
(1,...,1)
(1,...,1) =

{

(x1, . . . , xm, y1, . . . , ym)∈D2m |x1≥1∨. . .∨xm≥1 ∨ y1≤1∨. . .∨ym≤1
}

.

We define
̺m := R

(1,...,1)
(1,...,1).

Observe that the tuple (0, . . . , 0, 2, . . . , 2) /∈ ̺m.

Proposition 3.1. If ̺m is the 2m-ary relation defined above, then

Pol(̺m−1) % Pol(̺m)

holds for any m ∈ N+.

Proof. Let n ∈ N+ and f ∈ Pol(n)(̺m). We have to show f ∈ Pol(n)(̺m−1).
Let r1, . . . , rn ∈ ̺m−1, where rk =: (x1k, . . . , xm−1k, y1k, . . . , ym−1k) for k,
that belongs to {1, . . . , n}. Then

x1k ≥ 1 ∨ . . . ∨ xm−1k ≥ 1 ∨ y1k ≤ 1 ∨ . . . ∨ ym−1k ≤ 1

⇔ x1k≥1∨. . .∨xm−1k≥1∨xm−1k≥1∨y1k≤1∨. . .∨ym−1k≤1∨ym−1k≤1.



168 E. Vargas

We define for k ∈ {1, . . . , n} a tuple

r′k = (x1k, . . . , xm−1k, xmk, y1k, . . . , ym−1k, ymk)

:= (x1k, . . . , xm−1k, xm−1k, y1k, . . . , ym−1k, ym−1k).

The new tuples r′1, . . . , r
′
n belong to ̺m because of the above expression.

Because f ⊲ ̺m we have

(c1, . . . , cm−1, cm, d1, . . . , dm−1, dm) := f [r′1, . . . , r
′
n] ∈ ̺m.

Then, by construction, we have cm−1 = cm, dm−1 = dm and

cm−1 ≥ 1 ∨ cm ≥ 1 ⇐⇒ cm−1 ≥ 1

dm−1 ≤ 1 ∨ dm ≤ 1 ⇐⇒ dm−1 ≤ 1.

Therefore, (c1, . . . , cm−1, d1, . . . , dm−1) = f [r1, . . . , rn] ∈ ̺m−1, i.e. f⊲̺m−1.
Now we show that the inclusion is proper. Let f be an 2m-ary operation
such that

f(x1, . . . , xm, . . . , x2m)=







0 if there is only one 1 among the first m entries

and 0 in the other entries.

2 if there is only one 1 between the m+1, . . . , 2m

entries and 2 in the other entries.

1 otherwise.

That is

f(1, 0, . . . ,
m

0 , 0, . . . ,
2m
0 ) =, . . . ,= f(0, . . . , 0,

m

1 , 0, . . . , 0) = 0

f(2, 2, . . . ,
m+1
1 , 2, . . . , 2) =, . . . ,= f(2, . . . , 2,

m+1
2 , . . . , 2, 1) = 2.

We show f /∈ Pol(2m)(̺m).
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Consider the tuples r1, . . . r2m ∈ ̺m, such that

r1 = (1, 0, . . . ,
m

0 , 2, . . . ,
2m
2 ), . . . , r2m = (0, . . . , 0, 2, . . . , 2,

2m
1 ).

f [r1, . . . , r2m] /∈ ̺m because

1 2 . . . m m+1 m+2 . . . 2m

1 f( 1 0 . . . 0 0 0 . . . 0 ) =0

2 f( 0 1 . . . 0 0 0 . . . 0 ) =0
. . .

...
...

m f( 0 0 . . . 1 0 0 . . . 0 ) =0

m+1 f( 2 2 . . . 2 1 2 . . . 2 ) =2

m+2 f( 2 2 . . . 2 2 1 . . . 2 ) =2
...

. . .
...

2m f( 2 2 . . . 2 2 2 . . . 1 ) =2

/∈ ̺m

However, f ∈ Pol(2m)(̺m−1) as the following argument shows. Let
r′1, . . . , r

′
2m ∈ ̺m−1, where

r′k = (x1k, . . . , xm−1k, y1k, . . . , ym−1k)

for k ∈ {1, . . . , 2m}. Note that, by definition, every tuple r′k satisfies the
following expression:

x1k ≥ 1 ∨ . . . ∨ xm−1k ≥ 1 ∨ y1k ≤ 1 ∨ . . . ∨ ym−1k ≤ 1.

Let us regard the tuples r′k ∈ ̺m−1 as the columns of a matrix A ∈
D2(m−1)×(2m) . We construct a matrix

(bij)1≤i≤2(m−1)
1≤j≤2m

= B ∈ {0, 1}2(m−1)×(2m)

in the following way:
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bij :=







1 if aij ≥ 1 and 1 ≤ i ≤ m− 1,

1 if aij ≤ 1 and m ≤ i ≤ 2(m− 1),

0 otherwise.

In every column r′k there is at least one element d ∈ D such that d ≥ 1 or
d ≤ 1, hence any column of B contains at least one entry bij = 1. Since
there are only 2(m − 1) rows but 2m columns, there is at least one row of
B, say the l-th row, containing two entries 1. Consequently,

f(rl1, . . . , rl2m) = 1

from the definition of f . Then f [r1, . . . , r2m] ∈ ̺m−1, hence f ⊲ ̺m−1.

4. Conclusion

We are interested in exhibiting the clones that can be determined by sets
of clausal relations. The first step towards this goal was to give a com-
plete characterization of the Boolean C -clones and to prove certain results
about C -clones over |D| ≥ 3. Although some results obtained in Section 2
(c.f. Lemmata 2.4, 2.5, 2.3) can be generalized to the case |D| ≥ 3, the task
to describe all C -clones for |D| ≥ 3 seems to be rather difficult due to the
existence of an infinite number of C -clones.

Therefore, in future investigations we will restrict our studies to the
characterization of only the unary parts of the C -clones. That is we will
try to characterize all sets of unary functions Pol(1)Q where Q ⊆ CRD.
The motivation for this restriction is that over a finite set D there are only
finitely many weak Krasner clones, i.e. clones of the form F = Pol(1)Q
where Q ⊆ RD.
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