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Abstract

We propose the notion of flocks, which formerly were introduced
only in based algebras, for any universal algebra. This generalization
keeps the main properties we know from vector spaces, e.g. a closure
system that extends the subalgebra one. It comes from the idempotent
elementary functions, we call “interpolators”, that in case of vector
spaces merely are linear functions with normalized coefficients.

The main example, we consider outside vector spaces, concerns
Boolean algebras, where flocks form “local” algebras with a sparseness
similar to the one of vector spaces. We also outline the problem of
generalizing the Segre transformations of based algebras, which used
certain flocks, in order to approach a general transformation notion.
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0. Preliminaries

0.0. Introduction
We want to generalize flocks (for the word “affine subspaces” see 3.7) from
vector spaces to all universal algebras. So far, this was partly done only
in based ones, where it was also found that flocks form invariant structures
(see 3.1 (C, D) of [16]).

Such an invariance is not a conventional one, under automorphism or
similar abstract functions, because it was also found that such functions
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fail to define transformations [15] in free algebras, as isomorphisms failed in
vector spaces. This finding led to the notion of invariance for based algebras
[16], but not yet for general (non free) ones.

Due to this lack of a general invariance notion, we cannot state it for our
more general flocks. Therefore, this paper merely proposes this generaliza-
tion as an abstract notion like the ones of conventional Universal Algebra.

Yet, two results below support the conjecture that a future general no-
tion of transformation would prove the invariance of flock structures, even
after our generalization. The weakest one in 3.4 (A) states that they are
automorphism invariant. The other in 3.1 (D) and 3.3 (A) states that they
contain the restricted (yet strongly invariant) ones of based algebras.

Anyway, the very problem of finding a general invariance notion moti-
vates our proposal. In fact, 3.6 (B) will hint that from our tentative flocks
one might approach such an invariance.

Flocks come from the notion of elementary interpolators, which are the
functions that in any algebra provide any indexing of its elements with
an element that “interpolates” them. We define them as the idempotent
elementary functions. By them we show that flocks form closure systems
and we characterize their possible triviality. A natural characterization of
flock systems for Boolean algebras follows from such general results.

Such “Intrinsic Algebra” new notions require fit notational tools, in
particular the combinatory ones [2]. We recall them below.

0.1. Set-theoretical notation

To denote functional applications we alternate subscripting and right paren-
thesizing. In spite of this choice of conventional notation, the foundation
chosen here is the pure set–theoretical one, not the conventional algebraic
one. (See 0.6 in [10] for some flaws of the latter.) Hence, we conform to [6],
but for the following few differences.

We consider functional composition as a restriction of relational com-
position, here denoted by · , namely f · g is the composition of g and f (not
“of f and g”) and

(f · g)(x) = f(g(x)) .(0)

Accordingly, we perform the restriction of a function f to some set S merely
by functional composition: f · iS, where iS denotes the identity function on
S, see also (7). P(X) denotes the set of subsets of X.
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As usual, we write f :A→B to say that f is a function with arguments in
the whole set A and values in B, f :A7 7→B or f :A→≻B to say that it also is
one to one or onto B and f :A7 7→≻B to say it is a bijection onto B. When X

is any set, we denote the set-theoretical power XA = {f | f :X→ A} of [6] as
the arithmetic one AX . (The context will weaken this ambiguity.) Likewise,
in lattices 0 and 1 might not denote the set-theoretical numbers ∅ and {∅}.

0.2. Combinatory notation

Some notation is borrowed from Combinatory Logic [2]. From a set-theore-
tical point of view it is locally incomplete, yet the context will always make
it unambiguous.

Among the functions in AX we consider the constant ones. For a ∈ A 6=
∅ we denote the one with value a by ka:

ka(x) = a , for all x ∈ X 6= ∅ .(1)

Also, this always defines a constant generating function k :A→AX . In fact,
for X = ∅ and A 6= ∅ there only are the trivial cases ka = ∅ and for A = ∅
the case k = ∅.

We will use constant generating functions for several different A and X.
As typefaces run out, we will not distinguish them (the context will mend
this set-theoretical abuse). E.g., given sets Y , B and a ∈ A, we write the
identities

ka ·M = ka , for all M :X→Y and(2)

M · ka = kM(a) , for all M :A→B ,(3)

which follow either immediately, when X = ∅, or from (1), when X 6= ∅.
Yet, in (2) k :A→AY on the left, whereas k :A→AX on the right, while in
(3) k :A→AX on the left, whereas k :B→BX on the right.

Given a function m :I→AJ , C
(J)
m denotes the exchanged function of m

C
(J)
m :J →AI such that [C

(J)
m (j)]i = mi(j) for all j ∈ J and i ∈ I. When

I 6= ∅, m determines J . Then, we can simplify this notation as cm :J→AI

and, when I and J are fixed, we get an exchange function c :(AJ )I→(AI)J .
However, we will use several different exchange functions, again without
distinguishing their notation.



48 G. Ricci

Moreover, we will also leave the duty of specifying J to the context, when
I = ∅. Then, all such conventions allow us to write

C
(J)
∅

= c∅ =

{

∅ when J = ∅ and
k∅:J→1 when J 6= ∅ ,

(4)

and in general

[cm(j)]i = mi(j) , for all j ∈ J and i ∈ I .(5)

This notation serves to generalize Menger’s superposition [4, 5], which con-
cerns finitary operations. In fact, here such cardinality restrictions will fail
even within algebras with finitary operations.

In addition to typeface savings, such conventions highlight functional
features of algebraic interest better than a set-theoretically complete nota-
tion. For instance, they exhibit the operational sameness of two different c

in the identity cc(m) = m (for all such m), which follows from (5) or (4)

and implies both c · c = i(AJ )I and c :(AJ )I 7 7→≻(AI)J .

In spite of this functional notation, our c and k are not (set-theoretical)
functions, but define them by the context. When we implicitly redefine such
symbols, we exploit the exchange combinator (“elementary permutator” in
[2]) C and the constant generator K within a set-theoretical setting.

Likewise, the same p will denote the projection generator CI, which
for several A and Y will define the functions p :Y →AAY

such that

py(M) = M(y) for all y ∈ Y and M :Y →A .(6)

Then, A = ∅ implies that py = ∅ for all y ∈ Y . Moreover, for all A and Y ,

cp = iAY ,(7)

since [cp(M)]y
(5)
= py(M)

(6)
= M(y) = [iAY (M)]y for all y ∈ Y and M :Y→A.

In 0.1 we introduced our widely used i as a set-theoretical function: the
one (proper class) that provides every set S with iS , the identity on it. We
did not as a combinator (but we boldfaced it) in order to allow the contexts
to specify the functions denoted by combinators. Rewriting (7) as cp = i

makes the one of p (and hence of c) unspecified.
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0.3. Algebras
Here, the rank S of any operation f :AS → A can be any set (see 2.5).

