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Abstract

In this paper semigroups of contractions of metric spaces are con-
sidered. The semigroup of contractions of the wreath product of metric
spaces is calculated.
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1. Introduction

In articles [1, 2] F. Harary and G. Sabidussi introduced a new construction
of composition of graphs. Later this construction was called the wreath
product of graphs.

A notion of the wreath product of metric spaces was introduced in [4]
analogously to the Sabidussi’s and Harary’s one.

It is known [4] that the isometry group of the wreath product of metric
spaces X and Y is isomorphic as a permutation group to the wreath product
of isometry groups of spaces X and Y .
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With every metric space we can associate a few transformations semigroups:
the semigroup of partial isometries, the semigroups of 1-Lipschitzian trans-
formations (semigroup of contractions) and the semigroup of partial
1-Lipschitzian transformations. We shall consider semigroups of contrac-
tions of metric spaces.

The main result of this report is the following one

Theorem 1. The semigroup of contractions of wreath product of metric

spaces X and Y is isomorphic as a transformation semigroup to the wreath

product of semigroups of contractions of spaces X and Y

Ctr (XwrY ) ≃ CtrX ≀ CtrY.

2. Preliminaries

Let (X, dX ) be a metric space. A contraction (or an 1-Lipschitzian trans-
formation) of X is a mapping f : X → X such that for arbitrary a, b ∈ X

the inequality
dX(f(a), f(b)) ≤ dX(a, b)

holds.

Example 1. Let z be some point in X. It is clear that a mapping f : X →
X such that f(x) = z for every point x ∈ X is a contraction of (X, dX ).

Example 2. Assume that there exists

min
u,v∈X,u 6=v

{dX (u, v)} = q,

then q > 0. Let a, b be points of X such that dX(a, b) = q. Define a
mapping f : X → X by the rule:

f(a) = a, f(b) = b

and f(x) ∈ {a, b} for other points x ∈ X. Then f is a contraction of (X, dX ).

The set of all contractions of the space (X, dX ) forms a semigroup under com-
position. We call it the semigroup of contractions of metric space (X, dX )
and denote by CtrX.
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Example 3. Let (X, dX ) be a metric space with equidistant metric i.e.
there exists some positive c such that dX(a, b) = c for all distinct a, b ∈ X.
Then the semigroup of contractions of (X, dX ) is the full transformations
semigroup TX .

Observe, that the isometry group IsX of the space X is the subgroup of the
semigroup of contractions CtrX of this space.

Proposition 1. Let f be a contraction of metric space (X, dX ). If f is

one-to-one and the inverse mapping f−1 is also a contraction then f is an

isometry of the space (X, dX ).

The proof of this proposition is straightforward.

Metric spaces (X, dX) and (Y, dY ) are called isomorphic ([3]) if there
exists a scale, that is a strictly increasing continuous function s : R+ → R

+,
s(0) = 0, such that dX = s(dY ).

It is easy to see that if metric spaces (X, dX ) and (Y, dY ) are isomorphic
then their semigroups of contraction CtrX and CtrY are isomorphic.

Assume that there exists a positive number r, such that for arbitrary
points x1, x2 ∈ X, x1 6= x2, the inequality dx(x1, x2) ≥ r holds. Additionally
assume that the diameter diamY of the space (Y, dY ) is finite. Then fix a
scale s(x) such that

(1) diam(s(Y )) < r.

Define a metric on the cartesian product X × Y by the rule:

(2) ρs((x1, y1), (x2, y2)) =







dX(x1, x2), if x1 6= x2

s(dY (y1, y2)), if x1 = x2

.

We call (X×Y, ρs) the wreath product of metric spaces X and Y with scale
s and denote it by Xwr sY .

Proposition 2 ([4]). Let s1 and s2 be scales such that the inequality (1)
holds. Then spaces (X × Y, ρs1) and (X × Y, ρs2) are isomorphic.
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Since the wreath product of metric spaces is unique up to isomorphism we
assume in the sequel that the corresponding scale is fixed. Denote the wreath
product of metric spaces X and Y by XwrY .

For the definition of the wreath product of transformation semigroups
see [5].

3. Proof of the main theorem

At first let us prove that an arbitrary element

ϕ = [g, h(x)] ∈ CtrX ≀ CtrY

defines a contraction of XwrY . The definition of the wreath product of
transformation semigroup ([5]) implies that ϕ acts on X × Y . We shall see
that ϕ does not increase the metric ρs. Indeed,

ρs(ϕ(x1, y1), ϕ(x2, y2)) =

= ρs((x
g
1, y

h(x1)
1 ), (xg2, y

h(x2)
2 )) =











dX(xg1, x
g
2), if xg1 6= x

g
2

s(dY (y
h(x1)
1 , y

h(x2)
2 )), if xg1 = x

g
2.

