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Abstract

We prove a theorem (for arbitrary ring varieties and, in a stronger
form, for varieties of associative rings) which basically reduces the
problem of a description of varieties with distributive subvariety lattice
to the case of algebras over a finite prime field.
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Introduction

The aim of studying varietal lattices is to achieve a better understanding
of the structure of the lattices and to use the information gained for a clas-
sification of varieties. As usual, in order to guide research towards this
general aim, it is reasonable to set some more concrete (but sufficiently
hard) questions such that the theory could grow and mature answering them.
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Apparently, for the case of ring varieties, it is the problem of describing
varieties with distributive subvariety lattice that efficiently plays such a role
for many years. There is extensive literature on the subject so that even
the mere list of relevant publications is far too long to be placed here†.
Roughly speaking, one may characterize the current stage of investigations
as a period of searching for a border separating varieties with distributive
and non-distributive subvariety lattice.

In this note we prove a new reduction theorem for ring varieties whose
subvariety lattice is distributive. By a reduction theorem we understand
a result of the following sort: “for a variety X, there exists a family of
subvarieties Y such that the subvariety lattice of X is distributive whenever
the subvariety lattice of Y is distributive, for each subvariety Y ∈ Y”. From
the aforementioned standpoint of looking for a border between varieties with
distributive and non-distributive subvariety lattice, such a reduction means
in a sense that the border goes through the family Y; of course, it is the
more interesting the more restricted Y is. Several results of this kind may
be found in the author’s article [9]; we reproduce here one of them as it has
served as a departure point for the present note.

For any positive integer n and any (not necessarily associative!) ring
variety X, let Xn denote the subvariety of X defined within X by the identity
nx = 0. (As usual, the expression nx is just a compact presentation for the
sum x+ x+ · · ·+ x

︸ ︷︷ ︸

n times

.) By L(X) we denote the subvariety lattice of X. A

variety X is said to be torsion-bounded‡ if for every relatively free ring R ∈ X

(that is, a ring that happens to be free in a subvariety of X), the torsion
subgroup T (R) of the additive group of R is bounded, i. e. nT (R) = 0 for
some positive integer n. With this notion and the above notation, we have
the following

Theorem 1 [9, Theorem 1]. Let X be a torsion-bounded variety of (not
necessarily associative) rings. Then the lattice L(X) is distributive provided

that the lattice L(Xn) is distributive for every positive integer n.

In other words, Theorem 1 amounts to saying that if the distributive law
fails for some triple of subvarieties of a variety X, then the subvarieties may

†Unfortunately, there exists no appropriate compendium which one could refer to; the
paper [3], the only available survey of the area, clearly is out of date.

‡In [9] such varieties were called joined; this strange term was borrowed from the (rather
unlucky) English translation of the paper [7] where the notion first appeared.
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always be chosen to satisfy the identity nx = 0 for some positive integer n.
In the present paper we refine Theorem 1 by showing that, under the same
premise, either the three subvarieties may be chosen to satisfy the identity
px = 0 for some prime number p or one of the subvarieties in the “bad”
triple equals Xp where p is again a prime number. In order to formulate
the result in the same manner as Theorem 1, recall that an element a of a
lattice 〈L,∨,∧〉 is said to be distributive if, for any x, y ∈ L, the equality

a ∨ (x ∧ y) = (a ∨ x) ∧ (a ∨ y)

holds true.

Theorem 2. Let X be a torsion-bounded variety of (not necessarily asso-

ciative) rings. Then the lattice L(X) is distributive provided that, for every

prime number p, the lattice L(Xp) is distributive and the variety Xp is a

distributive element of the lattice L(X).

In [9] it is shown that for associative rings Theorem 1 holds without the
restriction that X is torsion-bounded. Here we prove that the same is true for
the associative case of Theorem 1. However the condition that the subvariety
Xp is a distributive element of the lattice L(X) cannot be omitted even when
X consists of associative, commutative and nilpotent rings as we demonstrate
by studying the subvariety lattice of the variety Np2 (p is an arbitrary prime
number) defined within the class of all associative-commutative rings by the
identities

p2x = 0, pxy = 0, x1x2 · · · xp+1 = 0.

We notice that any ring variety satisfying the identity px = 0 may be treated
as a variety of algebras over the p-element field. Thus, for associative rings,
Theorem 2 in a sense reduces the problem of a description of varieties with
distributive subvariety lattice to the case of algebras over a field where lots
of information are already available, cf., for example, [6].