Then, in an indexed algebra α ∈
∏

i∈I A
Ar(i)

the type is any function r with
domain I. Yet, the algebras of our main concern merely are sets O of such
operations. On A we will also consider operations outside O.

O determines A. Hence, when all operations in O are nullary, contrary
to conventional definitions, A cannot be larger than the set of their values.

When we have to consider conventional finitary algebras, we assume to
replace their operations with the previous set-ary ones. E.g., an f :A2→A

will replaces an f ′ :A×A→A by the natural map for A×A ≃ A2, while f

might keep the possible infix notation of f ′.
We also assume O 6= ∅, since an O = ∅ gives the class of all sets as

its carrier, according to some definitions of a carrier. Since the case A = ∅
mainly concerns the initial settings in computer implementations, we will
allow uninterested readers to skip it by putting the observations relevant
to it into square brackets. As this is the only case where an operation (or
indexed algebra) does not determine its rank (or type), outside such brackets
“a rank/type of” will become “the rank/type of”.

Sometimes, we will consider based algebras, which are defined also by one
of their bases as in 1.1 in addition to a set or indexing of operations. There,
the choices of a basis superimpose possibly different “analytic spaces” on the
same (free) algebra, see 3.6 of [16]. Then, while we can expect that the few
next notions about flocks are relevant to all of them, future developments,
like the generalization of flock ranks [1], might not be.

1. Elementary functions

1.0. Definitions
The (set-ary) composition of an indexing L :S→AAY

of Y–ranked operations
with an operation g :AS→A is the function ℓ = g · cL. (All such operations
can also stay outside O.) Then, ℓ :AY →A, where, for a nullary g, by (3)
and (4) S = ∅ implies ℓ = kg(∅). [Notice that, when A = ∅, g cannot be
nullary, while L requires Y 6= ∅.] When S and Y are natural numbers, this
composition replaces (finitary) superpositions.

Also, given any set Y and the algebra in 0.3, LY will denote the set of its
Y-ary elementary functions, viz. the functions we get by such compositions
with its operations from all the projections in (6). Formally, LY =

⋂

{F ⊆

AAY
| p :Y →F and (f ∈ O, f :AS→A and L :S→F imply f · cL ∈ F) }.
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As usual, an indexing U :X→A is a generator of O when, for every a ∈ A,
a = ℓ(U) for some ℓ ∈ LX . We prefer “elementary functions” to “term
operations”, since we will not use terms to index them. As the arity Y is
fixed, when Y is a natural number, LY corresponds only to a proper subset
of the algebra clone [3, 4].

When Y = ∅, the only compositions involved are the ones with an
indexing of nullary constants from the empty set of projections. Without
any nullary f this gives L∅ = ∅. In general, L∅ is the set of nullary constants
that corresponds to the subalgebra closure of the empty set. [When the
carrier is trivial and Y 6= ∅, all projections are empty and LY = {∅}.]

1.1. Analytic representations

concern all free algebras, viz. the ones that have bases. They will define
bases through the set of all endomorphisms of an algebra O: EO =
{h :A→A | h(f(a)) = f(h · a) for all a :S→A and f :AS→Ain O}. The
proof of the equivalence with the conventional basis definition (by freedom
and carrier generation) is in 0.9 of [13], see also 0.5 of [12].

Given a generator U :X→A, consider the function rU :EO→AX , defined
by rU (h) = h·U , for h ∈ EO, namely rU “samples each h at” U by providing
each x ∈ X with the value h(U(x)). If this sampling serves to represent every
endomorphism by any sample and conversely, namely if

rU :EO 7 7→≻AX ,(8)

then every structure on EO defines another on AX and we say that

(A) rU is an analytic representation of EO, while X is its dimension set,

(B) its inverse η = r−1
U :AX 7 7→≻EO, which extends any sample assignment

M · U−1 onto the endomorphism h = ηM with h(Ux) = Mx for all
x ∈ X, is the (sample) extension function from U ,

(C) AX is the set of the (square universal) matrices of the algebra with
respect to U , while every value M(x) of a matrix M :X → A is its
column at x ∈ X,

(D) U is a basis of the algebra, while its columns U(x) are reference ele-
ments that form the basis set B ⊆ A for U :X→≻B,

(E) the algebra of the conjugate functions derived from α with respect

to U is the indexing χ :A → AAX
, defined by (8) from the functional
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application of endomorphisms as χa(rU (h)) = h(a) for h ∈ EO ⊆ AA

and a ∈ A, namely χ = cη since by (B)

χa(M) = ηM (a) , for all M :X→A and a ∈ A ,(9)

(F) while the value χa :AX →A of this indexing at the element a ∈ A is
the function conjugate of a with respect to U .

Notice also that for a singleton A, viz. for a trivial algebra, every set X

satisfies (8) [whereas A = ∅ by (8) implies X = ∅]. When the algebra is
not trivial, X = ∅ if and only if EO = {iA}. It does when all algebra
elements are constants. By (9) this also implies that χ:A7 7→≻A1 merely
is the generator of singleton constants: X = ∅ if and only if χa(M) =
a for all M :X→A and a ∈ A.

1.2. Example

Take A as the set of the usual n–tuples of elements of a field and consider
any endomorphism h of their vector space on the same field. If the reference
elements are the ones forming the Kronecker matrix, then their endomorphic
images h(Ux) for x ∈ X = n are the column vectors of the usual matrix
identifying this endomorphism and χa(M) is the product of vector a times
the matrix M .

Therefore, the conjugate function χa of a vector a is similar to its linear
form. The only difference is that the former acts on vectors, while the latter
does on field numbers. (It follows that the conjugate functions in a vector
space, as well as in any based universal algebra, form another algebra that
always is isomorphic to the starting one, as in 6.6 of [8], whereas linear forms
merely form the adjoint space as in II.3 of [1].)

On the contrary, when such a representation of endomorphisms of a
based vector space concerns an arbitrary A and/or an arbitrary basis, it
gives different matrices, products and conjugate functions. Then, even in
vector spaces a (universal) matrix might not be a two-dimensional array.
(See 0.4 of [10] for several examples outside vector spaces.)

1.3. Recalled property

In every based algebra as in 1.1 the conjugate functions are its X-ary.
(Proved in 0.9 [13].)
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1.4. Definitions

A case of set-ary composition involves elementary functions only: when
g :AY→A is a Y-ary elementary function and L :Y →AAG

is any indexing of
G-ary elementary functions, we consider the set-ary composition g ·cL :AG→
A, which by 1.5 (C) is G-ary elementary. [When A = ∅, G 6= ∅ and g = ∅ =
g · cL, since Y 6= ∅ because g cannot be nullary.]

In the elementary functions we will use, the ranks can be dimension
sets, Y = X as in 1.3, and even carriers, G = A. This prevents to use any
finitary superposition. For instance, in general vector spaces X can have
any cardinality, in spite of their finitary operations.