Since g ∈ CtrX, it follows that dX(xg1, x
g
2) ≤ dX(x1, x2). Therefore, if

x1 6= x2 and x
g
1 6= x

g
2 then

ρs(ϕ(x1, y1), ϕ(x2, y2)) = dX(xg1, x
g
2) ≤ dX(x1, x2) = ρs((x1, y1), (x2, y2)).

Using (1) and (2), we get that if x1 6= x2 and x
g
1 = x

g
2 then

ρs(ϕ(x1, y1), ϕ(x2, y2)) =

= s(dY (y
h(x1)
1 , y

h(x2)
2 )) ≤ r ≤ dX(x1, x2) = ρs((x1, y1), (x2, y2)).

For g ∈ CtrX the equality x1 = x2 implies x
g
1 = x

g
2. Note that t is a

contraction of Y iff t is a contraction of s(Y ). Then h(x1) = h(x2), that is
h(x1) and h(x2) define the same contraction t of Y . Hence,

s(dY (y
h(x1)
1 , y

h(x2)
2 )) =

= s(dY (y
h(x1)
1 , y

h(x1)
2 ) ≤ s(dY (y1, y2)) = ρs((x1, y1), (x2, y2)).
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Therefore we have

ρs(ϕ(x1, y1), ϕ(x2, y2)) ≤ ρs((x1, y1), (x2, y2)).

This means that ϕ defines a contraction of XwrY .

Now let us prove that for any contraction ϕ of XwrY there exist g ∈
CtrX and h(x) ∈ CtrY X such that [g, h(x)] acts on X × Y as ϕ does. Let
the function ϕ map some point (x1, y1) to a point (x2, y2). Using (1) and
(2) we obtain that the function ϕ maps any point of the form (x1, ⋆) to a
point of the form (x2, ⋆). It follows that ϕ acts as a contraction on each
isometric copy s(Y )x, x ∈ X. In each copy s(Y )x chooses a point yx. Then
ϕ is a contraction on {yx, x ∈ X}. This implies that there exist g ∈ CtrX

and h(x) ∈ Ctrs(Y )X , where [g, h(x)] acts on X × Y as ϕ does. Since
Ctr (s(Y )) ≃ CtrY , it follows that we can consider [g, h(x)] as an element of
CtrX ≀ CtrY . This completes the proof of the theorem.

4. Corollary

Now let (X1, d1), (X2, d2), . . . , (Xn, dn), n ≥ 2 be a finite sequence of metric
spaces. Assume that the diameters of the spaces (X2, d2), (X3, d3), . . . , (Xn, dn)
are finite. Additionally assume that there exists a finite sequence of positive
numbers r1, r2, . . . , rn−1, such that for arbitrary points a, b ∈ Xi, a 6= b, the
inequalities di(a, b) ≥ ri hold, 1 ≤ i ≤ n− 1.

Proposition 3 [4]. Let (X1, d1), (X2, d2) and (X3, d3) be metric spaces as

above. Then the spaces (X1wrX2)wrX3 and X1wr(X2wrX3) are isomor-

phic.

Using proposition (3) we introduce the n-iterated wreath product of metric
spaces.

First fix a finite sequence of scales si(x), 2 ≤ i ≤ n such that

(3) diam(s2(X2)) < r1,

diam(s3(X3)) < s2(r2),

. . . . . . . . .

diam(sn(Xn)) < sn−1(rn−1).
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Define a metric ρs2,...,sn on the cartesian product X1 ×X2× . . .×Xn by the
rule:

(4) ρs2,...,sn((a1, . . . , an), (b1, . . . , bn)) =

=



























































d1(a1, b1), if a1 6= b1;

s1(d2(a2, b2)), if a1 = b1 and a2 6= b2;

s2(d3(a3, b3)), if a1 = b1, a2 = b2, a3 6= b3;

. . . . . . . . .

sn−1(dn(an, bn)), if a1 = b1, . . . , an−1 = bn−1.

where a1, b1 ∈ X1, . . . , an, bn ∈ Xn.
We call (X1×X2×. . .×Xn, ρs2,...,sn) the n-iterated wreath product of the

spaces (X1, d1), (X2, d2), . . . , (Xn, dn) with respect to the sequence of scales
si(x), 2 ≤ i ≤ n, and denote it by

X1wrs1X2wr s2X3wr s3 . . .wr snXn.

