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Ágnes Szendrei

Department of Mathematics
University of Colorado at Boulder

Campus Box 395
Boulder, CO 80309–0395, USA

and
Bolyai Institute
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1. Introduction

This paper is a continuation to a series of studies on how functions can be
classified by their substitution instances when inner functions are taken from
a given set of functions. Several variants of this idea have been employed
in the study of finite functions. Harrison [4] identified two n-ary Boolean
functions if they are substitution instances of each other with respect to the
general linear group GL(n,F2) or the affine general linear group AGL(n,F2)
where F2 denotes the two-element field. Wang and Williams [19] defined
a Boolean function f to be a minor of another Boolean function g if f
can be obtained by substituting to each variable of g a variable, a negated
variable, or a constant 0 or 1. Classes of Boolean functions were described
in terms of forbidden minors by Wang [18]. Variants of the notion of minor
were presented for Boolean functions by Feigelson and Hellerstein [3] and
Zverovich [21] and, in a more general setting, for operations on finite sets
by Pippenger [13].

Another occurrence of the idea of classifying functions by their substi-
tution instances can be found in semigroup theory. Green’s relation R on a
transformation semigroup S relates two transformations f, g ∈ S if and only
if f(x) = g

(

h1(x)
)

and g(x) = f
(

h2(x)
)

for some h1, h2 ∈ S ∪ {id}. Henno
[5] generalized Green’s relations to Menger systems (essentially, abstract
clones) and described Green’s relations on the clone OA of all operations on
A for every set A. In particular, he proved that two operations on A are
R-equivalent if and only if their ranges coincide.

The notions of ‘minor’ and ‘R-equivalence’ for operations on a set A
can be defined relative to any clone C on A. Namely, let C be a fixed clone
on A, and let f and g be operations on A. Then f is a C-minor of g if f
can be obtained from g by substituting operations from C for the variables
of g, and f and g are C-equivalent if each of f and g is a C-minor of the
other. Thus, Green’s relation R described by Henno is the same notion as
OA-equivalence, and each of the various notions of minor mentioned in the
first paragraph corresponds to the notion of C-minor for one of the smallest
clones C containing only essentially at most unary operations.

This paper focuses on the following question:

Question. For which clones C are there only finitely many C-equivalence
classes?



The submaximal clones on the three-element set with ... 9

Let us denote the set of clones on A that have this property by FA. It is easy
to see that FA forms an order filter on the lattice of clones on A. Henno’s
result about OA-equivalence quoted above implies that OA ∈ FA if and only
if A is finite. Thus the filter FA is nonempty if and only if A is finite. The
filter is proper if |A| > 1, since the clone of projections fails to belong to
FA. In [9] we proved that every discriminator clone on A belongs to FA;
furthermore, the smallest discriminator clone on A is a minimal element of
FA. Moreover, for |A| = 2, the members of FA are precisely the discriminator
clones. This is no longer true for |A| > 2, since, for example, S lupecki’s clone
is a member of FA but it is not a discriminator clone.

In order to get a better understanding of the structure of the filter FA

for finite sets A of more than two elements, it is worthwhile investigating
clones near the top of the lattice of clones on A. In [10], we decided for each
clone C on a finite set A that is either a maximal clone or the intersection of
maximal clones whether C ∈ FA. The next natural step in this direction is
taking a look at submaximal clones. The submaximal clones on the three-
element set {0, 1, 2} are well-known (see, e.g., [7]), and this fact calls for a
classification of these clones according to whether they are members of the
filter F{0,1,2}. That is the very goal of the current paper.

2. Preliminaries

Let A be a nonempty set. An operation on A is a map f : An → A for some
positive integer n, called the arity of f . The set of all n-ary operations on

A is denoted by O
(n)
A , and the set of all operations on A is denoted by OA,

i.e., OA =
⋃

n≥1O
(n)
A . The n-ary i-th projection is the operation p

(n)
i that

maps every n-tuple (a1, . . . , an) ∈ An to its i-th component ai. For f ∈ O
(n)
A

and g1, . . . , gn ∈ O
(m)
A , the composition of f with g1, . . . , gn is the m-ary

operation f(g1, . . . , gn) defined by

f(g1, . . . , gn)(a) = f
(

g1(a), . . . , gn(a)
)

for all a ∈ Am.

Every function h : An → Am is uniquely determined by the m-tuple of op-

erations h = (h1, . . . , hm) where hi = p
(m)
i ◦ h : An → A (1 ≤ i ≤ m). From

now on, we will identify each function h : An → Am with the corresponding

m-tuple h = (h1, . . . , hm) ∈ (O
(n)
A )m of n-ary operations.
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A clone on A is a subset C ⊆ OA that contains all projections and is closed
under composition. The clones on A form a complete lattice under inclusion.
Therefore, for each set F ⊆ OA of operations there exists a smallest clone
that contains F , which will be denoted by 〈F 〉 and will be referred to as the

clone generated by F . The n-ary part of a clone C is the set C(n) = C ∩O
(n)
A .

Let ρ ⊆ Ar be a relation. The n-th direct power of ρ is the r-ary relation
on An defined by

(

(a11, a12, . . . , a1n), (a21, a22, . . . , a2n), . . . , (ar1, ar2, . . . , arn)
)

∈ ρn

if and only if (a1i, a2i, . . . , ari) ∈ ρ for all i ∈ {1, . . . , n}. If (a1,a2, . . . ,ar) ∈
ρn, we also say that the n-tuples a1,a2, . . . ,ar are coordinatewise ρ-related.

We say that an operation f ∈ O
(n)
A preserves an r-ary relation ρ on

A (or ρ is an invariant of f , or f is a polymorphism of ρ), if for all
(a1i, a2i, . . . , ari) ∈ ρ, i = 1, . . . , n, it holds that

(

f(a11, a12, . . . , a1n), f(a21, a22, . . . , a2n), . . . , f(ar1, ar2, . . . , arn)
)

∈ ρ,

in other words,
(

f(a1), f(a2), . . . , f(ar)
)

∈ ρ whenever the n-tuples
a1,a2, . . . ,ar are coordinatewise ρ-related. We will say that f = (f1, . . . , fm)

∈ (O
(n)
A )m preserves an r-ary relation ρ on A if each fi (1 ≤ i ≤ m) does;

that is

(a1, . . . ,ar) ∈ ρn ⇒
(

f(a1), . . . , f(ar)
)

∈ ρm for all a1, . . . ,ar ∈ An.

The set of all operations on A preserving a relation ρ is denoted by Pol ρ.
For a family R of relations on A, we denote PolR =

⋂

ρ∈R Pol ρ. For any
family R of relations on A, PolR is a clone on A, and it is a well-known fact
that if A is finite, then every clone on A is of the form PolR for some family
R of relations on A. For general background on clones, see [7, 14, 17].