In addition to set-ary composition we define two other operations for
elementary functions. Given any M :Y→≻G, we define ̺ :LY →AAG

by

̺ℓ(a) = ℓ(a ·M) for all ℓ ∈ LY and a :G→A .(10)

[When A = ∅, either ̺ = ∅ for Y = ∅ or ̺ :{∅}→{∅} otherwise.] By 1.5 (A),
̺ :LY →LG. Then, we call ̺ℓ the M-condensation of ℓ. Dually, given any
J :G7 7→Y , we define ς :LG→AAY

by

ςℓ(a) = ℓ(a · J) for all ℓ ∈ LG and a :Y →A .(11)

[When A = ∅, either ς = ∅ for G = ∅ or ς :{∅}→{∅} otherwise.] By 1.5 (B),
ς :LG→LY . Then, we call ςℓ the J-expansion of ℓ onto Y.

1.5. Lemmata

(A) Every M-condensation of a Y-ary elementary function with M :Y→≻G

is a G-ary elementary function and conversely: ̺:LY→≻LG.

(B) Every J-expansion of a G-ary elementary function onto Y is a Y-ary
elementary function and, given any left inverse M :Y→≻G of J

M · J = iG ,(12)

ς is a right inverse of the above-defined ̺:

̺ · ς = iLG
.(13)
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Hence, ς:LG 7 7→LY .

(C) If g :AY→A is Y-ary elementary and L :Y →AAG
is any indexing of

G-ary elementary functions, then g · cL :AG→A is G-ary elementary.

Proofs. [When A = ∅, all three proofs immediately follows from the defi-
nitions in 1.4.]

(A) When Y = ∅, G = M = ∅ and ̺ℓ
(10)
= ℓ for all ℓ ∈ LY = LG = L∅.

Then, we consider Y 6= ∅.

(Is) If ℓ = py :AY→ A for any y ∈ Y , then ̺ℓ(a)
(10)
= py(a · M)

(6)
=

(a · M)(y)
(0)
= a(My)

(6)
= pM(y)(a) for all a ∈ AG, viz. ̺ℓ ∈ LG as in 1.0,

since ̺ℓ = pM(y) :AG→A. Then, consider f ∈ O, f :AS→A and L :S→LY ,
such that ̺L(s) ∈ LG for all s ∈ S, i.e. ̺ ·L :S→LG.

When S = ∅, ̺f ·cL ∈ LG, because for all a ∈ AG ̺f ·cL(a)
1.0
= ̺kf(∅)

(a)
(10)
=

kf(∅)(a ·M)
(1)
= f(∅)

(1)
= kf(∅)(a), where kf(∅) ∈ LG as in 1.0. When S 6= ∅,

we get ̺f ·cL = f · c̺·L
1.0
∈ LG. In fact, for all a ∈ AG, since [cL(a ·M)]s

(5)
=

Ls(a · M)
(10)
= ̺L(s)(a)

(0)
= [̺ · L]s(a)

(5)
= [c̺·L(a)]s for all s ∈ S, we get

̺f ·cL(a)
(10)
= (f · cL)(a ·M)

(0)
= f(cL(a ·M)) = f(c̺·L(a))

(0)
= (f · c̺·L)(a).

(Conversely) Choose any right inverse j:G7 7→Y of M , M · j = iG. Given
g ∈ LG, define ℓ :AY→A by ℓ(a) = g(a · j) for all a :Y →A, which implies
that ℓ(a′ ·M) = g(a′) for all a′ :G→A, because for each a′ there is an a such
that a′ ·M = a and a · j = a′. Also, ℓ ∈ LY . In fact, in the (is) part we can
reverse the passages to get that ℓ is any py :AY→A for g = pM(y) :AG→A

and that, under the set-ary composition of LG, ℓ stays Y-ary elementary.

(For instance, when S 6= ∅, to get the ℓ that corresponds to g = f ·
cL′ ∈ LG, where L′ :S → LG, we start from an indexing L :S → LY that
corresponds to L′: ̺ ·L = L′. Then, we set ℓ = f · cL ∈ LY and check that
̺ℓ(a) = f(cL(a ·M)) = f(c̺·L(a)) = (f · cL′)(a) = g(a) as above.)

(B) (Is) Consider the dual of the preceding proof. If ℓ = px :AG→A for

any x ∈ G, then ςℓ(a)
(11)
= px(a · J)

(6)
= a(Jx) for all a ∈ AY , viz. ςℓ ∈ LY ,

since ςℓ = pJ(x) :AY →A.

Then, consider f ∈ O, f :AS→A and L :S→LG, such that ςL(s) ∈ LY
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for all s ∈ S. Again, we get ςf ·cL = f · cς·L ∈ LY . In fact, for all a ∈ AY,

ςf ·cL(a)
(11)
= (f · cL)(a · J)

(0)
= f(cL(a · J)) = f(cς·L(a))

(0)
= (f · cς·L)(a), since

cL(a · J) = cς·L(a) either by (4) or, when S 6= ∅, because for all s ∈ S

[cL(a · J)]s
(5)
= Ls(a · J)

(11)
= ςL(s)(a)

(0)
= [ς · L]s(a)

(5)
= [cς·L(a)]s. (The case

S = ∅, which is the starting one for G = ∅, merely changes each nullary
constant in L∅ into a Y-ary one in LY , according to 1.0.)

(Inverse) In fact, [(̺ · ς)(ℓ)]a
(0)
= ̺ς(ℓ)(a)

(10)
= ςℓ(a ·M)

(11)
= ℓ(a ·M · J)

(12)
=

ℓ(a) = [iLG
(ℓ)]a for all ℓ ∈ LG and a :G→A.

(C) When g = py for some y ∈ Y , this follows from (6). When g = f ·cM

where f ∈ O, f :AS→A and M :S→AAY
is an indexing of Y-ary elementary

functions such that Ms · cL ∈ LG for all s ∈ S and L :Y →LG, if S = ∅, we

get g · cL = (f · c∅) · cL
(4)
= (f · k∅) · cL

(3)
= kf(∅) · cL

(2)
= kf(∅)

1.0
∈ LG (replace

Y with G in 1.0).

Otherwise, (by the same replacement) we get that g ·cL = (f ·cM ) ·cL =
f · (cM · cL) is in LG by setting L′

s = Ms · cL for all s ∈ S 6= ∅ to get an

L′ :S→LG such that cM ·cL = cL′ . In fact, [(cM ·cL)(a)]s
(0)
= [cM (cL(a))]s

(5)
=

Ms(cL(a))
(0)
= (Ms · cL)(a) = L′

s(a)
(5)
= [cL′(a)]s for all a :G→A.