Let X1,X2, . . . ,Xn be metric spaces as above. Fix two finite sequences of
scales si, 1 ≤ i ≤ n and gj , 1 ≤ j ≤ n such that the inequalities (3) hold for
each of this sequences. Then from Propositions 3 and 2 we obtain

Proposition 4. The spaces

X1wr s1X2wr s2X3wrs3 . . .wrsnXn

and

X1wr g1X2wr g2X3wrg3 . . .wrgnXn

are isomorphic.

Since the n-iterated wreath product of metric spaces is unique up to isomor-
phism we assume in the sequel that the corresponding sequence of scales si,
1 ≤ i ≤ n is fixed. Denote the n-iterated wreath product of metric spaces
X1,X2, . . . ,Xn by

X1wrX2wrX3wr . . .wrXn.
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Note, that we can consider the space X1wrX2wrX3wr . . .wrXn as the space

(. . . (((X1wrX2)wrX3)wr ) . . .wrXn).

From Proposition 3 and Theorem 1 it follows:

Theorem 2. The semigroup of contractions of the n-iterated wreath prod-

uct of the metric spaces X1,X2, . . . ,Xn is isomorphic as a transformation

semigroup to the n-iterated wreath product of semigroups of contractions of

the spaces X1,X2, . . . ,Xn

Ctr (X1wrX2wr . . .wrXn) ≃ CtrX1 ≀ CtrX2 ≀ . . . ≀ CtrXn.

5. Example

Let k1, k2, . . . , kn be a finite sequence of natural numbers and let (Yki , di) be
a finite sequence of metric spaces such that for any 1 ≤ i ≤ n the following
conditions hold:

• |Yki | = ki ,

• di(a, b) = 1 for distinct points a, b ∈ Yki .

Fix a real number η ∈ (0, 1). Define a finite sequence of scales si(t) = ηi−1 ·t,
2 ≤ i ≤ n. The functions from this sequence satisfy inequalities (3). Then
we can consider the space

Y1wr s2Y2wr s3Y3wrs4 . . .wrsnYn.

This space consists of k1k2 . . . kn tuples of the form (u1, . . . , un) ∈
∏n

i=1 Yki .
The distance between distinct points of this space is defined by the following
rule:

d((u1, . . . , un), (v1, . . . , vn)) = ηl if u1 = v1, . . . , ul−1 = vl−1, ul 6= vl.

Denote this space by B(k1, . . . , kn).
The well-known folklore result says that the isometry group of this space

is isomorphic as a permutation group to the wreath product of the symmetric
groups Sk1 , Sk2 , . . . , Skn .

Another way to describe the space B(k1, . . . , kn) is as follows.
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Recall, that a connected simple (non directed, without loops) graph is a

tree if it has no cycles. It is easy to see that if a graph T is a tree then for
any two vertices of T there exists a unique path connecting them. A rooted

tree (T, v0) is a tree with a fixed vertex v0 named the root of the tree. For
every nonnegative integer l the level number l (l-th level) is the set Vl of all
vertices v ∈ V (T ) such that the length of the path between v and v0 in T

is equal to l. Respectively, the level number 0 contains only the root v0. A
homogeneous (k1, k2, . . . , kn)–tree is a rooted tree such that each vertex of
(i− 1)-th level is connected with exactly ki vertices of i-th level, 1 ≤ i ≤ n.

Let (T, v0) be a finite homogeneous (k1, k2, . . . , kn)-rooted tree. Then
all vertices v ∈ V (T ) have degree 1. We can introduce a natural ultrametric
on Vn putting

ρ(vi, vj) = η(s+1), vi 6= vj

and ρ(vi, vj) = 0, vi = vj , where s is the length of the maximal common part
of the paths connecting vertices vi and vj with the root.

• The space (Vn, ρ) is isometric to the space B(k1, . . . , kn).

An endomorphism of a homogeneous rooted tree is called elliptic (due
to J. Rhodes [7]) if it preserves numbers of levels.

• The semigroup of contractions of (Vn, ρ) is isomorphic to the semi-
group of elliptic endomorphisms of rooted tree (T, v0).

From theorem 2 it follows

• The semigroup of contractions of the space B(k1, . . . , kn) is isomor-
phic as a transformation semigroup to the n-iterated wreath product
of transformations semigroups Tk1 , Tk2 , . . . , Tkn :

Ctr (B(k1, . . . , kn)) ≃ Tk1 ≀ Tk2 ≀ . . . ≀ Tkn .

This result immediately implies from [6].
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