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Abstract

It is a known result that if a finite abelian group of odd order is
a direct product of lacunary cyclic subsets, then at least one of the
factors must be a subgroup. The paper gives an elementary proof that
does not rely on characters.
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1. Introduction

In this paper we will use multiplicative notations in connection with
abelian groups. Let G be a finite abelian group. The identity element
of G will be denoted by e. The order of an element a of G is designated
by |a|. The number of the elements of a subset A of G is denoted by |A|.
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Let A1, . . . , An be subsets of G. If the product A1 · · ·An is direct and is
equal to G, then we say that the equation G = A1 · · ·An is a factorization
of G. A subset A of G in the form

A =
{

e, a, a2, . . . , ar−1
}

is called a cyclic subset of G. In order to avoid trivial cases we assume that
r ≥ 2 and that |a| ≥ r. Clearly A is a subgroup of G if and only if ar = e. It
is a famous result of G. Hajós [2] that if a finite abelian group is factored as
a direct product of its cyclic subsets, then at least one of the factors must
be a subgroup.

A subset A of G in the form

(1) A =
{

e, a, a2, . . . , ar−1
}

∪ g
{

e, a, a2, . . . , as−1
}

is called a lacunary cyclic subset. Here we assume that |a| ≥ r since
otherwise there would be repetition on the list e, a, a2, . . . , ar−1. From
similar reason, we assume that |a| ≥ s. Further we assume that the subsets

(2)
{

e, a, a2, . . . , ar−1
}

and

(3) g
{

e, a, a2, . . . , as−1
}

are disjoint. Therefore A has r + s elements. We call the cyclic subset

(4) C =
{

e, a, a2, . . . , ar+s−1
}

a cyclic subset associated with the lacunary cyclic subset A relative to the
representation (1). Besides the representation (1) the lacunary cyclic subset
A may have another representation as a lacunary cyclic subset, say

A =
{

e, x, x2, . . . , xα−1
}

∪ y
{

e, x, x2, . . . , xβ−1
}

.

We leave the problem of possibility of various representations unresolved.
This is why the definition of the cyclic subset associated with a given lacu-
nary cyclic subset contains a reference to the representation.
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K. Corrádi and S. Szabó [1] proved that if a finite abelian group of odd
order is factored into lacunary cyclic subsets, then at least one of the factors
must be a subgroup. The proof heavily relies on the character techniques
developed by L. Rédei [3]. Here we give a character free elementary proof.

In 2008 professor A.D. Sands delivered a lecture at the University of
Pécs on factoring finite abelian groups. Absorbing his ideas leads us to an
elementary character free proof in the case of lacunary cyclic subsets. A
part of the lecture has later appeared in printed form [4].

2. Replacement

If from the factorization G = AB it follows that G = CB is also a factor-
ization, then we will say that the factor A in the factorization G = AB can
be replaced by C.

Lemma 1. Let G be a finite abelian group of odd order and let A be a
lacunary cyclic subset of G in form (1). If G = AB is a factorization of G,
then G = CB is also a factorization of G.

Proof. If s = 0, then A = C and there is nothing to prove. So we may
assume that s ≥ 1.

If s > r, then multiply the factorization G = AB by g−1. We get the
factorization G = g−1G = (g−1A)B. Note that

g−1A = g−1
{

e, a, a2, . . . , ar−1
}

∪
{

e, a, a2, . . . , as−1
}

is again a lacunary cyclic subset. Therefore the roles of r and s can be
reversed. Thus we may assume that s ≤ r.

If r = s, then |A| = 2r. From the factorization G = AB it follows that
|G| = |A||B| which implies that |G| is even. This is not the case. Thus we
may assume that 1 ≤ s < r.

The factorization G = AB means that the sets

(5) eB, aB, a2B, . . . , ar−1B, geB, gaB, ga2B, . . . , gas−1B

form a partition of G. Multiplying the factorization G = AB by a we get
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the factorization G = aG = (aA)B of G. This means that the sets

(6) aB, a2B, a3B, . . . , arB, gaB, ga2B, ga3B, . . . , gasB

form a partition of G. Comparing the two partitions we get

(7) eB ∪ gB = arB ∪ gasB.

If gB ∩ gasB 6= ∅, then B ∩ asB 6= ∅ which contradicts the partition (5).
Thus gB ∩ gasB = ∅ and from (7) it follows that gB = arB. Plugging this
into (5) we get that the sets

eB, aB, a2B, . . . , ar−1B, arB, ar+1B, ar+2B, . . . , gar+s−1B

form a partition of G. Thus G = CB is a factorization of G.
This completes the proof.

3. Product of non-periodic subsets

We say that a subset A of G is periodic if there is an element h ∈ G \ {e}
such that Ah = A. The element h is called a period of A.

To a nonempty subset A of a finite abelian group G we assign the subset
L defined by

L =
⋂

a∈A

Aa−1.

It turns out that L is a subgroup of G and further that the elements of
L \ {e} are all the periods of A. We will call L the subgroup of periods of
A. The next result is Lemma 2.8 of [5].