1.6. Corollaries

(A) An algebra endomorphism h ∈ EO is an endomorphism of every Y-ary
elementary function:

h(ℓ(a)) = ℓ(h · a) for all a :Y →A and ℓ ∈ LY .(14)

(B) Subalgebras are closed under elementary functions.

Proofs. Same routine checks as for the finitary case. (E.g., for (14)

h(py(a))
(6)
= h(a(y))

(0)
= (h·a)(y)

(6)
= py(h·a), while (4) or h(Ls(a)) = Ls(h·a),

viz. by (5) and (0) (h · cL(a))(s) = (cL(h · a))(s), for all s ∈ S imply

h(ℓ(a))
1.0
= h((f · cL)(a))

(0)
= h(f(cL(a))

1.1
= f(h · cL(a)) = f(cL(h · a))

(0)
=

(f · cL)(h · a)
1.0
= ℓ(h · a) for all f ∈ O of rank S.)
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2. Elementary interpolators

2.0. Definitions
Given a based algebra as in 1.1, according to 2.0 of [15] we say that c ∈ A is
a flock combiner of χ or of the algebra with respect to U , when χc(ka) = a

for all a ∈ A. Then, the element of a singleton A is a flock combiner. Hence,
for X = ∅, c ∈ A is a flock combiner if and only if A = {c}, since ka = ∅.

In the vector space example 1.2 the matrix ka has all the columns equal
to a = (a0, a1, . . . , an−1), where this n-tuple denotes a function a :n → A.
Then, c = (c0, c1, . . . , cn−1) is a flock combiner if and only if

∑

i∈n ciaj = aj
for all j ∈ n and a ∈ A, namely if and only if

∑

i∈n ci = 1.
When we deal with an algebra disregarding any basis, we define the

Y-ary (elementary) interpolators as the idempotent Y-ary elementary
functions, viz. the left inverses g :AY → A in LY of the constant genera-
tor k :A→AY :

g · k = iA .(15)

We will denote the set of the Y-ary interpolators by IY ⊆ LY ⊆ AAY
. Again,

for Y = ∅ and A 6= ∅, g ∈ L∅ satisfies (15) if and only if A is singleton.
[When A = ∅, by 1.0 either LY = ∅ for Y = ∅ or LY = {∅} for Y 6= ∅.

Then, IY = ∅ for Y = ∅ or by (15) IY = {∅} for Y 6= ∅.]
In the mentioned example, when Y is a finite set of size m, we deal with

linear functions g similar to the linear forms of 1.2, but with m variables.
When Y is any set and the vector space general, the (finite) number of
such variables depends on each g. In both cases, (15) is equivalent to a
normalization condition like

∑

i ci = 1 as above.

2.1. Corollaries

(A) When the algebra has a basis U :X→A, c ∈ A is a flock combiner if and
only if its conjugate function χc is an X-ary interpolator. Conversely,
any X-ary interpolator is such a χc.

(B) When Y = ∅, g :1 → A is an interpolator if and only if g(∅) is the
value of a (single) nullary operation in a trivial algebra: g ∈ O and
A = {g(∅)}.

(C) When Y is singleton, g :AY→A is an interpolator if and only if g is
the unary projection in (6).

(D) For all Y and y ∈ Y , the projection py :AY→A is an interpolator.
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Proofs.

(A) The condition χc(ka) = a for all a ∈ A in 2.0 by 1.3 and (0) is
equivalent to replace g with χc in (15). [When A = ∅, IX = ∅ by the remarks
in 1.1 and 2.0.]

(B) (If) Such a g is in L∅ = {g} and satisfies (15), because ka = ∅ and
A is singleton. (Only if) Any other ∅-ary interpolator should increase L∅,
hence A itself, which prevents to satisfy (15).

(C) (Only if) When Y = {y}, for all M :Y → A, M = kM(y). Then,

g(M) = g(kM(y))
(0)
= (g · k)(M(y))

(15)
= M(y)

(6)
= py(M). (If) See (D).

(D) When Y = ∅, we have a false premise. When Y 6= ∅, for all y ∈ Y

we get (15): (py · k)(a)
(0)
= py(ka)

(6)
= ka(y)

(1)
= a = iA(a) for all a ∈ A.

[When A = ∅, py = ∅ ∈ {∅} = IY ].

2.2. Dilatations

We are qualifying the interpolators as “idempotent” in order to conform to
the algebraic jargon. However, this idempotency merely is an instance of
a wider use of the constant generator, which recently [16] served to define
invariance in the based universal algebras of 1.1.

If we generalize (15) by only requiring that g ·k ∈ EO, then this δ = g ·k
with g ∈ LY and Y = X by 1.3 becomes a dilatation as in 1.0 of [14] or 2.2
of [15] in our based algebra. In fact, δ there was defined with respect to U

by setting g = χd for certain d ∈ A, which were called dilatation indicators.
Then, flock combiners are the indicators of the identical dilatation.

Dilatation indicators served to quantify the “amount” of a dilatation by
a carrier element, its indicator, that depends on the basis. The same depen-
dency occurred for another dilatation definition, the one by the “scalars” of
a based algebra, which is equivalent to the former by 2.4 ibid., but disre-
gards any indicator. On the contrary, in a general universal algebra we can
also disregard bases by calling dilatation any such a δ ∈ EO with any Y.

Scalars, together with flock combiners, allowed the semi-linear trans-
formations for vector spaces to generalize into the “Segre transformations”
between based algebras (3.3 of [16]), which were able to define invariance,
contrary to all isomorphism-like notions. However, the basis dependent
scalars occurred in the latter transformations only through the dilatations
they define, as the vector space scalars do in the former.

Therefore, the general dilatations might replace the scalars in a pos-
sible further generalization (for general algebras) of Segre transformations,
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provided that we also replace flock combiners. As 3.6 (B) will detail, the
interpolators partly do it, because they contain the idempotent conjugate
functions as in 2.1 (A).

2.3. Theorems

(A) g′ :AG →A is the M-condensation with M :Y→≻G of a Y-ary interpo-
lator g, g′ = ̺g, if and only if it is a G-ary interpolator, namely any
such an M gives a condensation restriction ̺′:IY→≻IG. Hence,

(B) given J :G7 7→Y , the J-expansion g :AY→A of a G-ary elementary func-
tion g′, g = ςg′ , onto Y is an interpolator if and only if g′ is. Then,
any such a J gives an expansion restriction ς ′:IG 7 7→IY .

(C) Set-ary composition preserves interpolators: if g :AY→ A is a Y-ary

interpolator and L :Y → AAG
is any indexing of G-ary interpolators,

then g · cL :AG→A is a G-ary interpolator.

Proofs.

(A) After 1.5 (A), we only have to prove that (15) is equivalent to ̺g ·k =

iA with k :A → AG. (Only if) For all a ∈ A, (̺g · k)(a)
(0)
= ̺g(ka)

(10)
=

g(ka ·M)
(2)
= g(ka)

(0)
= (g ·k)(a)

(15)
= iA(a). (If) From this chain: g ·k = ̺g ·k,

which implies (15). (Recall the remark about the two k in (2).)