The note is structured as follows. Section 1 contains some preliminaries.
Theorem 2 is proved in Section 2. In Section 3 we analyze the subvariety
lattice of the variety Np2 .
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1. Preliminaries

No acquaintance with the structure theory of rings is presupposed
since all proofs in the paper are based on either lattice-theoretical
arguments or combinatorial manipulations with ring identities. Here we
fix the terminology and recall a couple of auxiliary results that will be used
in the sequel.

An element a of a lattice 〈L,∨,∧〉 is called neutral if, for any x, y ∈ L,
the sublattice generated by x, y and a is distributive. We need the following
property of neutral elements:

Lemma 1 [4, Theorem III.2.4]. If a is a neutral element of a lattice L, then
L is a subdirect product of the principal ideal (a] = {x ∈ L | x ≤ a} and the

principal filter [a) = {x ∈ L | x ≥ a}.

Clearly, every neutral element of a lattice is distributive. The converse is
not true in general but in the presence of the modular law the two concepts
coincide. We register this fact in the next lemma:

Lemma 2 [4, Theorem III.2.6]. Every distributive element of a modular

lattice is neutral.

Recall that the lattice of all ring varieties is modular because it is anti-
isomorphic to the lattice of all fully invariant ideals of the absolutely free
ring F 〈x1, x2, . . . 〉 on countably many generators. (Recall that an ideal
is said to be fully invariant if it contains all of its endomorphic images.)
Therefore, Lemma 2 applies to subvariety lattices of ring varieties, and so
does the following well-known property of modular lattices:

Lemma 3 [4, Theorem IV.1.2]. If 〈L,∨,∧〉 is a modular lattice, then for all

x, y ∈ L, the intervals [x, x ∨ y] and [x ∧ y, y] are isomorphic.

Next we recall an argument that belongs to the PI-ring folklore. Since we
have failed to find any source in which the argument would be presented
in a form convenient for the usage in this note, we provide an appropriate
formulation and, for the sake of completeness, supply it with a short proof.

We refer to non-zero elements of the absolutely free ring F 〈x1, x2, . . . 〉
as to polynomials in variables x1, x2, . . . . For each i = 1, 2, . . . , let δi denote
the deletion endomorphism of the ring F 〈x1, x2, . . . 〉 that annihilates the
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generator xi, that is, the endomorphism defined by the rule

δi(xj) =

{
xj if i 6= j,

0, if i = j.

A polynomial h ∈ F 〈x1, x2, . . . 〉 is called uniform if for every i = 1, 2, . . .
either δi(h) = h or δi(h) = 0 (in the latter case we say that h depends on

the variable xi). Clearly, every polynomial h ∈ F 〈x1, x2, . . . 〉 is a sum of
uniform summands each being the image of h under some composition of en-
domorphisms δi. In particular, this means that every fully invariant ideal T
of F 〈x1, x2, . . . 〉 is generated (even as an additive subgroup of F 〈x1, x2, . . . 〉)
by its uniform polynomials. Therefore, the above notions make sense also for
non-zero elements of the relatively free ring F 〈x1, x2, . . . 〉/T : for instance,
if such an element h happens to be represented by a uniform polynomial
f ∈ F 〈x1, x2, . . . 〉, then any other uniform polynomial g ∈ F 〈x1, x2, . . . 〉
representing h depends on the same set X of variables as f does. In this
case we say that the element h is uniform and depends on X.

By amonomial we mean an element of the free groupoid freely generated
by the set {x1, x2, . . . }. Clearly, F 〈x1, x2, . . . 〉 is the free abelian group
freely generated by the set of all monomials. Hence, for each polynomial
h ∈ F 〈x1, x2, . . . 〉, there exists a unique minimal representation of h as
a linear combination of monomials with integer coefficients. We refer to
monomials that occur in this representation as to the monomials of h.

Now let f(x, y1, . . . , yr) be a uniform polynomial depending on the vari-
ables x, y1, . . . , yr ∈ {x1, x2, . . . }. We denote by f (k)(x, y1, . . . , yr) the sum
of all monomials of f(x, y1, . . . , yr) in which the distinguished variable x
occurs exactly k times. Then for some positive integer n we have

f(x, y1, . . . , yr) =

n∑

k=1

f (k)(x, y1, . . . , yr).