Lemma 2. Let A be a nonempty subset of a finite abelian group G. Let L
be the subset assigned to A.

(i) If g ∈ L, then gA = A.

(ii) If gA = A for some g ∈ G, then g ∈ L.

(iii) L is a subgroup of G.

(iv) There is a subset D of A such that the product DL is direct and is
equal to A.
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Under certain conditions the product of non-periodic subsets is again a non-
periodic subset. The result below is Theorem 3.1 of [5].

Lemma 3. Let G be a finite abelian group and let H be a subgroup of G. Let
A, B subsets of G such that e ∈ A, e ∈ B, A ⊂ H. Assume that the product
AB is direct, A, B are not periodic and the elements of B are pair-wise
incongruent modulo H. Then the set AB is not periodic.

4. Periodic lacunary cyclic subsets

A periodic cyclic subset must be a subgroup. The next result is part of the
folklore. Most likely it goes back to G. Hajós.

Lemma 4. Let G be a finite abelian group and let A = {e, a, a2, . . . , ar−1}
be a cyclic subset of G. If A is periodic, then ar = e.

Under suitable conditions if a lacunary cyclic subset is periodic, then it must
be a subgroup.

Lemma 5. Let G be a finite abelian group of odd order and let A be a
lacunary cyclic subset of G in form (1) for which 1 ≤ s < r.

(i) A is a subgroup of G if and only if g = ar and ar+s = e.

(ii) A is periodic if and only if A is a subgroup of G.

Proof. (i) Suppose that g = ar and ar+s = e. From g = ar, it follows that
A = C. Then ar+s = e implies that C is a subgroup of G.

Next we assume that A is a subgroup of G and show that g = ar and
ar+s = e hold. We claim that g ∈ 〈a〉. To prove the claim note that as
s ≥ 1, we have g ∈ A and hence g2 ∈ A. Since the sets (2) and (3) are
disjoint, it follows that g 6= e. As |G| is odd, the order of g cannot be 2 and
so g2 6= e.

If g2 ∈ {e, a, a2, . . . , ar−1}, then g2 ∈ 〈a〉 and then g ∈ 〈a〉, as we
claimed.

If g2 ∈ g{e, a, a2, . . . , as−1}, then g ∈ 〈a〉, as required.

Now A ⊂ 〈a〉 and 〈a〉 ⊂ A imply 〈a〉 = A. Using |A| = r + s,
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we get ar+s = e, as required. Further ar+s = e gives A = C. From

{

e, a, a2, . . . , ar−1
}

∪ g
{

e, a, a2, . . . , as−1
}

=
{

e, a, a2, . . . , ar−1
}

∪
{

ar, ar+1, ar+2, . . . , ar+s−1
}

one can see that

g
{

e, a, a2, . . . , as−1
}

=
{

ar, ar+1, ar+2, . . . , ar+s−1
}

.

If ar ∈ g{a, a2, . . . , as−1}, then it follows that ar = gai, 1 ≤ i ≤ s − 1, then
ar−i = g which contradicts that the sets (2) and (3) are disjoint. Hence
ar = g, as required.

(ii) If A is a subgroup of G, then since A 6= {e}, A is periodic.

Assume that A is periodic and let h be a period of A. We claim that
g ∈ 〈a〉. In order to prove the claim notice that as e ∈ A, it follows that
h ∈ A. Hence either

h ∈
{

e, a, a2, . . . , ar−1
}

or

h ∈ g
{

e, a, a2, . . . , as−1
}

.

Let us suppose that h = gai and distinguish two cases depending on either

gh ∈
{

e, a, a2, . . . , ar−1
}

or

gh ∈ g
{

e, a, a2, . . . , as−1
}

.

If gh = aj , then g2 ∈ 〈a〉 and so g ∈ 〈a〉, as we claimed. If gh = gaj , then
g ∈ 〈a〉, as required.

Let us turn to the h = ai possibility. If (gaj)h ∈ {e, a, a2, . . . , ar−1} for
some j, 0 ≤ j ≤ s− 1, then we get g ∈ 〈a〉. If (gaj)h ∈ g{e, a, a2, . . . , as−1}
for some j, 0 ≤ j ≤ s − 1, then h is a period of g{e, a, a2, . . . , as−1}.
As {e, a, a2, . . . , as−1} is periodic, by Lemma 4, it follows that as = e.
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Since s < r and |a| ≥ r we get a contradiction. Thus g ∈ 〈a〉 and so A ⊂ 〈a〉.
Let H be the subgroup of periods of A. Clearly A is a cyclic

subgroup and can be written in the form H = 〈at〉. Let |H| = k. As
|G| is odd, it follows that k ≥ 3. If A = 〈a〉, then A is a subgroup of G and
we are done. Thus we may assume that there is an ai such that ai 6∈ A.
There is an integer v for which

e, a, a2, . . . , av−1 ∈ A

and av 6∈ A, v < t. Set D = {e, a, a2, . . . , av−1} and E = {av}. Note that

D, Dat, Da2t, . . . ,Da(k−1)t

are subsets of A and

E, Eat, Ea2t, . . . , Ea(k−1)t

are not subsets of A. It follows that A has at least k− 1 gaps. But we know
that A has at most one gap.