Let C be a fixed clone on A. For arbitrary operations f ∈ O
(n)
A and

g ∈ O
(m)
A we say that

• f is a C-minor of g, in symbols f ≤C g, if f = g ◦ h for some h ∈
(C(n))m;

• f and g are C-equivalent, in symbols f ≡C g, if f ≤C g and g ≤C f .
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The relation ≤C is a quasiorder on OA, ≡C is an equivalence relation on OA,
≤C ⊆ ≤C′ if and only if C ⊆ C′, and ≡C ⊆ ≡C′ whenever C ⊆ C′.

Denote by FA the set of clones C on A that have the property that there
are only a finite number of ≡C-classes. As discussed in the Introduction, the
set FA forms an order filter in the lattice of clones on A.

Throughout this paper, we will denote the three-element set {0, 1, 2} by
3. In the following sections, we will classify the maximal and submaximal
clones on 3 according to whether they are members of the filter F3.

3. Maximal clones on 3 and their intersections

In this section we will present a classification of the maximal clones on 3

according to whether they are members of F3. This is a special case of
the general classification of maximal clones on finite sets that we obtained
in [10]. For the sake of easy reference, and without proof, we will also
collect here some of our earlier results from [8, 9, 10], which will be use-
ful in the following section where we classify the submaximal clones on 3

accordingly.

Rosenberg completely described the maximal clones on finite sets as
follows.

Theorem 3.1 (Rosenberg [15]). Let A be a finite set with |A| ≥ 2. A clone
on A is maximal if and only if it is of the form Pol ρ, where ρ is a relation
on A of one of the following six types:

1. bounded partial order,

2. prime permutation,

3. nontrivial equivalence relation,

4. prime affine relation,

5. central relation,

6. h-regular relation.

Here a partial order is called bounded if it has both a least and a greatest
element. A prime permutation is (the graph of) a fixed point free permuta-
tion on A in which all cycles are of the same prime length. A prime affine
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relation on A is the graph of the ternary operation x−y+z for some elemen-
tary abelian p-group (A; +,−, 0) on A (p prime). An equivalence relation on
A is nontrivial if it is neither the equality relation on A nor the full relation
on A.

An r-ary relation ρ on A is called totally reflexive if ρ contains all r-
tuples from Ar whose coordinates are not pairwise distinct, and it is called
totally symmetric if ρ is invariant under any permutation of its coordinates.
We say that ρ is a central relation on A if ∅ 6= ρ 6= Ar, ρ is totally reflexive
and totally symmetric and there exists an element c ∈ A such that {c} ×
Ar−1 ⊆ ρ. The elements c with this property are called the central elements
of ρ. Note that the arity r of a central relation on A satisfies 1 ≤ r ≤
|A|−1, and the unary central relations are just the nonempty proper subsets
of A.

For an integer h ≥ 3, a family T = {θ1, . . . , θr} (r ≥ 1) of equivalence
relations on A is called h-regular if each θi (1 ≤ i ≤ r) has exactly h blocks,
and for arbitrary blocks Bi of θi (1 ≤ i ≤ r) the intersection

⋂

1≤i≤r Bi is
nonempty. To each h-regular family T = {θ1, . . . , θr} of equivalence relations
on A we associate an h-ary relation λT on A as follows:

λT = {(a1, . . . , ah) ∈ Ah : for each i, a1, . . . , ah is not a transversal

for the blocks of θi}.

Relations of the form λT are called h-regular (or h-regularly generated) re-
lations. It is clear from the definition that h-regular relations are totally
reflexive and totally symmetric.

The fact that there are exactly 18 maximal clones on 3 was first proved
by Yablonsky [20]—this is a special case of Rosenberg’s Theorem 3.1. The
maximal clones on 3 are enumerated in Table 1, where ni(C) denotes the
number of clones presented in line i. We also indicate for each clone whether
it is a member of F3 (see Corollary 3.12). We will use the following notation.
Let {a, b, c} = 3.

• πabc
3 denotes the 3-cycle (abc), πab

3 denotes the transposition (ab) on
3, πab

2 denotes the transposition (ab) on the 2-element set {a, b}.

• ǫ
ab|c
3 denotes the equivalence relation on 3 with 2-element block {a, b}

and 1-element block {c}.

• ≤abc
3 denotes the total order a ≤ b ≤ c on 3; ≤ab

2 denotes the total
order a ≤ b on the 2-element set {a, b}.
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• γa3 denotes the unique central relation on 3 with central element a.

• λ3 denotes the unique affine relation on 3, λab
2 denotes the unique

affine relation on the 2-element set {a, b}.

• ι33 denotes the unique 3-regular relation on 3.

Table 1. The 18 maximal clones on the three-element set 3 and their member-

ship in F3.

i C ni(C) C
?
∈ F3

1 Pol{a} 3 yes

2 Pol{a, b} 3 yes

3 Pol π012
3 1 yes

4 Pol ǫ
ab|c
3 3 yes

5 Pol ≤abc
3 3 no

6 Pol γa3 3 yes

7 Polλ3 1 no

8 Pol ι33 1 yes

Theorem 3.2 (from [8]). Let A be a finite set with |A| ≥ 2. If ρ is a
bounded partial order or a prime affine relation on A, then Pol ρ /∈ FA.

The discriminator function on A is the ternary operation tA defined as
follows:

tA(x, y, z) =

{

z, if x = y,

x, otherwise.

If a clone C on A contains the discriminator function tA, then C is called a
discriminator clone.

Theorem 3.3 (from [9]). If a clone C on a finite set A contains the dis-
criminator function tA, then C ∈ FA. Moreover, the smallest clone on A
containing the discriminator function is a minimal member of FA. Further-
more, if |A| = 2, then the members of FA are precisely the discriminator
clones.
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Theorem 3.4 (from [10]). Let A be a finite set, and let E be a set of
equivalence relations on A, Γ a set of permutations on A, and Σ a set of
nonempty subsets of A. The clone Pol(E,Γ,Σ) is a member of FA if and
only if

(a) E is a chain (i.e., any two members of E are comparable), and

(b) Γ ⊆ PolE.

Theorem 3.5 (from [10]). If ρ is an r-ary central relation on a k-element
set A such that 2 ≤ r ≤ k − 2 (k ≥ 4), then Pol ρ /∈ FA.

Theorem 3.6 (from [10]). Let A be a finite set with k elements. Let ρ be
a (k − 1)-ary central relation on A, and let c be the unique central element
of ρ.

(i) Pol(ρ, {c}) ∈ FA.

(ii) If S is a nonempty proper subset of A such that S 6= {c}, then
Pol(ρ, S) /∈ FA.

(iii) If E is a nontrivial equivalence relation on A, then Pol(ρ,E) /∈ FA.

Theorem 3.7 (from [10]). Let A be a finite set with k elements. If ρ is an
h-regular relation on A with h < k, then Pol ρ /∈ FA.