(B) When G 6= ∅, J has a left inverse M as in (12). Then, use (13) and
(A). (The injectivity of ς ′ follows from the one of ς in 1.5 (B).)

When G = ∅, by 2.1 (B) such an interpolator g′ can only occur in a
trivial algebra and by (11) g is the (single) Y-ary constant, which satisfy
(15). Conversely, such an interpolator g by (11) has to be a Y-ary constant,
which can satisfy (15) only when A is singleton. Since g′ is ∅-ary elementary,
g′ ∈ O and by 2.1 (B) it is an interpolator.

(C) After 1.5 (C) we only have to prove (15), which is trivial when Y = ∅,
since by 2.1 (B) A is singleton and, as remarked in 1.0, g·cL = kg(∅) :AG→A.
When Y 6= ∅, we have to prove that g · cL · k = iA knowing that g · k = iA
and Ly · k = iA for all y ∈ Y . This follows immediately after rewriting the

last premise as cL · k = k, which comes from [(cL · k)(a)]y
(0)
= [cL(k(a))]y

(5)
=

Ly(k(a))
(0)
= (Ly · k)(a) = iA(a) = a

(1)
= ka(y) for all a ∈ A and y ∈ Y .
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2.4. Examples

(A) Consider LY for nontrivial Boolean algebras, when Y is a finite set
of size m > 0. We get 22

m
elementary functions, which correspond to the

2k subsets of the k = 2m meet terms on m variables or negated variables
under their one to one canonical representation as joins of some of such k

minterms.

Among them the interpolators g correspond to the subsets which contain
the “affirmative” minterm, namely the minterm without negations, together
with any number of mix minterms, namely the minterms with at least one
negated variable and one without negation. In fact, according to 2.0, each g

has to become an identity after that k in (15) equalizes the variables. This
occurs if and only if the affirmative minterm, which leads to the identity,
comes either alone or with mix minterms, which lead to the null constant.

Therefore, the number of Y-ary interpolators is the number of the sub-
sets of mix minterms. As these terms are k − 2, we get 22

m−2 = 1
422

m

interpolators: one of four elementary functions is an interpolator. Such
a density is intermediate between one of three and one of five, the densi-
ties for interpolators of the familiar vector spaces with∗ GF(3) and GF(5)
respectively.

Notice also that there only are m projections, which work as trivial
interpolators by 2.1 (D), against the non trivial ones that are 1

422
m
−m = im

and the 22
m

= em elementary functions:

m 1 2 3 4 5 . . .

im 0 2 61 16, 380 1, 073, 741, 819 . . .

em 1 16 256 65, 536 4, 294, 967, 296 . . .

.

(B) While (A) concerns universal algebras with fair endowments of inter-
polators, now we mention based ones with the smallest sets of interpolators
that 2.1 (D) allows them. Consider the catenation monoid on the set A of
words from an alphabet I, where U :I→A (the “canonical” basis) provides
each letter i ∈ I with the word i′ = U(i) made of the single letter i.

Given Y , we also get the set B of words from Y. It allows us to determine
any Y-ary elementary function ℓ :AY → A by a word w ∈ B as ℓ = cγ(w)
through the catenation homomorphisms γM :B→A, for all M :Y →A, such

∗We avoid to say that a vector space has an “underlying” field, because recent simpler
characterizations of such spaces hint the opposite, see 1.7 of [14].
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that γM (y′) = M(y) for all y ∈ Y , where again y′ is the singleton word of
y. (In fact, ℓ(M) = γM (w) = [cγ(w)]M by (5).)

Then, by (15), (0) and (5) ℓ ∈ IY if and only if for all a ∈ A γka
(w) = a,

which occurs if and only if ℓ comes from a singleton word: w = y′ for some
y ∈ Y . Hence, the only interpolators are the ℓ such that, for all M ∈ AY

and any y ∈ Y , ℓ(M)
(5)
= γM (y′) = M(y)

(6)
= py(M), namely the projections.

Likewise, consider the term algebra of the (constant) type r :I → 1 for
unary indexed algebras. These terms essentially are the previous words,
but our unary operations αi merely append letter i to each argument word.
Since the set-ary composition of 1.0 for a singleton indexing corresponds
to functional composition, we determine every elementary function by any
word w ∈ A and any projection index y ∈ Y as the function ℓ :AY→A with
the values ℓ(a) that we get for all a :Y →A by catenating ay and w.

Then, by (15) ℓ ∈ IY if and only if this catenation, with any ay =

kv(y)
(1)
= v for all v ∈ A, does not change it. This can only happen when

w = ∅, which again corresponds only to the projection ℓ = py, for all
y ∈ Y . (It should easy to see, but by more formalism, that any term algebra
of whatever type has this triviality of interpolators.)

2.5. Set-ary ranks

In 1.4 we only gave a cardinality motivation for choosing sets as ranks for
elementary functions (and algebra operations), instead of the finite ordinals
of most algebraic treatments or the seldom used general ordinals. Yet, there
is something else.

Indexing arguments by ordinals might look natural as it recalls their
left to right conventional writing. However, while this can be meaningless
for the indexed objects, it can well conceal structural features.

For instance, consider the finite Boolean case of 2.4 (A), when the atoms
are let us say the “objects” of the meet semi-concept algebra for a Formal
Concept lattice (2 of [18]). Then, the natural rank Y of an interpolator
of “prototypic subsets of objects” is an index set made of subsets of “at-
tributes”, a complex structure that is not an order. Conversely, consider the
terms for syntax trees [17], where ordinals do serve (to define “frontiers”).
If we always assume that ranks are ordinals, their rôle appears weaker.

In general, we would avoid unnecessary conditions. Requiring an order
is an additional condition, which should serve some mathematical purpose,
not the ink-theoretical one of recalling how one might write arguments.
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An instance where ordinals always serve mathematical purposes is the one of
the unknowns for the terms of an indexed algebra. If we choose ordinals as
unknowns (see 2.1 in [9]), then we satisfy the General Recursion Principle
(13.1 in [6]), which allows terms to define other entities consistently, whereas
free choices can lead to inconsistencies (see 7.2–4 in [8] or 1.5 of [11]).

Interestingly, conventional Algebra does not use ordinals as unknowns.

2.6. Lemma

If an algebra has a subset O′ 6= ∅ of idempotent operations, then O′ defines a
reduct such that all its elementary functions are interpolators of the former
algebra.

Proof. Notice that, according to 0.3, A is the carrier also for O′ even
when O′ only has nullary operations. In fact, no nullary operation can be
idempotent in a non trivial algebra, while in a trivial one O′ 6= ∅ prevents a
smaller carrier.