This completes the proof.

5. The result

We are in position now to prove the main result of the paper.

Theorem 1. Let G be a finite abelian group of odd order. If G = A1 · · ·An

is a factorization of G, where each Ai is a lacunary cyclic subset, then at
least one of the factors must be a subgroup of G.

Proof. In the n = 1 case G = A1 and so A1 is a subgroup of G. We
assume that n ≥ 2 and start an induction on n. We consider a factorization
G = A1 · · ·An and show that one of the factors is a subgroup of G using the
fact that the result holds for each smaller values of n. If one of the factors
A1, . . . , An is periodic, then, by Lemma 5, one of the factors is a subgroup of
G and we are done. Thus we may assume that none of the factors A1, . . . , An

is periodic.
In the factorization G = A1 · · ·An replace each factor Ai by the associ-

ated cyclic subset Ci relative to Ai to get the factorization G = C1 · · ·Cn.
By Hajós’s theorem, one of the factors C1, . . . , Cn is a subgroup of G.
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We may assume that C1 = H1 is a subgroup of G since this is only a matter
of indexing the factors C1, . . . , Cn.

In the factorization G = A1 · · ·An replace the factor A1 by C1 = H1 to
get the factorization G = H1A2 · · ·An. Considering the factor group G/H1

we get the factorization

G/H1 = (A2H1)/H1 · · · (AnH1)/H1

of G/H1, where

(AiH1)/H1 = {aiH1 : ai ∈ Ai}.

Note that (aiH1)/H1 is a lacunary cyclic subset of G/H1 and so, by the
inductive assumption, it follows that one of the factors

(A2H1)/H1, . . . , (AnH1)/H1

is a subgroup of G/H1. We may assume that (A2H1)/H1 is a subgroup
of G/H1. There is a subgroup H2 of G such that H1A2 = H2. Therefore
G = H2A3 · · ·An is a factorization of G. Considering the factor group G/H2

we get the factorization

G/H2 = (A3H2)/H2 · · · (AnH2)/H2

of G/H2. Continuing in this way finally we have that there are subgroups
H1,H2, . . . ,Hn of G such that Hn = G and

H1A2 = H2, H2A3 = H3, . . . ,Hn−1An = Hn.

The factorization H1A2 = H2 implies that A2 ⊂ H2. The factorization
H2A3 = H3 shows that the elements of A3 are incongruent modulo H2.
Thus Lemma 3 is applicable and provides that the product A2A3 cannot be
periodic.

The factorization H1(A2A3) = H3 implies that A2A3 ⊂ H2. From the
factorization H3A4 = H4 on can see that the elements of A4 are incongruent
moduloH3. By Lemma 3, the product (A2A3)A4 is not periodic. Continuing
in this way finally we get that the product (A2 · · ·An−1)An is not periodic.

Set B = A2 · · ·An, A = A1, C = C1 and suppose that A, C are in
forms (1), (4), respectively. Now G = AB is a factorization of G. From
C = C1 = H1, by Lemma 5, it follows that ar+s = e.
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In the way we have seen in the proof of Lemma 1, from the factorization
G = AB we can conclude that arB = gB. If arg−1 6= e, then B is periodic.
This is not the case so ar = g and consequently, by Lemma 5, A = C.
Therefore A1 is equal to H1.

This completes the proof.

If a finite abelian group cannot be written as a direct product of lacunary
cyclic subsets, then Theorem 1 is vacuously true. The next example shows
that there are genuine factorizations of finite abelian groups into lacunary
cyclic subsets.

Let

{e} = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = G

be subgroups of a finite abelian group G such that the factor groups

H1/H0, H2/H1, . . . ,Hn/Hn−1

are cyclic. Let

Ci =
{

e, ci, c
2
i , . . . , c

r(i)+s(i)−1
i

}

be a complete set of representatives in Hi modulo Hi−1. Choose an hi ∈
Hi−1. Note that

Ai =
{

e, ci, c
2
i , . . . , c

r(i)−1, hic
r(i)
i , . . . , hic

r(i)+s(i)−1
i

}

is also a complete set of representatives in Hi modulo Hi−1. It follows that

Hn = Hn−1An, Hn−1 = Hn−2An−1, . . . ,H1 = H0A1

are factorizations and so

G = A1A2 · · ·An

is a factorization of G. Set gi = hic
r(i)
i . The representation

Ai =
{

e, ci, c
2
i , . . . , c

r(i)−1
i

}

∪ gi

{

e, ci, c
2
i , . . . , c

s(i)−1
i

}

makes clear that Ai is a lacunary cyclic subset of G.
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[2] G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen
Raumes mit einem Würfelgitter, Math. Zeit. 47 (1942), 427–467.
doi:10.1007/BF01180974
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