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Abstract

The paper considers an algebraic notion of automorphic equivalence
of models and of multi-models. It is applied to the solution of the
problem of informational equivalence of knowledge bases. We show
that in the case of linear subjects of knowledge the problem can be
reduced to the well-known in computational group theory problems
about isomorphism and conjugacy of subgroups of a general linear
group.
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1. Introduction, motivation

The key problem considered in this paper came from the areas of knowledge
bases and knowledge mining. At the moment we don’t need to formulate
what the term ”knowledge base” precisely means and thus can stay on de-
scriptive positions. It is clear that knowledge bases obtain, keep and process
information according to some, may be very sophisticated, rules and algo-
rithms.

Moreover, a knowledge base is not a static collection of information but
a dynamic resource that may itself have the capacity to learn, as part of
an artificial intelligence component. These kinds of knowledge bases can
suggest solutions to problems sometimes based on feedback provided by
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the user, and are capable of learning from experience (like an expert sys-
tem). Knowledge representation, automated reasoning, argumentation and
other areas of artificial intelligence are tightly connected with knowledge
bases.

Suppose now that we have two knowledge bases. The major problem

under consideration is to find out whether these knowledge bases are equiv-

alent.

There are many ways to define equivalence relations on the set of all
knowledge bases because one can consider such complicated systems with
respect to their different features.

We study knowledge bases equivalence from the point of view of their
informational abilities. In other words, our goal is to investigate the notion
of informational equivalence of knowledge bases. Following the common
sense intuition, two knowledge bases are informationally equivalent if all the
information that can be retrieved from one of them could be also obtained
from the other one and vice versa. It is clear that this goal cannot be
achieved basing on intuition only. In order to describe precisely the objects
we are dealing with one need to put the objects in question on some formal
basis. This is done in [9]–[11] and in Section 2. The notion of informational
equivalence is also worked out in detail there.

It should be noticed that a priori it is not clear whether the problem
of informational equivalence verification is algorithmically decidable. If we
concentrate on finite objects then the reasonable answer is yes, we can build
the step-by-step procedure that solves the problem. But when we consider
infinite objects it may be problematic. By many reasons, knowledge bases
provide examples of infinite objects. Finiteness of the subject of knowledge
is a quite natural restriction. Despite this restriction the corresponding
knowledge bases can be actually infinite. Using an analogy with semigroup
theory one can notice that there exist very small finite semigroups such that
the corresponding knowledge turn to be infinite and cannot be reduced to
finite (see [15] and the bibliography therein).

A way to show that the problem of informational equivalence of knowl-
edge bases is algorithmically solvable is to build some system of finite ob-
jects (invariants), such that the equivalence of those objects would imply
the equivalence of the corresponding knowledge bases. This idea gave rise
to the notion of automorphic equivalence of multi-models.
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It was proved that two knowledge bases with finite multi-models are infor-

mationally equivalent if and only if the corresponding multi-models are auto-

morphically equivalent [9]. The proof of the theorem is essentially grounded
on the Galois theory of relations developed by M. Krasner [5].

This paper deals with the properties of automorphically equivalent multi-
models. To make it self-contained we provide the reader with all necessary
definitions. We also recall some properties of automorphically equivalent
multi-models using the examples of multi-models built on graphs. The nec-
essary algebraic background can be found in [7, 8, 11].

The main emphasis of the paper is placed on the situation when subjects
of knowledge possess the structure of finite dimensional linear spaces over a
finite field. The linearity condition allows us to reduce a general algorithm of
automorphic equivalence verification to conjugation condition for two matrix
groups. In the paper we prove the corresponding theorem and outline the
ways how to use the existing algorithms from computational algebra in order
to check the informational equivalence of linear knowledge bases.

2. Definitions

Definition 2.1. We define a model as a triple (D,Φ, f), where D is a data
domain, that is, an algebra in a variety of algebras Θ, Φ is a set of symbols
of relations, f is an interpretation of these symbols as relations in D, i. e.,
if ϕ ∈ Φ is an n-ary relation in Φ, then f(ϕ) is a subset of the Cartesian
product Dn. Moreover, D may be a multi-sorted set, i.e. , D = {Di, i ∈ Γ},
where Γ is a set of sorts [7, 14].

Definition 2.2. A multi-model is a triple (D,Φ, F ), where D is a data
domain (an algebra), Φ is a set of symbols of relations, F is a set of inter-
pretations of Φ on D [9].

A model (D,Φ, f) is a particular case of a multi-model (D,Φ, F ). The
definition of multi-model takes into account the fact that instances f can
change, for example under some circumstances or according to some rules.
All these f constitute the set F . In general multi-models may be infinite
but we consider only the finite ones.