Lemma 4. Suppose that a ring R satisfies the identity

(1) f(x, y1, . . . , yr) = 0
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where f(x, y1, . . . , yr) is a uniform polynomial such that the variable x occurs

at most n times in each of its monomials. Then, for each positive integer s
and for each k = 1, . . . , n, the ring R also satisfies the identity

∆(s, s2, . . . , sn)f (k)(x, y1, . . . , yr) = 0

where ∆(s, s2, . . . , sn) is the determinant of the Vandermonde matrix

(2)











1 1 . . . 1

s s2 . . . sn

...
...

. . .
...

sn−1 s2(n−1) . . . sn(n−1)











.

Proof. For i = 1, . . . , n, substitute si−1x for x in the identity (1). We then
obtain that R satisfies each of the identities

(3)
n∑

k=1

sk(i−1)f (k)(x, y1, . . . , yr) = 0, i = 1, . . . , n.

Now consider (3) as a system of simultaneous linear equations whose matrix
is (2). Performing a series of elementary transformations of the system so
that the effect of the series is the same as that of multiplying the system
on the left by the integer matrix adjoined to (2), we deduce from (3) the
system

∆(s, s2, . . . , sn)f (k)(x, y1, . . . , yr) = 0, k = 1, . . . , n,

as required.

Recall that a ring variety V is said to be pure if the additive group of the
V-free ring of countably infinite rank is torsion-free. Applying Lemma 4 to
this ring immediately yields

Corollary 5. If a pure variety V satisfies the identity (1), then V also

satisfies all the identities f (k)(x, y1, . . . , yr) = 0 where k = 1, . . . , n.
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The degree of a monomial is merely its length as an element of the free
groupoid over {x1, x2, . . . }. For a polynomial h ∈ F 〈x1, x2, . . . 〉 we define
max deg(h) and min deg(h) to be respectively the maximum and the mini-
mum degree of the monomials of h and call these numbers the upper degree

and the lower degree of h. If max deg(h) = min deg(h) = d we call h homo-

geneous of degree d and denote its degree by deg(h). Every polynomial g
can be written as a sum of homogeneous polynomials; if one chooses such a
representation with the smallest number of summands, then the (uniquely
determined) summands are called the homogeneous components of g. If a
fully invariant ideal of F 〈x1, x2, . . . 〉 happens to contain the homogeneous
components of all its polynomials the corresponding ring variety is called
homogeneous. Even though not all ring varieties are homogeneous, many
important varieties are. For instance, from Corollary 5 it readily follows
that every pure variety is homogeneous.

Recall that an identity f = 0 is said to be multilinear if each variable
occurs in each monomial of the polynomial f at most once.

Lemma 6 [12, Corollary of Theorem 1.5]. Every variety defined by multi-

linear identities is homogeneous.

It should be clear that the notions of upper and lower degrees make sense
for non-zero elements of the V-free ring of countably many generators in an
arbitrary homogeneous varietyV. For example, if such an element h happens
to be represented by a polynomial f ∈ F 〈x1, x2, . . . 〉 with lower degree d,
then mindeg(g) = d for every polynomial g ∈ F 〈x1, x2, . . . 〉 representing
h so that we may (and will) call the number d the lower degree of h and
denote it by mindeg(h).

2. Proof of Theorem 2

Given a positive integer n, we denote by Bn the ring variety defined by the
identity nx = 0. Our proof of Theorem 2 relies on a certain nice property
of the mapping arising from multiplying ring varieties by Bn on the left.
Recall that the Mal’tsev product a variety V with a variety W is the class
VW of all rings R possessing an ideal I ∈ V such that the quotient ring
R/I belongs to W. It is shown in [5, Theorem 7] that VW is again a variety
which obviously contains both V and W.
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Lemma 7 [7, Lemma 7]. Let Y be an arbitrary ring variety, n a positive

integer. The mapping defined by V 7→ BnV where V runs over L(Y) is an

isomorphism of the lattice L(Y) onto the interval [Bn,BnY].

Lemma 7 implies the following result which basically ensures the induction
step in the proof of Theorem 2.

Lemma 8. Let Y and Z be ring varieties such that Z ⊆ BnY for some n.
If the lattice L(Y) is distributive, then so is the interval [Zn,Z].

Proof. By Lemma 7 the interval [Bn,BnY] is distributive. Since both
Z ⊆ BnY and Bn ⊆ BnY, the join Z ∨ Bn of the varieties Z and Bn is
also contained in the product BnY. Therefore the interval [Bn,Z ∨Bn] is
distributive too. By Lemma 3 the intervals [Bn,Z∨Bn] and [Bn ∩Z,Z] are
isomorphic. The latter interval is then distributive, but due to the evident
equality Zn = Bn ∩ Z, this is precisely the interval we are interested in.