Denote by TA the full transformation monoid on A, and denote by T −
A the

submonoid of TA consisting of idA and all non-permutations. It is well-
known (see [1] and [16]) that for a finite base set A with k ≥ 2 elements,
there are exactly k + 1 clones C such that C(1) = TA and they form a chain

〈O
(1)
A 〉 = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk−1 ⊂ Bk = OA.

The clones Bi are defined as follows. For 2 ≤ i ≤ k, Bi consists of all
essentially at most unary functions and all functions whose range contains at
most i elements. B1 consists of all essentially at most unary functions and all
quasilinear functions, i.e., functions having the form g

(

h1(x1)⊕· · ·⊕hn(xn)
)

where h1, . . . , hn : A → {0, 1}, g : {0, 1} → A are arbitrary mappings and ⊕
denotes addition modulo 2. Bk−1 is referred to as S lupecki’s clone, and it is
equal to Pol ρ for the unique k-regular relation ρ on A.
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Szabó extended these results and showed that if M 6= TA is a transformation
monoid on A that contains T −

A , then there are exactly k clones C on A such
that C(1) = M , and they form a chain

〈M〉 ⊂ B1(M) ⊂ B2(M) ⊂ · · · ⊂ Bk−1(M),

where each Bi(M), 1 ≤ i ≤ k − 1 arises from Bi by omitting all operations
depending on at most one variable which are outside of 〈M〉 (see [17]).

Theorem 3.8 (from [10]). If C is a clone on a k-elements set A (k ≥ 3)
such that T −

A ⊆ C, then C ∈ FA if and only if Bk−1(T
−
A ) ⊆ C.

Theorem 3.9 (from [10]). Let ρ be a relation on a finite set A, let B be a
nonempty subset of A, and let ρB be the restriction of ρ to B. If Pol ρ ∈ FA,
then Pol ρB ∈ FB.

These results can be summarized in the following two theorems about max-
imal clones on A and their intersections.

Theorem 3.10 (from [10]). A maximal clone M on a k-element set A is
in FA if and only if M = Pol ρ where ρ is either a prime permutation,
a nontrivial equivalence relation, a nonempty proper subset, a (k − 1)-ary
central relation, or a k-regular relation on A.

Theorem 3.11 (from [10]). Let M, N be distinct maximal clones on a
finite set A of k elements (k ≥ 3).

(1) If N = Bk−1 is S lupecki’s clone, then M∩N /∈ FA.

(2) If N = Pol γc where γc is the (k − 1)-ary central relation with central
element c, then M∩N ∈ FA if and only if M = Pol{c}.

(3) If N = Pol ǫ for a nontrivial equivalence relation ǫ on A and M =
Pol ρ where ρ is a prime permutation, a nonempty proper subset, or a
nontrivial equivalence relation on A, then M∩N ∈ FA unless

• ρ is a prime permutation such that ρ /∈ N , or

• ρ is an equivalence relation incomparable to ǫ.

(4) If M = Pol ρ and N = Pol τ where ρ, τ are prime permutations or
nonempty proper subsets of A, then M∩N ∈ FA.

In the particular case when A = 3 we obtain the following two corollaries,
the first of which justifies the statements in Table 1 about the membership
of the maximal clones on 3 in F3.
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Corollary 3.12. A maximal clone M on 3 is in F3 if and only if M = Pol ρ

where ρ is one of πabc
3 , ǫ

ab|c
3 , {a}, {a, b}, γa3 , ι33 for {a, b, c} = 3.

Corollary 3.13. Let M, N be two distinct maximal clones on 3 = {a, b, c}
such that M,N ∈ FA.

(1) If N = B2 = Pol ι33 is S lupecki’s clone, then M∩N /∈ FA.

(2) If N = Pol γc3, then M∩N ∈ FA if and only if M = Pol{c}.

(3) If N = Pol ǫ
ab|c
3 then M ∩ N ∈ FA if and only if M = PolS for a

nonempty proper subset S of 3.

(4) If M = Pol ρ and N = Pol τ where each of ρ and τ is πabc
3 or a

nonempty proper subset of A, then M∩N ∈ FA.

4. Submaximal clones on 3

Our aim in this section is to classify the submaximal clones on the three-
element set 3 according to whether they are members of the filter F3. The
submaximal clones on 3 were determined in the papers by Machida [11];
Marchenkov, Demetrovics, Hannák [12]; Demetrovics, Bagyinszki [2]; and
Lau [6]. We enumerate these clones in Table 2, where we follow the num-
bering used by Lau [7, Table 14.1].† Each line i of Table 2 represents
ni(C) clones, corresponding to all possible choices of a, b, c, α, β, γ such that
{a, b, c} = {α, β, γ} = 3. The functions max, min occurring in lines 28, 29 of
Table 2 refer to the binary maximum and minimum operations with respect

to the total order ≤abc
3 . We denote φ

ab|c
3 : 3 = {a, b, c} → {0, 1}, a 7→ 0,

b 7→ 0, c 7→ 1. The n-tuple (a, a, . . . , a) (a ∈ A) will be denoted by ā and its
arity n is understood from the context.

†There seems to be some confusion about the number of submaximal clones on 3. Lau
mentions in Theorem 14.1.10 of [7] that this number is 158. However, only 155 clones are
listed in Table 14.1 of [7]. Even more confusingly, the 1982 paper by Lau [6], on which
Chapter 14 of the monograph [7] is based, claims that the number is 161. Which number,
if any, is correct: 155, 158 or 161? The descriptions of the submaximal clones on 3 in [6]
and in [7] are identical. The note that immediately precedes Theorem 14.1.10 of [7] asserts
that some of the submaximal clones described in the preceding theorems are in fact the
same in spite of different representations. We believe that the author was unaware of this
fact at the time of writing [6] and counted some clones twice. The number of such clones
with double representations is 6, which is exactly the difference between 161 and 155. It
seems that 155 is correct, and the number 158 is an unfortunate misprint.
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Table 2. The 155 submaximal clones on the three-element set 3 and their

membership in F3.

i C ni(C) C
?
∈ F3 Proof

1 Pol{a} ∩ Pol{b} 3 yes Thm 3.3

2 Pol{a} ∩ Pol{a, b} 6 yes Thm 3.3

3 Pol{a} ∩ Pol{b, c} 3 yes Thm 3.3

4 Pol{a} ∩ Pol ǫ
bc|a
3 3 yes Thm 3.4

5 Pol{a} ∩ Pol γa3 3 yes Thm 3.6

6 Pol{a} ∩ Pol ≤abc
3 6 no Thm 3.2

7 Pol{a} ∩ Polλ3 3 no Thm 3.2

8 Pol{a} ∩ Pol π012
3 1 yes Thm 3.3

9 Pol{a, b} ∩ Pol ǫ
ab|c
3 3 yes Thm 3.4

10 Pol{a, b} ∩ Pol ǫ
ac|b
3 6 yes Thm 3.4

11 Pol{a, b} ∩ Pol ≤αβγ
3 9 no Thm 3.2

12 Pol{a, b} ∩ Pol γα3 9 no Thm 3.6

13 Pol ǫ
ab|c
3 ∩ Pol ≤abc

3 6 no Thm 3.2

14 Pol ǫ
ab|c
3 ∩ Pol γa3 6 no Thm 3.6

15 Pol ≤abc
3 ∩Pol γα3 9 no Thm 3.2

16 Pol ≤abc
3 ∩Pol ι33 3 no Thm 3.2

17 Pol π012
3 ∩ Polλ3 1 no Thm 3.2

18 Pol πab
3 3 yes Thm 3.3

19 Pol

(

a a b a c
a b a c a

)