Now we are going to relate knowledge bases and multi-models. We
assume that every knowledge under consideration is represented by three
components:
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1) The description of knowledge. It is a syntactical part of knowledge,
written out in the language of the given (usually First Order) logic.

2) The subject of knowledge which is an object in the given applied field,
i.e., an object for which we determine knowledge.

3) The content of knowledge (its semantics).

Subject of knowledge is represented by a model (D,Φ, f) where D is an
algebra (a set with a system of necessary algebraic operations), Φ is a set
of symbols of relations naturally reflecting the problem in question, and f

is a possible interpretation of each symbol f from Φ in the given algebra D.
Interpretation f depends on the state of the subject in the given moment.
Since the states may change, the multi-model (D,Φ, F ) where F is a set
of various interpretations f is considered. A knowledge base over the given

multi-model (D,Φ, F ) is denoted by KB(D,Φ, F ).

Let now T be a set of formulas describing the knowledge from some
field or on some topic. Denote by T f = A the content of knowledge in the
state f .

Consider a category of logical knowledge description which we denote
by LΦΘ. Objects of this category have the form (X,T ),where X is a finite
set of variables and T is a set of First Order formulas written in the variables
from X. Morphisms in LΦΘ are defined by the means of algebraic logic (see
[11]).

Consider also the categories KΦΘ(f) of knowledge content, where f runs
the set of interpretations Φ. Their objects have the form (X,A), where A is
a subset in an affine space over the given model and morphisms are naturally
defined.

A knowledge base KB = KB(D,Φ, F ) consists of the category of knowl-

edge description LΦΘ, and the categories of knowledge content KΦΘ(f).
They are related by the contra-variant functors

Ctf : LΦΘ → KΦΘ(f).

These functors Ctf transform knowledge description to content of knowl-
edge.

We view the description T as a query to a knowledge base, and T f as a
reply to this query.
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Let KB(D1,Φ1, F1) and KB(D2,Φ2, F2) be two knowledge bases. In order
to define the informational equivalence of knowledge bases, consider two
diagrams:

LΦ1Θ
-

β
LΦ2Θ

?

Ctf
?

Ctfα

KΦ1Θ(f) -
γ

KΦ2Θ(fα)

LΦ1Θ
�

β′

LΦ2Θ

?

Ctf
?

Ctfα

KΦ1Θ(f) �
γ−1

KΦ2Θ(fα)

where α : F1 → F2 is a bijection, β, β ′ are functors of the categories LΦΘ, γ

is an isomorphism of the categories KΦΘ(f).

Definition 2.3. Knowledge bases KB1 = KB(D1,Φ1, F1) and KB2 =
KB(D2,Φ2, F2) are called informationally equivalent if it is possible to
choose α,β, β ′ and γ such that they match the commutative diagrams above.

For the given model (D,Φ, f) we have a group Aut(f) consisting of all
bijections s : D → D compatible with the interpretation of symbols of
relations. This means that for every n-ary relation ϕ ∈ Φ and every element
(a1, a2, ..., an) ∈ f(ϕ) the element (sa1, sa2, ..., san) belongs to f(ϕ) as well.

Recall that two models (D1,Φ1, f1) and (D2,Φ2, f2) are called isomor-
phic if the sets Φ1 and Φ2 coincide and there is a bijection σ : D1 → D2,
which is an isomorphism of algebras, and for any n-ary relation ϕ ∈ Φ we
have (a1, a2, ..., an) ∈ f1(ϕ) if and only if (σa1, σa2, ..., σan) ∈ f2(ϕ).

Definition 2.4. Let two models (D1,Φ1, f1) and (D2,Φ2, f2) be given. As-
sume that D1 and D2 are the algebras with the same operations, defined in
the variety of algebras Θ. The models are called automorphically equivalent,
if there is an isomorphism of algebras µ : D1 → D2 such that the groups of
automorphisms are conjugated by µ, i.e.,

Aut(f2) = µAut(f1)µ
−1.

Definition 2.5. Two multi-models (D1,Φ1, F1) and (D2,Φ2, F2) are called
automorphically equivalent, if there is a bijection α : F1 → F2, such that
the models (D1,Φ1, f) and (D2,Φ2, f

α) are automorphically equivalent for
every f ∈ F1.
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This means that it is possible to correlate the instances of these multi-models
in such a way that the corresponding models turn to be automorphically
equivalent.

If the models are isomorphic, then they are automorphically equivalent
as well. But the converse statement is far from being true (see [4] where
this question was studied for graphs). In particular, if we have a graph
which is a tree, then an automorphically equivalent graph need not be a tree
while an isomorphic graph is necessarily a tree since isomorphism preserves
all the properties. There is also another example of two automorphically
equivalent graphs where the first one is connected while the second is not.
In the case of isomorphic graphs it is impossible since isomorphism preserves
the connectedness property.