We shall also need another simple result from [7]:

Lemma 9 [7, Corollary 3]. For any positive integers k and ℓ,

BkBℓ = Bkℓ.

Now we can prove Theorem 2. In view of Theorem 1, it suffices to verify
that the lattice L(Xn) is distributive for every positive integer n. We induct
on n. The case n = 1 is obvious because X1 is the trivial variety, and thus,
L(X1) is the one-element lattice. Suppose that n > 1 and let n = pm where
p is a prime number. Since m < n, the lattice L(Xm) is distributive by the
induction assumption. Calculating the Mal’tsev product

BpXm =Bp(X ∩Bm)

=BpX ∩BpBm by Lemma 7

=BpX ∩Bpm by Lemma 9

=BpX ∩Bn,

we see that it contains the variety X∩Bn = Xn. Now we are in a position to
apply Lemma 8 (with Y = Xm and Z = Xn) which yields the conclusion that
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the interval [Xp,Xn] is distributive. On the other hand, the lattice L(Xp)
is given to be distributive. Since Xp is a distributive element of the lattice
L(X), it is also a distributive element in the lattice L(Xn). Now by Lemmas 2
and 1 the lattice L(Xn) embeds into the direct product L(Xp) × [Xp,Xn],
and therefore, it is distributive as well. �

As already mentioned in the Introduction, for associative rings, the restric-
tion of X being torsion-bounded may be dropped for it automatically holds
true under the conditions of Theorem 2.

Corollary 10. Let X be a variety of associative rings. Then the lattice L(X)
is distributive provided that, for every prime number p, the lattice L(Xp) is

distributive and the variety Xp is a distributive element of the lattice L(X).

Proof. In the proof of [9, Proposition 1] it is shown that, for every prime
number p, the subvariety lattice of the variety Cp of all associative and
commutative rings of characteristic p is non-distributive. Therefore, if the
lattice L(Xp) is distributive for each prime p, then X contains none of the
varieties Cp and by the main result of [8], we conclude that X satisfies an
identity of the form

xk = xk+ℓ

for some positive integers k and ℓ. By Corollary 5, a torsion-free ring satis-
fying this identity also satisfies xk = 0. By a well-known result of the theory
of associative rings (usually referred to as Nagata–Higman’s theorem, see,
e.g., [12, Section 6.1]), every torsion-free ring satisfying xk = 0 is nilpotent.
Thus, torsion-free rings in Xp are nilpotent whence Xp is a torsion-bounded
variety by [7, Corollary 1]. Now Theorem 2 applies.

We notice that, in a similar manner, one can get rid of the condition of being
torsion-bounded when restricting Theorem 2 to other important classes of
rings. For example, using the Lie ring analogues of the cited results from [9]
and [8] found in [1] and respectively [10] as well as Zelmanov’s theorem [11]
on nilpotency of torsion-free Lie rings satisfying the kth Engel condition, we
may literally transfer Corollary 10 to varieties of locally almost solvable Lie
rings, that is, Lie rings in which every finitely generated subring possesses
a solvable ideal of a finite index.
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3. An example

In this section the word “ring” is always assumed to mean “associative-
commutative ring” and every identity system is assumed to contain the
associative and the commutative laws. If Σ is an identity system, then var Σ
denotes the variety defined by Σ. With this notation, we recall that

Np2 = var{p2x = 0, pxy = 0, x1x2 · · · xp+1 = 0}

where p is a fixed prime number. Consider the following subvariety of the
variety Np2 :

Dp = var{px = 0, x1x2 · · · xp+1 = 0}.

Observe that Dp = Np2 ∩Bp and for each prime number q 6= p, the variety
Np2 ∩ Bq is trivial. It is known (see [2]) that subvarieties of Dp form a
chain. Thus, the lattice L(Np2 ∩Bq) is distributive for all prime q. We aim
to show that nevertheless the lattice L(Np2) is not distributive. Thus, in
Theorem 2 the extra condition that the variety Xp is a distributive element
in the lattice L(X) is essential. Let

Ap2 = var{p2x = 0, xy = 0}.

As the first step towards our aim, we prove.

Lemma 11. Np2 = Ap2 ∨Dp.