Given any G, let L′
G denote the set of the G-ary elementary functions of

O′. Clearly, L′
G ⊆ LG. Then, we only have to prove that any ℓ ∈ L′

G satisfies
(15). This is trivial for the G-ary projections, while the induction step for
composed ℓ comes from 2.3 (C) where g ∈ O′ satisfies (15) by idempotency
and because g = g · iAY = g · cp ∈ LY by (7).

3. Flocks

3.0. Definitions

Given an algebra and any set Y as in 2.0, for each M :Y →A we call M–flock
in the algebra the set ΦM = {g(M) | g ∈ IY } ⊆ A and we say that ΦM is
the flock of M . We will also say that such flocks are the abstract flocks of
the algebra. If all subsets of the carrier are flocks, i.e. it has a “discrete
geometry”, then we say that the algebra is flock trivial. If for all Y the only
Y-ary interpolators are the projections as in 2.1 (D), p:Y→≻IY , then we say
that the algebra is interpolator trivial.

When M is an identity on Y = G ⊆ A, viz. M = iG:G7 7→A, its domain
G determines ΦM . Then, we call it the flock closure of G (for “affine hull”
see 3.7) and we denote ΦM by [ G]. Hence, by (15)

[ G] = {g(iG) | g ∈ LG such that g(ka) = a for all a ∈ A} .(16)
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According to [15], when the algebra has a basis U as in 1.1 and L :X→A,
we say that Φ′

L = {χc(L) | c is a flock combiner} is the L–flock with respect
to U . Here we will also call such flocks inner flocks of the based algebra.

In the example 1.2 of based vector spaces with n = 3, according to
2.0, when Y = 2 and M :Y → A indexes the first two reference vectors,
M = U · i2, we get the line joining them: ΦM = {g(M) | g ∈ I2} =
{c0U0 + c1U1 | c0 + c1 = 1}. When Y = 3 and the three vectors in M are
not collinear, ΦM is the plane spanning them, e.g. for M = U the plane of
the reference vectors. With bigger Y , we can get the whole space.

3.1. Corollaries
In every algebra the following sets are abstract flocks:

(A) the carrier A and

(B) the singletons {a} for all a ∈ A.

(C) In every non trivial algebra ∅ is an abstract flock: ∅ = [ ∅].

(D) In every based algebra the inner flocks are abstract flocks of the corre-
sponding (free) algebra.

(E) Endomorphisms preserve all abstract flocks: for all L :Y →A if h ∈ EO,
{h(a) | a ∈ ΦL} = ΦM where M = h · L :Y →A.

Proofs.

(A) Set Y = A in the projection generator, p :A→AAA
, to get pa ∈ IA

for all a ∈ A by 2.1 (D). Then, A = ΦiA
= [A], since pa(iA)

(6)
= a.

(B) As above, but set Y = 1 and use 2.1 (C).
(C) Take Y = M = ∅ in 3.0, then ΦM = ∅ = [ ∅], since by 2.1 (B) I∅ 6= ∅

only for a singleton A.
(D) For all L :X →A by 2.1 (A), a ∈ Φ′

L if and only if a = χc(L) and
χc ∈ IX , i.e. if and only if a ∈ ΦL.

(E) {h(a) | a ∈ ΦL} = {h(g(L)) | g ∈ IY }
(14)
= {g(h·L)) | g ∈ IY } = ΦM .

3.2. Lemma
Given any M :Y→≻G with G ⊆ A, ΦiG

= ΦM .

Proof. (ΦiG
⊆ ΦM ) Let g′(iG) ∈ ΦiG

, where g′ ∈ IG. By 2.3 (A) g′ = ̺g

for some g ∈ IY . Hence, g′(iG) = ̺g(iG)
(10)
= g(iG ·M) = g(M) ∈ ΦM .
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(ΦiG
⊇ ΦM ) Let g(M) ∈ ΦM , where g ∈ IY . By 2.3 (A) ̺g = g′ for some

g′ ∈ IG. Hence, by the previous passages g(M) = g′(iG) ∈ ΦiG
.

3.3. Theorems

(A) Abstract flocks are all and only the flock closures: for all Y and M ∈
AY, ΦM = [G], where G ⊆ A is the range of M .

(B) Flock closures form a closure system: for all G,Y ⊆ A

G ⊆ [ G] ,(17)

G ⊆ Y implies [ G] ⊆ [ Y ] and(18)

[ [ G]] = [ G] .(19)

(C) An algebra is flock trivial if and only if it is interpolator trivial.

Proofs.

(A) (Only) Given such an M , we have its range G, M :Y→≻G, as in 3.2,
which by (16) gives the required [ G]. (All) By definition 3.0.

(B) When G = ∅, (17) is trivial. When G 6= ∅, for every a ∈ G, by

2.1 (D) the projection pa :AG → A is a G-ary interpolator. Then, a
(6)
=

pa(iG)
(16)
∈ [ G] gets (17). To get (18), notice that its premise implies that,

if J = iG:G7 7→Y , then iG = iY · J . Hence, for all g′ ∈ IG, by 2.3 (B) there

is g = ςg′ ∈ IY such that g′(iG) = g′(iY · J)
(11)
= ςg′(iY ) = g(iY )

(16)
∈ [ Y ].

After (17), we get (19) by merely proving [ [ G]] ⊆ [ G]. For G = ∅ this
by 3.1 (C) is immediate, when the algebra is not trivial, while even for a
trivial algebra with [ ∅] 6= ∅ (19) comes from [ G] = A.

Otherwise, set Y = [ G]. Then, since for each g ∈ Y there is ℓ ∈ IG such
that ℓ(iG) = y as in (16), we can choose an indexing L :Y →IG such that
Ly(iG) = y for all y ∈ Y , viz. by (5) cL(iG) = iY = i[G]. Now, for each
a ∈ [ [ G]] by (16) there exists g ∈ I[G] = IY such that a = g(i[G]). Hence,

there is ℓ ∈ IG such that a = g(cL(iG))
(0)
= (g · cL)(iG)

2.3(C)
= ℓ(iG)

(16)
∈ [ G].

(C) (If) For every G ⊆ A the interpolator triviality gives G = {y | y ∈

G} = {iG(y) | y ∈ G}
(6)
= {py(iG) | y ∈ G} = {g(iG) | g ∈ IG} = [ G].

(Only if) By contradiction, assume that for some Y there is g ∈ IY
that is not a projection: for some M :Y →A, g(M) 6= M(y) for all y ∈ Y .
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If G is the range of M , M :Y→≻G, then from G = {M(y) | y ∈ Y }
(6)
=

{py(M) | y ∈ Y } we get G ⊂ {py(M) | y ∈ Y } ∪ {g(M)} = {ℓ(M) | ℓ =

g and ℓ = py for some y ∈ Y }
2.1(D)

⊆ ΦM
(A)
= [ G].