3 no Thm 3.9

20 Pol

(

a a b a c b c
a b a c a c b

)

3 no Thm 3.9



18 E. Lehtonen and Á. Szendrei

Table 2. (continued)

i C ni(C) C
?
∈ F3 Proof

21 Pol ≤ab
2 3 no Thm 3.9

22 Pol πab
2 3 yes Thm 3.3

23 Polλab
2 3 no Thm 3.9

24 Pol

(

a a b b a
a b a b c

)

6 yes Lem 4.2

25 Pol

(

a a b b a c b c
a b a b c a c b

)

3 no Thm 3.9

26 Pol





a b a b a b a b
a b a b b a a b
a b b a c c c c



 3 no Lem 4.3

27 Pol





a b b a a b b a a b
a b a b a b a b a b
a b a a b a b b c c



 3 yes Lem 4.4

28 〈{max} ∪ O
(1)
3

〉 ⊆ Pol ≤abc
3 3 no Thm 3.2

29 〈{min} ∪ O
(1)
3

〉 ⊆ Pol ≤abc
3 3 no Thm 3.2

30 〈(Pol λ3)
(1)〉 ⊆ Pol λ3 1 no Thm 3.2

31 Pol

(

0 1 2 a
0 1 2 b

)

3 no Thm 3.9

32 Pol(φ−1 ◦ π01
2 ◦ φ) where φ = φ

ab|c
3 3 yes Lem 4.5

33 Pol

(

0 1 2 a b a b
0 1 2 b a c c

)

3 no Thm 3.9

34 Pol





0 1 2 a a b b c c a b
0 1 2 a a b b c c b a
0 1 2 b c a c a b c c



 3 no Lem 4.6

35 Pol





a a a a b b b b a b c c c
a a b b a a b b a b c c c
a b a b a b a b c c a b c



 3 no Lem 4.7
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Table 2. (continued)

i C ni(C) C
?
∈ F3 Proof

36 Pol(λab
2 ∪ {c}4) 3 no Thm 3.9

37 Pol(φ−1 ◦ λ01
2 ◦ φ) where φ = φ

ab|c
3 3 no Thm 3.9

38 Pol

(

0 1 2 a a
0 1 2 b c

)

3 no Thm 3.9

39 Pol

(

0 1 2 a b a c b
0 1 2 b a c a c

)

3 no Thm 3.9

40 Pol





a b a c a b a a b b a b c a a c c a c
b a c a a a b a b a b b a c a c a c c
c c b b a a a b a b b b a a c a c c c



 3 no Lem 4.8

41 B2(T −
3 ∪ {πab

3 }) 3 yes Thm 3.8

42 B2(T −
3 ∪ {π012

3 , π021
3 }) 1 yes Thm 3.8

43 B1 1 no Thm 3.8

Theorem 4.1. Let C be a submaximal clone on 3. Then C ∈ F3 if and
only if

• C = Pol {a} ∩ Pol ρ where ρ is one of {b}, {α, β}, ǫ
bc|a
3 , γa3 , π012

3 ; or

• C = Pol {a, b} ∩ Pol ρ where ρ is a nontrivial equivalence relation on
3; or

• C = Pol ρ where ρ is one of

πab
3 , πab

2 ,

(

a a b b a
a b a b c

)

,





a b b a a b b a a b
a b a b a b a b a b
a b a a b a b b c c



 , φ−1 ◦ π01
2 ◦ φ

where φ = φ
ab|c
3 ; or

• C = B2(T
−
3 ∪ {πab

3 }) or C = B2(T
−
3 ∪ {π012

3 , π021
3 }),

for {a, b, c} = {α, β, γ} = 3.
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Proof. Theorem 4.1 is presented in a more explicit way in Table 2, where
we state for each submaximal clone C on 3 whether C ∈ F3. The theorem
follows from the various theorems and lemmas presented in this paper, as
described in full detail below. For easy reference, we indicate in Table 2 for
each submaximal clone C the result that proves or disproves the membership
of C in F3.

The clones in lines 6, 7, 11, 13, 15, 16, 17, 28, 29, 30 of Table 2 are
contained in maximal clones that are nonmembers of F3 by Theorem 3.2,
and hence they are not in F3.

It is easy to verify that the clones in lines 1, 2, 3, 8, 18, 22 of Table 2
contain the discriminator function, and hence they are members of F3 by
Theorem 3.3.

It follows from Theorem 3.4 that the clones in lines 4, 9, 10 of Table 2
are in F3. It follows from Theorem 3.6 that the clones in line 5 of Table 2
are in F3 and the clones in lines 12, 14 of Table 2 are not in F3. By Theorem
3.8, the clones in lines 41, 42 of Table 2 are in F3 and the clone in line 43 of
Table 2 is not in F3.

We observe that if ρ is one of ≤01
2 , λ01

2 ,

(

0 0 1
0 1 0

)

, then the clone Pol ρ on

{0, 1} does not contain the discriminator function and hence Pol ρ /∈ F{0,1}

by Theorem 3.3. Application of Theorem 3.9 with B = {a, b} for the clones
in lines 19, 20, 21, 23, 31, 36, 38 of Table 2, with B = {a, c} for the clones
in lines 25, 33, 37, and with B = {b, c} for the clones in line 39 shows that
these clones are not in F3.

The membership of the remaining submaximal clones in F3 is proved or
disproved in Lemmas 4.2–4.8 that follow. The clones in lines 24, 27, 32 of
Table 2 are members of F3 by Lemmas 4.2, 4.4, 4.5, respectively. The clones
in lines 26, 34, 35, 40 of Table 2 are not members of F3 by Lemmas 4.3, 4.6,
4.7, 4.8, respectively.

Lemma 4.2. Let A = 3 = {a, b, c}. For the relation

ρ =

(

a a b b a
a b a b c

)

in line 24 of Table 2, Pol ρ ∈ F3.
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Proof. Let C = Pol ρ. Observe first that every operation in C preserves the
subset {a, b}. Note also that if a ∈ An \ {a, b}n, b ∈ An, then (a,b) /∈ ρn.
In the following, let f and g be n-ary and m-ary, respectively.