Proof. Obviously, Np2 ⊇ Ap2∨Dp. In order to prove the converse inclusion,
is suffices to show that the Np2-free ring F with countably many generators
belongs to the join Ap2 ∨Dp. Consider the ideal pF = {pf | f ∈ F} of F ;
in view of the identities pxy = 0 and p2x = 0 every element pf ∈ pF can be
represented as

pf = p ·
∑

αixi

for some non-negative integers αi < p. Now observe that the
variety Np2 is defined by multilinear identities. Therefore, it is homogeneous
by Lemma 6, and so we can speak of degree (or lower degree)
of the elements of F . Thus, deg(pf) = 1 for every non-zero element pf ∈
pF . On the other hand, every non-zero element of the ideal F 2 generated
by all products gh with g, h ∈ F has lower degree at least 2.
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Hence pF ∩ F 2 = 0 and the ring F is a subdirect product of the quotient
rings F/pF and F/F 2. It is easy to see that F/F 2 ∈ Ap2 while F/pF ∈ Dp

whence F belongs to Ap2 ∨Dp as required.

We fix an integer α such that 1 ≤ α < p and consider the variety

Fα
p2 = var{p2x = 0, x1x2 · · · xp+1 = 0, xp = αpx}.

It is easy to see that Fα
p2

⊆ Np2 : if one multiplies the identity

(4) xp = αpx

by y, one gets the identity αpxy = 0 which, being combined with p2x = 0,
implies pxy = 0. On the other hand, we have

Lemma 12. Fα
p2

* Dp.

Proof. It suffices to prove that the identity px = 0 fails in Fα
p2
. Consider

two one-generator rings:

Ap2 =
〈
a | a2 = p2a = 0

〉
,

Dp =
〈
d | dp+1 = pd = 0

〉
.

(It is clear that the ring Ap2 generates the variety Ap2 , and it can be shown
that the ring Dp generates the variety Dp but we do not need this for our
proof.) Let C be the subring of the direct product Ap2 ×Dp generated by
the pair c = (a, d). Observe that (pa, 0), (0, dp) ∈ C since (pa, 0) = pc and
(0, dp) = cp. Now consider the additive subgroup B of C generated by the
element b = (αpa,−dp) = αpc − cp. In view of the relations a2 = 0 and
dp+1 = 0, one has bc = 0 whence B annihilates C, and thus it is an ideal
of C. Now let F denote the quotient ring C/B. The ring F satisfies the
identities p2x = 0 and x1x2 · · · xp+1 = 0 because they hold in both A and
D; moreover, it can be easily checked that F also satisfies the identity (4).
Thus, the ring F belongs to the variety Fα

p2
. On the other hand, F does not

satisfy the identity px = 0 because the element pc = (pa, 0) does not lie in
the ideal B. Hence the ring F does not belong to the variety Dp.

Proposition 13. The lattice L(Np2) is not distributive.
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Proof. From Lemma 11 we have

Fα
p2 = Fα

p2 ∩Np2 = Fα
p2 ∩ (Ap2 ∨Dp).

On the other hand, the identities (4) and xy = 0 together imply the identity
αpx = 0 which, being combined with p2x = 0, implies px = 0. Therefore the
intersection Fα

p2
∩ Ap2 satisfies px = 0 and hence is contained in the variety

Dp. We conclude that

(Fα
p2 ∩ Ap2) ∨ (Fα

p2 ∩Dp) ⊆ Dp.

Now Lemma 12 shows that

Fα
p2 ∩ (Ap2 ∨Dp) 6= (Fα

p2 ∩ Ap2) ∨ (Fα
p2 ∩Dp).

Thus, the distributive law fails.

In fact, it is not difficult to give a complete description of the lattice L(Np2).

The lattice is shown in Figure 1 below.
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Figure 1. The lattice L(Np2).
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In addition to the varieties already introduced, Figure 1 refers to the follow-
ing varieties:

Ep2 =var{p2x = 0, pxy = 0, x1x2 · · · xp+1 = 0, xp = 0},

Ep =var{px = 0, x1x2 · · · xp+1 = 0, xp = 0},

Ap =var{px = 0, xy = 0}.

Each of the two intervals [Ap,Ep] and [Ap2 ,Ep2 ] is a chain of p varieties that
are defined within Ep (respectively Ep2) by the identities x1 · · · xk = 0 where
k = 2, . . . , p+ 1. Altogether, L(Np2) consists of 3p+ 2 varieties.
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