Yet, this proper containment, [ G] ⊃ G, by (19) implies that, for no
G′ ⊆ A, G = [ G′]. Hence, by (A) not all subsets of A are abstract flocks.

3.4. Corollaries

(A) The flock closure system is invariant under automorphisms: for all
j ∈ EO with j:A7 7→≻A and G ⊆ A, {j(d) | d ∈ [G]} = [ {j(a) | a ∈ G}].

(B) All subalgebra carriers are flocks.

Proofs.

(A) {j(d) |d∈ [ G]}
3.0
= {j(d) | d ∈ ΦiG

}
3.1(E)

= Φ
j·iG

3.3(A)
= [ {j(a) |a∈ G}].

(B) In (16) take G as the carrier of any subalgebra to get by 1.6 (B)
that [ G] ⊆ G. Then, use (17).

3.5. Examples
By 3.3 (C) and 3.4 (B) in a universal algebra the sparseness of flocks might
vary between the ones of subsets and of subalgebras respectively. In (A)
and (B) we show that we can reach such bounds, whereas in (C,D,E) fi-
nite Boolean algebras and other similar algebras will provide us with an
intermediate case, close to the well-known vector space case.

(A) By 2.4 (B) the word monoid is an interpolator trivial algebra. There-
fore, its flocks are all carrier subsets by 3.3 (C).

(B) Consider any (finitary) lattice or also the algebra with the operations
i, s :AA → A that perform the infima and suprema of the ranges of their
arguments in any complete lattice on A. Since here we disregard effective
computability, we are rewording complete lattices by the set-ary operations
of 0.3. (For a presentation of their elementary functions as term functions
of indexed algebras with “operations” like as

∧

,
∨

:P(A)→A, see [7].)
These operations are idempotent. Hence, all elementary functions are,

as O′ = O in 2.6. Then, by 3.3 (A) and (16) all flocks are subalgebra carriers.
(C) Consider finite Boolean algebras, e.g. the set algebras on A = P(n)

for some natural number n. There, flocks are closed under union as it
clearly follows from the minterm characterization of interpolators in 2.4
(A). (Dually, one might easily get an intersection closure from a maxterm
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characterization.) Yet, one cannot always get a flock closure [ G] by unions
(nor intersections) from the sets in G.

In fact, in A = P(8) take G = {{1, 3, 5, 7}, {2, 3, 6, 7}, {4, 5, 6, 7}}, which
is a basis set, and in IG, according to 2.4 (A), take the interpolator corre-
sponding to the conventional Boolean expression (x ∩ y ∩ z) ∪ (x ∩ y) =
(x∩y∩z)∪ (x∩y∩z)∪ (x∩y∩z), where the variables alphabetically match
this listing order of sets in G. Then, (16) gets that A ⊃ [ G] ∋ {1, 5, 7}, a set
that cannot come from G without complements. Hence, the “coplanarity”
kinship of {1, 5, 7} with the three sets of G is not due to the inclusion lattice.

On the contrary, when G has less than three elements, 2.4 (A) easily
shows that all [ G] comes from such a lattice. For a doubleton G by (16)
the “collinear” sets of its two sets are their intersection and union.

Such a G also shows that [ G] might not have as many elements as P(G).
In fact, P(G) has four elements corresponding to the Boolean algebra with
two atoms, whereas [ G], when one of the elements of G stays below the
other, has two elements corresponding to the single atom Boolean algebra.

(D) The previous example introduces a first property of flocks in gen-
eral finite Boolean algebras and in the “set-ary Boolean algebras” that cor-
respond to any complemented atomic distributive lattice, which consist of
its Boolean finitary operations together with the infimum and supremum
operations as in (B) (as for Boolean set algebras).

Given two elements a, b ∈ A, we consider their lattice interval [a, b ] =
{c | a ≤ c ≤ b}. Then, flock closures stay in the intervals between the
corresponding infima and suprema: [G] ⊆ [

∧

G,
∨

G ] for all G ⊆ A.

Proof. For an empty G we get the equality, since by 3.1 (C) and 2.1 (B)

[ G] = [ ∅] =
{

A when A is singleton and
∅ otherwise

,(20)

which is the same that occurs to [
∧

G,
∨

G ] = [1, 0 ]. Then, consider G 6= ∅.

Extend the min/max-term characterization in 2.4 (A) as follows. On A

consider the identity and the negation, iA,¬ :A→A, to get the set {iA,¬}
G

of the “sign” functions m :G→{iA,¬}, and its subset M ⊂ {iA,¬}
G of non

constant m:G→≻{iA,¬}. (M = ∅, when G is at most singleton.) Because of
completeness we again get functions tG with values tG(m) =

∧

{m(a) | a ∈
G}, which correspond to the minterms, and the maxterm ones with values
TG(m) =

∨

{m(a) | a ∈ G} for all m ∈ {iA,¬}
G.



Flocks in universal and Boolean algebras 65

Then, use (16) as in 2.4 (A) to characterize [ G] :

c ∈ [ G] iff c =
∧

G ∨
∨

{ tG(m) | m ∈ M′} for some M′ ⊆ M(21)

or iff c =
∨

G ∧
∧

{TG(m) | m ∈ M′} for some M′ ⊆ M .(22)

The lower bound for c comes from (21) and the upper one from (22).

This property allows us to replace (16) with a specific characterization: in
any set-ary Boolean algebra on A the flock closure of any G ⊆ A is

[ G] = {g(iG) | g ∈ LG such that
∧

G ≤ g(iG) ≤
∨

G}.(23)

Proof. When G = ∅, we get this equality by (20) according to our L∅ in
1.0 and to [

∧

G,
∨

G ] = [1, 0 ]. Then, consider G 6= ∅.

After the previous property we can merely show that, for each g(iG) in
(23), g(iG) = g′(iG) for some g′ ∈ LG that satisfies (15) as in (16). Since
g ∈ LG, it has a canonical minterm form: g(iG) =

∨

{tG(m) | m ∈ J } for
some J ⊆ {iA,¬}

G. Hence, according to (21), we show that either g′ = g,
when J = {kiA} ∪M′ with M′ ⊆ M, or we can get g′ with such a J .

J 6= {kiA}∪M′ implies that the constant m′ = k¬:G→{¬} stays in J
or the m′′ = kiA

:G→{iA} does not. In the former case, we can merely delete
m′ from J . In fact, ¬(

∨

G) =
∧

{¬a | a ∈ G} = tG(m′) ≤ g(iG) ≤
∨

G by
(23). This implies that

∨

G = 1 and ¬(
∨

G) = tG(m′) = 0.

In the latter case, dually, we can add m′′. In fact, if g′(iG) = g(iG) ∨
tG(m′′), then g′(iG) = g(iG), since tG(m′′) =

∧

G ≤ g(iG) by (23).