Claim 1. If Im f = Im g = Im f |{a,b} = Im g|{a,b}, then f ≡C g.

Proof of Claim 1. Let r = |Im f |, and let {d1, . . . ,dr} ⊆ {a, b}n be a
transversal of ker f . Define the mapping h : Am → An by the rule h(a) = di

if and only if g(a) = f(di). It is clear that g = f ◦ h. Since {a, b}2 ⊆ ρ,
we have that (di,dj) ∈ ρn for all i, j ∈ {1, . . . , r}, and hence h ∈ Cn. Thus,
g ≤C f . A similar argument shows that f ≤C g. ♦

Claim 2. If Im f = Im g 6= Im f |{a,b} = Im g|{a,b} = {α}, then f ≡C g.

Proof of Claim 2. Let r = |Im f |, and let {d1,d2, . . . ,dr} be a transver-
sal of ker f such that d1 = ā. Define the mapping h : Am → An by the rule
h(a) = di if and only if g(a) = f(di). It is clear that g = f ◦h. Let a,b ∈ 3m

and h(a) = di, h(b) = dj . Suppose (di,dj) /∈ ρn. Since {a}×3 ⊆ ρ, we see
that di 6= ā = d1. By assumption, f |{a,b} is constant α, so {a, b}n is con-
tained in a single kernel class of f , which by our choice is represented by d1.
Therefore di /∈ {a, b}n. Thus g(a) = f(di) 6= α. Since by our assumptions
g|{a,b} is constant α, we get that a /∈ {a, b}m. Therefore (a,b) /∈ ρm. We
conclude that h ∈ Cn, and hence g ≤C f . A similar argument shows that
f ≤C g. ♦

We say that f : An → A has property (P), if it satisfies the following
condition:

(P) Im f = 3 = {α, β, γ}, Im f |{a,b} = {α, β}, f(ā) = α, and there are
n-tuples b ∈ {a, b}n, c ∈ An such that f(b) = β, f(c) = γ and
(b, c) ∈ ρn.

Claim 3. If Im f = Im g = 3 = {α, β, γ}, Im f |{a,b} = Im g|{a,b} = {α, β},
f(ā) = g(ā) and both f and g have property (P), then f ≡C g.

Proof of Claim 3. Let d1 = ā, d2 ∈ {a, b}n, d3 ∈ An \ {a, b}n

be such that f(d1) = α, f(d2) = β, f(d3) = γ and (d2,d3) ∈ ρn—such
n-tuples exist by the assumption that f has property (P). Define the
mapping h : Am → An by the rule h(a) = di if and only if g(a) = f(di).
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It is clear that g = f ◦ h. Let a,b ∈ Am. Suppose
(

h(a),h(b)
)

/∈ ρn. Since
{a, b}2 ⊆ ρ, {a} × 3 ⊆ ρ and (d2,d3) ∈ ρ, we see that h(a) = d3. By the
definition of h, g(a) = f(d3) = γ. Since by our assumptions Im g|{a,b} =
{α, β}, we get that a /∈ {a, b}m. Therefore (a,b) /∈ ρm. We conclude that
h ∈ Cn, and hence g ≤C f . A similar argument shows that f ≤C g. ♦

Claim 4. If Im f = Im g = 3 = {α, β, γ}, Im f |{a,b} = Im g|{a,b} = {α, β},
f(ā) = g(ā) and neither f nor g has property (P), then f ≡C g.

Proof of Claim 4. Let d1 = ā, d2 ∈ {a, b}n, d3 ∈ An \ {a, b}n be such
that f(d1) = α, f(d2) = β, f(d3) = γ. Define the mapping h : Am → An by
the rule h(a) = di if and only if g(a) = f(di). It is clear that g = f ◦h. Let
a,b ∈ Am. Suppose

(

h(a),h(b)
)

/∈ ρn. Since {a, b}2 ⊆ ρ and {a} × 3 ⊆ ρ,
we see that either h(a) = d3 or h(a) = d2 and h(b) = d3. In the former
case, g(a) = f(d3) = γ by the definition of h. By our assumption that
Im g|{a,b} = {α, β}, we get that a ∈ Am \ {a, b}m, and hence (a,b) /∈ ρm. In
the latter case, g(a) = f(d2) = β and g(b) = f(d3) = γ by the definition
of h. By our assumption that g does not have property (P), we get that
(a,b) /∈ ρm. We conclude that h ∈ Cn, and hence g ≤C f . A similar
argument shows that f ≤C g. ♦

Every operation f falls into one of the types prescribed in Claims 1–4:

• Im f = Im f |{a,b},

• Im f 6= Im f |{a,b} = {α},

• Im f = 3, Im f |{a,b} = {α, β} and f has property (P),

• Im f = 3, Im f |{a,b} = {α, β} and f does not have property (P),

and there are only finitely many possibilities for Im f , Im f |{a,b} and f(ā).
We conclude that there are only a finite number of ≡C-classes.

Lemma 4.3. Let A = 3 = {a, b, c}. For the relation

ρ =





a b a b a b a b
a b a b b a a b
a b b a c c c c





in line 26 of Table 2 Pol ρ /∈ F3.
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Proof. Let C = Pol ρ. For 1 ≤ i ≤ n, denote by eni the n-tuple whose i-th
component is a and the other components are b. For 1 ≤ i ≤ n− 1, denote
by dn

i the n-tuple

(b, . . . , b, c
i
, c
i+1

, b, . . . , b)

and denote by dn
n the n-tuple (c, b, b, . . . , b, c).

For n ≥ 3, define the operation fn : An → A as follows:

fn(a) =















































2, if a = en1 ,

1, if a = eni for some i ∈ {2, . . . , n},

1, if a = dn
i for some i ∈ {1, . . . , n − 1},

2, if a = dn
n,

0, otherwise.

We claim that fn 6≡C fm whenever n 6= m, and hence there are infinitely
many ≡C-classes. For, let n < m, and suppose on the contrary that there
exists a map h ∈ (C(n))m such that fn = fm ◦ h. Since every operation
in C preserves {a, b}, h maps {a, b}n into {a, b}m. Thus, there is a map
τ : {1, . . . , n} → {1, . . . ,m} such that τ(1) = 1, τ(i) 6= 1 for i 6= 1 and
h(eni ) = em

τ(i) for all i ∈ {1, . . . , n}.

We have that h(dn
n) ∈ {em1 ,dm

m}. Suppose that h(dn
n) = em1 . Then

(

b̄, enn,d
n
n

)

∈ ρn, but the m-tuples h(b̄), h(enn) = em
τ(n), h(dn

n) = em1 are all

in {a, b}m and h(b̄) 6= em
τ(n) since fm

(

h(b̄)
)

= fn(b̄) = 0, fm(em
τ(n)) = 1.

Hence
(

h(b̄),h(enn),h(dn
n)
)

/∈ ρm, which contradicts the assumption that
h ∈ Cm. Thus, h(dn

n) = dm
m.

For each i (1 ≤ i ≤ n − 1), we have that h(dn
i ) ∈ {em2 , . . . , emm,dm

1 , . . . ,
dm
m−1}. Suppose that there is an i ∈ {1, . . . , n − 1} such that h(dn

i ) =
emj for some j ∈ {2, . . . ,m}. Then

(

(b̄), eni ,d
n
i

)

∈ ρn, but the m-tuples

h(b̄), h(eni ) = em
τ(i), h(dn

i ) = emj are all in {a, b}m and h(b̄) 6= em
τ(i) since

fm
(

h(b̄)
)

= fn(b̄) = 0, fm(em
τ(i)) 6= 0. Hence

(

h(b̄),h(eni ),h(dn
i )
)

/∈ ρm,
which contradicts the assumption that h ∈ Cm. We conclude that there
exists a map ν : {1, . . . , n} → {1, . . . ,m} such that ν(n) = m, ν(i) 6= m for
i 6= n and h(dn

i ) = dm
ν(i) for all i ∈ {1, . . . , n}.
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It is easy to verify that for all p ≥ 3, (epi , e
p
j ,d

p
ℓ ) ∈ ρp if

and only if {i, j} ⊆ {ℓ, ℓ + 1} and ℓ < p or {i, j} ⊆ {1, p} and ℓ = p.
Since (en1 , e

n
1 ,d

n
1 ) ∈ ρn and h(en1 ) = em1 , we have that (em1 , em1 ,dm

ν(1)) =
(

h(en1 ),h(en1 ),h(dn
1 )
)

∈ ρm. By the previous observation, ν(1) ∈ {1,m},
but since we have that ν(1) 6= m, we conclude that ν(1) = 1. Similarly,
(enn, e

n
n,d

n
n) ∈ ρn and h(dn

n) = dm
m imply that (em

τ(n), e
m
τ(n),d

m
m) ∈ ρm. It fol-

lows from the previous observation that τ(n) ∈ {1,m}, but since τ(n) 6= 1,
we have that τ(n) = m. Similarly, for 1 ≤ i ≤ n − 1, (eni , e

n
i+1,d

n
i ) ∈ ρn

implies (em
τ(i), e

m
τ(i+1),d

m
ν(i)) ∈ ρm, and from the previous observation and

the fact that ν(i) 6= m when i 6= n it follows that {τ(i), τ(i + 1)} ⊆
{ν(i), ν(i) + 1}. Thus, τ(i + 1) ≤ τ(i) + 1, and hence τ(i) ≤ i for all
i ∈ {1, . . . , n}. Then τ(n) ≤ n < m = τ(n), and we have reached the
desired contradiction.

Lemma 4.4. Let A = 3 = {a, b, c}. For the relation

ρ =





a b b a a b b a a b
a b a b a b a b a b
a b a a b a b b c c





in line 27 of Table 2 , Pol ρ ∈ F3.

Proof. Let C = Pol ρ. Observe first that every operation in C preserves
the subset {a, b}. Note also that (a,b, c) ∈ ρn if and only if (b,a, c) ∈ ρn.
Also, if a /∈ {a, b}n or b /∈ {a, b}n, then (a,b, c) /∈ ρn. In the following, let
f and g be n-ary and m-ary, respectively.

Claim 1. If Im f = Im g = Im f |{a,b} = Im g|{a,b}, then f ≡C g.

Proof of Claim 1. Let r = |Im f |, and let {d1, . . . ,dr} ⊆ {a, b}n be a
transversal of ker f . Define the mapping h : Am → An by the rule h(a) = di

if and only if g(a) = f(di). It is clear that g = f ◦ h. Since {a, b}3 ⊆ ρ,
we have that (di,dj ,dℓ) ∈ ρn for all i, j, ℓ ∈ {1, . . . , r} and hence h ∈ Cn.
Thus, g ≤C f . A similar argument shows that f ≤C g. ♦

Claim 2. If Im f = Im g 6= Im f |{a,b} = Im g|{a,b} = {α}, then f ≡C g.
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Proof of Claim 2. Let r = |Im f |, and let {d1,d2, . . . ,dr} be a
transversal of ker f such that d1 = ā. Define the mapping h : Am →
An by the rule h(a) = di if and only if g(a) = f(di). It is clear that
g = f ◦ h. Let a,b, c ∈ Am, and let h(a) = di, h(b) = dj, h(c) = dℓ.
Suppose (di,dj ,dℓ) /∈ ρn. Since {a, b}3 ⊆ ρ, we have that one of di, dj ,
dℓ is not in {a, b}n. If dℓ /∈ {a, b}n, then di and dj cannot both be equal
to d1 = ā, because (d1,d1,dℓ) ∈ ρn. By assumption, f |{a,b} is constant α,
so {a, b}n is contained in a single kernel class of f , which by our choice is
represented by d1. Thus, it actually holds that di /∈ {a, b}n or dj /∈ {a, b}n.
By the definition of h, we have that g(a) = f(di) 6= α or g(b) = f(dj) 6= α,
and by our assumption that g|{a,b} is constant α we get that a /∈ {a, b}m or
b /∈ {a, b}m. Therefore (a,b, c) /∈ ρm, and we conclude that h ∈ Cn. Hence
g ≤C f . A similar argument shows that f ≤C g. ♦

We say that f : An → A has property (Q), if it satisfies the following
condition:

(Q) Im f = 3 = {α, β, γ}, Im f |{a,b} = {α, β} and there are n-tuples
a,b ∈ {a, b}n, c ∈ An such that f(a) = α, f(b) = β, f(c) = γ and
(a,b, c) ∈ ρn.

Claim 3. If Im f = Im g = 3 = {α, β, γ}, Im f |{a,b} = Im g|{a,b} = {α, β}
and both f and g have property (Q), then f ≡C g.

Proof of Claim 3. Let d1 ∈ {a, b}n, d2 ∈ {a, b}n, d3 ∈ An \ {a, b}n be
such that f(d1) = α, f(d2) = β, f(d3) = γ and (d1,d2,d3) ∈ ρn—such n-
tuples exist by the assumption that f has property (Q). Define the mapping
h : Am → An by the rule that h(a) = di if and only if g(a) = f(di). It is clear
that g = f ◦ h. Let a,b, c ∈ Am. Suppose

(

h(a),h(b),h(c)
)

/∈ ρn. Since
{a, b}3 ⊆ ρ, one of h(a), h(b), h(c) equals d3. It is not possible that h(c) =
d3 and {h(a),h(b)} ⊆ {d1,d2}, because on one hand (x,x,y) ∈ ρn for all
x ∈ {a, b}n, y ∈ An, and on the other hand, by our choice of representatives
of kernel classes, (d1,d2,d3) ∈ ρn and hence also (d2,d1,d3) ∈ ρn. Thus
we have in fact that h(a) = d3 or h(b) = d3. By the definition of h, g(a) =
f(d3) = γ or g(b) = f(d3) = γ. Since by our assumptions Im g|{a,b} =
{α, β}, we get that a /∈ {a, b}m or b /∈ {a, b}m, and hence (a,b, c) /∈ ρm.
Therefore h ∈ Cn, and we conclude that g ≤C f . A similar argument shows
that f ≤C g. ♦
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Claim 4. If Im f = Im g = 3 = {α, β, γ}, Im f |{a,b} = Im g|{a,b} = {α, β}
and neither f nor g has property (Q), then f ≡C g.