Therefore, “set-ary flocks” are intersections between subalgebra carriers and
intervals: for all G ⊆ A, [ G] = [[G]] ∩ [

∧

G,
∨

G ], where [[G]] = {g(iG) |
g ∈ LG}. This characterization easily becomes a necessary condition for the
“finitary flocks”, the flocks of the (finitary) Boolean algebra of our lattice.
In fact, the elementary functions of the latter also are of the former.

Furthermore, when [ G] 6= ∅, every such a set-ary flock carries a Boolean
algebra, where the two constants are the previous bounds (which coincide
for a singleton [ G] ). In fact, on [ G] we can define other local Boolean
operations ⊓, ⊔ and ⊟ , e.g. by respectively restricting ∧ and ∨ from A
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to [ G] and “localizing” ¬ as the restriction of the relative complement,
⊟c = ((¬c) ∨

∧

G) ∧
∨

G = ((¬c) ∧
∨

G) ∨
∧

G for all c ∈ [ G]. Then,
we show that such local Boolean operations are Boolean operations on this
flock.

Proof. The closures of [ G] under ⊓ and ⊔, i.e. under ∧ and ∨, follow from
(21) and (22) as for the set case mentioned in (C). The one under ⊟ from
(23) and its (double) definition.

The distributive lattice and absorbtion identities for ⊓ and ⊔ follow from
the ones for ∧ and ∨. The complement ones from (23): c⊓ (⊟c) = c∧ (⊟c) =
(c ∧ (¬c ∨

∧

G)) ∧
∨

G = (0 ∨ (c ∧
∧

G)) ∧
∨

G =
∧

G ∧
∨

G =
∧

G and
c ⊔ (⊟c) = c ∨ (⊟c) = (c ∨ (¬c ∨

∧

G)) ∧ (c ∨
∨

G) = 1 ∧
∨

G =
∨

G for all
c ∈ [ G].

(E) In a general Boolean Algebra, which might lack
∧

G or
∨

G, the loss of
such local constants for (D) also implies the loss of (local) negation. Still,
the lattices on flocks, as we found in the set algebra of (C), persist (even
without (21) and (22)). In fact, by (16) and 2.6 with O′ = {∧,∨} every
flock in a Boolean algebra is closed under meets and joins.

3.6. Two open problems

(A) A problem is to characterize the closure systems that are flock sys-
tems. In fact, we can represent any such a closure system on A by an algebra
on A. As the well-known case of vector spaces and the Boolean one in 3.5
show, this representation can be convenient even in the finite.

(B) Another problem concerns the generalization of Segre transforma-
tions (3.3 of [16]) from based algebras to all universal algebras, as we men-
tioned in 0.0. When G is the basis set of a based algebra, U :X→≻G, the
flock [ G] by (17) contains all reference elements. By 3.1 (D) and 3.3 (A)
this “reference flock” is an inner flock, which any Segre transformation has
to preserve into another reference flock (ibid.).

As shown in 3.1 (C) of [16] and 3.4 ibid., this preservation implies the
one of all inner flocks. Hence, requiring that a bijection σ′:A7 7→≻B between
the carriers of any two universal algebras preserves all flocks by 2.1 (A)
generalizes the reference flock preservation for based algebras. (Such a σ′

has to admit of functions Tσ′ :P(A) →P(B) such that a ∈ [ G] if and only
if σ′(a) ∈ [ Tσ′(G)] for all G ∈ PA. By (16) this requires a correspondence
between the G-ary interpolators and the Tσ′(G)-ary ones.)
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Yet, this generalization might be weak, because now we do not require that
from a possible reference flock we reach another reference one. Namely,
it might not guarantee that transformations between algebras depend on
possible bases. Therefore, one might ask which are the interpolator corre-
spondences that guarantee it (if any).

Together with the generalization of dilatations, we mentioned in 2.2,
such a correspondence might serve to formalize an abstract Segre trans-
formation for all algebras. It might be another step toward replacing the
isomorphism-like notions, which fail to formalize sameness and invariance
as the counterexample in 3.6 of [15] did show.

3.7. “Semi-affine lattice”
(or “semi-affinity lattice”) might be a name for the intersection complete
lattice ensuing from the closure system of 3.3 (B). Prefix “semi” should recall
that in universal algebras not all nonempty flocks are congruence classes (e.g.
1.2 (B) of [14] shows this in the word monoid of 2.4 (B)), whereas in vector
spaces they are.

In Universal Algebra too congruence classes were useful, theoretically
for term algebras and even experimentally for the term algebra on words of
2.4 (B), due to applications of Formal Language theory to lexical recognition.

Hence, one might well think that our generalization of Affine Geometry
splits its objects into both congruence classes and our flocks, in spite of the
lack of a lattice of congruence classes (∅ is not one of them, though two of
them can be disjoint.) and in spite of Linear Algebra treatments that avoid
such classes, see the one in [1].

For the same motivations here we prefer “flock” to “affine subspace”.
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gebra 9 (Verlag Hölder–Pichler–Tempsky,Wien 1995 – Verlag B.G. Teubner),
281–290.

[10] G. Ricci, Some analytic features of algebraic data, Discrete Appl. Math.
122/1-3 (2002), 235–249. doi:10.1016/S0166-218X(01)00323-7

[11] G. Ricci, A semantic construction of two-ary integers, Discuss. Math. Gen.
Algebra Appl. 25 (2005), 165–219. doi:10.7151/dmgaa.1099

[12] G. Ricci, Dilatations kill fields, Int. J. Math. Game Theory Algebra, 16 5/6
(2007), 13–34.

[13] G. Ricci, All commutative based algebras have endowed dilatation monoids,
(to appear on Houston J. of Math.).

[14] G. Ricci, Another characterization of vector spaces without fields, in G. Dorfer,
G. Eigenthaler, H. Kautschitsch, W. More, W.B. Müller. (Hrsg.): Contribu-
tions to General Algebra 18. Klagenfurt: Verlag Heyn GmbH & Co KG, 31
February 2008, 139–150.

[15] G. Ricci, Transformations between Menger systems, Demonstratio Math. 41
(4) (2008), 743–762.

[16] G. Ricci, Sameness between based universal algebras, Demonstratio Math. 42
(1) (2009), 1–20.

[17] M. Steinby, On algebras as tree automata, Colloquia Mathematica Soci-
etatis János Bolyai, 17. Contributions to Universal Algebra, Szeged (1975),
441–455.



Flocks in universal and Boolean algebras 69

[18] B. Vormbrock and R. Wille, Semiconcept and Protoconcept Algebras: The
Basic Theorems, in B. Ganter, G. Stumme & R. Wille (eds.), Formal Con-
cept Analysis: Foundations and Applications, (Springer-Verlag, Berlin 2005).
doi:10.1007/11528784

−
2

Received 17 April 2009
Revised 20 December 2009

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