Proof of Claim 4. Let d1 ∈ {a, b}n, d2 ∈ {a, b}n and d3 ∈ An \ {a, b}n

be n-tuples such that f(d1) = α, f(d2) = β, f(d3) = γ. Define the map-
ping h : Am → An by the rule h(a) = di if and only if g(a) = f(di).
It is clear that g = f ◦h. Let a,b, c ∈ Am. Suppose

(

h(a),h(b),h(c)
)

/∈ ρn.
Since {a, b}3 ⊆ ρ, one of h(a), h(b), h(c) equals d3. If h(a) = d3, then we
get by the definition of h that g(a) = f(d3) = γ, and by the assumption
that Im g|{a,b} = {α, β}, we have that a /∈ {a, b}m; thus (a,b, c) /∈ ρm. If
h(b) = d3, then a similar argument shows that (a,b, c) /∈ ρm.

Assume then that none of h(a) and h(b) equals d3 but h(c) = d3.
We must have h(a) 6= h(b), for otherwise

(

h(a),h(b),h(c)
)

∈ ρn. Assume
that h(a) = d1 and h(b) = d2. By the definition of h we get that g(a) =
f(d1) = α, g(b) = f(d2) = β, g(c) = f(d3) = γ. By the assumption that
Im g|{a,b} = {α, β}, we have that c /∈ {a, b}m. If a /∈ {a, b}m or b /∈ {a, b}m,
then (a,b, c) /∈ ρm, so we can assume that a,b ∈ {a, b}m. But then the
assumption that g does not have property (Q) implies that (a,b, c) /∈ ρm.
In the only remaining case when h(a) = d2, h(b) = d1, h(c) = d3, we
can deduce in a similar way that (a,b, c) /∈ ρm, taking into account that
(a,b, c) ∈ ρm if and only if (b,a, c) ∈ ρm.

We conclude that h ∈ Cn, and hence g ≤C f . A similar argument shows
that f ≤C g. ♦

Every operation f falls into one of the types prescribed in Claims 1–4:

• Im f = Im f |{a,b},

• Im f 6= Im f |{a,b} = {α},

• Im f = 3, Im f |{a,b} = {α, β} and f has property (Q),

• Im f = 3, Im f |{a,b} = {α, β} and f does not have property (Q),

and there are only finitely many possibilities for Im f and Im f |{a,b}. We
conclude that there are only a finite number of ≡C-classes.

Lemma 4.5. Let A = 3 = {a, b, c}, and let φ : 3 → {0, 1} be the map
a 7→ 0, b 7→ 0, c 7→ 1. For the relation ρ = φ−1 ◦π01

2 ◦φ in line 32 of Table 2,
Pol ρ ∈ F3.
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Proof. Let C = Pol ρ. We may think of the relation ρ as a transposition of

the two blocks of the equivalence relation ǫ
ab|c
3 . For notational simplicity, let

σ = ǫ
ab|c
3 . (More precisely, this relation is the full inverse image, under the

natural map A → A/σ, of the transposition of the two elements of A/σ.)
If D is a block of σ, let D′ denote its complement (i.e., its image under the
transposition of the two blocks).

For each n, σn partitions An into blocks of the form B = B1×B2×· · ·×
Bn where each Bi is {a, b} or {c}. Let B′ denote the block B′

1×B′
2×· · ·×B′

n

of σn.

Claim. If f , g are operations on A, say f is m-ary and g is n-ary, such that
for every block B of σn on An there is a block C of σm on Am such that

Im g|B ⊆ Im f |C and Im g|B′ ⊆ Im f |C′ ,

then there exists h ∈ Cm such that g = f ◦ h.

Proof of Claim. An is partitioned into disjoint sets of the form B ∪B′

with B as above. For each such set choose C according to the assumption.
Then there exist hB : B → C and h′B : B′ → C ′ such that f |C ◦ hB = g|B
and f |′C ◦h′B = g|′B . Let h be the union of all hB ∪h′B. It is easy to see that
h preserves ρ and f ◦ h = g. ♦

Corollary. If f , g are operations on A, say f is m-ary and g is n-ary, such
that

{(Im g|B , Im g|B′) : B is a block of σn on An}

equals
{(Im f |C , Im f |C′) : C is a block of σm on Am},

then f and g are C-equivalent.

Since both sets above are subsets of P(A) ×P(A), which is finite, it follows
that there are only a finite number of ≡C-classes.

Lemma 4.6. Let A = 3 = {a, b, c}. For the relation

ρ =







0 1 2 a a b b c c a b

0 1 2 a a b b c c b a

0 1 2 b c a c a b c c







in line 34 of Table 2, Pol ρ /∈ F3.
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Proof. Let C = Pol ρ. For n ≥ 3, define the operation fn : An+1 → A as
follows:

fn(a) =







































































0, if a ∈{a}×{c}×{a, b}n−1,

1, if a ∈{b}×{c}×{a, b}n−1,

1, if a ∈{a, b}i×{a}×{c}×{a, b}n−i−1 for some i ∈ {1, . . . , n−2},

2, if a ∈{a, b}i×{b}×{c}×{a, b}n−i−1 for some i ∈ {1, . . . , n−2},

2, if a ∈{a, b}n−1×{a}×{c},

0, if a ∈{a, b}n−1×{b}×{c},

0, otherwise.

We claim that fn 6≡C fm whenever n 6= m and hence there are infinitely
many ≡C-classes. For, let n < m and assume on the contrary that there
exists a map h ∈ Cm such that fn = fm ◦ h.

Note that every operation in C preserves the equivalence relation ǫ
ab|c
3 .

For notational simplicity, let σ = ǫ
ab|c
3 . For each n, σn partitions An into

blocks of the form B1 ×B2 × · · · ×Bn where each Bi is either {a, b} or {c}.

Thus, h maps each σn-block C of An into a σm-block C ′ of Am. Observe
that for every p ≥ 3,

• the only σp-block C of Ap such that Im fp|C = {0, 1} is the block
{a, b} × {c} × {a, b}n−1,

• the only σp-block C of Ap such that Im fp|C = {0, 2} is the block
{a, b}n−1 × {c} × {a, b},

• the only σp-blocks C of Ap such that Im fp|C = {1, 2} are the blocks
{a, b}i+1 × {c} × {a, b}n−i−1 for some i ∈ {1, . . . , n − 2},

• for all other σp-blocks C of Ap, Im fp|C = {0}.

This implies that for 1 ≤ i ≤ n, α1, . . . , αn+1, β ∈ {a, b},
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h(α1, . . . , αi−1, β, c, αi+2, . . . , αn+1) ∈ {a, b}τ(i)−1×{β}×{c}×{a, b}n−τ(i)

for some τ : {1, . . . , n} → {1, . . . ,m} such that τ(1) = 1 and τ(n) = m.

For 2 ≤ i ≤ n− 1, the (n + 1)-tuples

(a, . . . , a, a
i
, c
i+1

, a, . . . , a),

(a, . . . , a, b
i
, c
i+1

, a, . . . , a),

(a, . . . , a, c
i
, a
i+1

, a, . . . , a),

are coordinatewise ρ-related. Thus, their images by h, namely

(α1, . . . , ατ(i+1)−1, a, c, ατ(i+1)+2, . . . , αn+1),

(β1, . . . , βτ(i+1)−1, b, c, βτ(i+1)+2, . . . , βn+1),

(γ1, . . . , γτ(i)−1, a, c, γτ(i)+2, . . . , γn+1),

for some αi’s, βi’s, γi’s in {a, b}, are coordinatewise ρ-related as well. But
this is only possible if τ(i + 1) = τ(i) + 1 for all i ∈ {1, . . . , n − 1}. Since
τ(1) = 1, it follows that τ(n) = n < m = τ(m), and we have reached the
desired contradiction.

Lemma 4.7. Let A = 3 = {a, b, c}. For the relation

ρ =







a a a a b b b b a b c c c

a a b b a a b b a b c c c

a b a b a b a b c c a b c







in line 35 of Table 2, Pol ρ /∈ F3.

Proof. Let C = Pol ρ. For n ≥ 3, 1 ≤ i ≤ n, α, β ∈ {a, b} denote by dn
i,αβ

the (n + 1)-tuple

(c, . . . , c, α
i
, β
i+1

, c, . . . , c).
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For n ≥ 3, define the operation fn : An+1 → A as follows:

fn(a) =







































































0, if a = dn
1,aβ for some β ∈ {a, b},

1, if a = dn
1,bβ for some β ∈ {a, b},

1, if a = dn
i,aβ for some i ∈ {2, . . . , n − 1}, β ∈ {a, b},

2, if a = dn
i,b β for some i ∈ {2, . . . , n− 1}, β ∈ {a, b},

2, if a = dn
n,aβ for some β ∈ {a, b},

0, if a = dn
n,bβ for some β ∈ {a, b},

0, otherwise.

We claim that fn 6≡C fm whenever n 6= m and hence there are infinitely
many ≡C-classes. For, let n < m and assume on the contrary that there
exists a map h ∈ Cm such that fn = fm ◦ h.

Note that every operation in C preserves the equivalence relation ǫ
ab|c
3 .

For notational simplicity, let σ = ǫ
ab|c
3 . For each n, σn partitions An into

blocks of the form B1 × B2 × · · · × Bn where each Bi is either {a, b} or
{c}. Thus, h maps each σn-block C of An into some σm-block C ′ of Am.
Observe that for every p ≥ 3,

• the only σp-block C of Ap such that Im fp|C = {0, 1} is the block of
d
p
1,aa,

• the only σp-block C of Ap such that Im fp|C = {0, 2} is the block of
d
p
p,aa,

• the only σp-blocks C of Ap such that Im fp|C = {1, 2} are the blocks
of dp

i,aa for 1 < i < p, and

• for all other σp-blocks C of Ap, Im fp|C = {0}.

This implies that there exists a map τ : {1, . . . , n} → {1, . . . ,m} such that
τ(1) = 1, τ(n) = m and for every i (1 ≤ i ≤ n) and α, β ∈ {a, b}, it holds
that h(dn

i,αβ) ∈ {dm
τ(i),αa,d

m
τ(i),αb}.

It is easy to verify that for all p ≥ 3, (di,aa,di,ba,dj,aa) ∈ ρp if and only if
i = j or i = j + 1. Since for every i (1 ≤ i ≤ n−1), (dn

i+1,aa,d
n
i+1,ba,d

n
i,aa) ∈

ρn+1, it follows that
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(dm
τ(i+1),aβ1

,dm
τ(i+1),bβ2

,dm
τ(i),aβ3

) =
(

h(dn
i+1,aa),h(dn

i+1,ba),h(dn
i,aa)

)

∈ ρm

for some β1, β2, β3 ∈ {a, b}. By the previous observation, τ(i+1) ∈ {τ(i), τ(i)
+ 1}. Since τ(1) = 1, this implies that τ(n) ≤ n < m = τ(n), and we have
reached the desired contradiction.

Lemma 4.8. Let A = 3 = {a, b, c}. For the relation

ρ =







a b a c a b a a b b a b c a a c c a c

b a c a a a b a b a b b a c a c a c c

c c b b a a a b a b b b a a c a c c c







in line 40 of Table 2, Pol ρ /∈ F3.

Proof. Let C = Pol ρ. For n ≥ 3, 1 ≤ i ≤ n− 1, denote by ani the n-tuple
satisfying

ani (i) = b, ani (i− 1) = ani (i + 1) = a, ani (j) = c (j /∈ {i− 1, i, i + 1}),

where addition is done modulo n, i.e., n + 1 ≡ 1, 0 ≡ n.
For n ≥ 3, define the operation fn : An → A as follows:

fn(a) =











1, if a = ani for some i ∈ {1, . . . , n},

2, if a = c̄,

0, otherwise.

We claim that if n and m are distinct odd positive integers, then fn 6≡C fm,
and hence there are infinitely many ≡C-classes. For, let n < m and assume
on the contrary that there exists a map h = (h1, . . . , hm) ∈ Cm such that
fn = fm ◦ h. Then h(c̄) = c̄ and there exists a map τ : {1, . . . , n} →
{1, . . . ,m} such that h(ani ) = am

τ(i).

It is easy to verify that for any p, (api ,a
p
j , c̄) ∈ ρp if and only if i = j+1 or

i = j − 1 (where addition is done modulo p). Since for every i ∈ {1, . . . , n},
(api ,a

p
i+1, c̄) ∈ ρn (addition modulo n), we have that (am

τ(i),a
m
τ(i+1), c̄) =

(

h(ani ),h(ani+1),h(c̄)
)

∈ ρm (addition modulo n and m, respectively). By
the previous observation, τ(i + 1) ∈ {τ(i) − 1, τ(i) + 1} (addition modulo
n and m, respectively). It is then easy to verify that whenever n and m
are odd integers and n < m, it is not possible to have such a map τ (for,
τ cannot be surjective, and thus the preimages of each j ∈ {1, . . . ,m} have
the same parity). We have reached the desired contradiction.
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