Example 2.6 (see [4]). Consider two graphs G1 and G2 with the same set
of vertices V = {1, 2, 3, 4}.

The graph G1 is a rooted tree with the root 1 and the sons 2,3,4, while
G2 is not connected and consists of two components, where the first one is
a triangle with the vertices 1,2,3 and the second component is an isolated
vertex 4.

The set of edges of G1 is E1 = {e1
1

= (1, 2), e2
1

= (2, 1), e3
1

= (1, 3), e4
1

=
(3, 1), e5

1
= (1, 4), e6

1
= (4, 1)}. The automorphisms group consists of all

permutations on the set {2, 3, 4}.

For graph G2 we have the set of edges E2 = {e1
2 = (1, 2), e2

2 = (2, 1),
e3
2

= (1, 3), e4
2

= (3, 1), e5
2

= (2, 3), e6
2

= (3, 2)}. The automorphisms group
consists of all permutations on the set {1, 2, 3}.

It is easy to see that

1. There exists a bijection α : E1 → E2

α =

(

e1
1 e2

1 e3
1 e4

1 e5
1e

6
1

e1
2 e2

2 e3
2 e4

2 e5
2 e6

2

)

2. There exists a bijection µ, written explicitly in [4].
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Groups of automorphisms are conjugated by the bijection µ. Therefore,
graphs are automorphically equivalent. This example illustrates that auto-
morphic equivalence of two graphs is not as strict as isomorphism and does
not preserve the basic characteristics of the graphs, like a tree structure or
connectedness.

Two main problems constitute the core of the whole theory:

Problem 2.7. To what extent the automorphic equivalence relation is wider
than isomorphism.

Problem 2.8. How automorphic equivalence of two finite multi-models can
be verified.

The first problem is algebraic, while the second one has applications in the
knowledge bases theory in the problem of verification of the informational
equivalence of knowledge bases.

Evidently, the wideness of the relation of automorphic equivalence is its
advantage. We will see that for informationally equivalent knowledge bases
the subjects of knowledge are not necessarily isomorphic. They may be very
different, as it was mentioned in the graph example.

3. Linear knowledge bases

Let the knowledge bases KB(D1,Φ1, F1) and KB(D2,Φ2, F2) correspond
to multi-models (D1,Φ1, F1) and (D2,Φ2, F2), respectively. For the sake of
simplicity consider the case of models F1 = f1 and F2 = f2. From now on
assume that D1 and D2 are finite dimensional vector spaces over a field P .
Let dim D1 = dim D2 = n. We will see that to each knowledge base of such
type correspond a subgroup in the group GLn(P ).

Theorem 3.1. The knowledge bases KB(D1,Φ1, f1) and KB(D2,Φ2, f2),
where D1 and D2 are n-dimensional vector spaces over a finite field P , are

informationally equivalent if and only if the corresponding subgroups are

conjugated in GLn(P ).

Proof. Consider the multi-models (D1,Φ1, f1) and (D2,Φ2, f2) correspond-
ing to KB(D1,Φ1, f1) and KB(D2,Φ2, f2), respectively.
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By Theorem 11 (see [9]) the knowledge bases KB(D1,Φ1, f1) and
KB(D2,Φ2, f2) are informationally equivalent if and only if the multi-models
(D1,Φ1, f1) and (D2,Φ2, f2) are automorphically equivalent. This means
that they are equivalent if there exists an isomorphism of algebras µ : D1 →
D2 such that

Aut(f2) = µAut(f1)µ
−1.

Since dim D1 = dim D2 = n, the spaces D1 and D2 are isomorphic to the
space P n of rows of the length n. This means that µ is an automorphism of
the linear space P n and thus an element of the group GLn(P ).

Let ϕ ∈ Φ be an m-ary relation on D. Then f(ϕ) ⊆ Dm. So f(ϕ) is
the set of rows of the form ā = (a1, . . . , am), where ai ∈ P n, i = 1, . . . ,m.
By definition, an automorphism σ ∈ Aut(D) belongs to Aut(f) if for every
ϕ ∈ Φ and (a1, . . . , am) ∈ f(ϕ) we have (σ(a1), . . . , σ(am)) ∈ f(ϕ), i.e.,
σ(ā) ∈ f(ϕ). This means that Aut(f1) is a subgroup of Aut(D1) and Aut(f2)
is a subgroup of Aut(D2). Taking into account that Aut(D1) w Aut(D2) w

GLn(P ) we conclude that Aut(f1) and Aut(f2) can be embedded in GLn(P ).
Denote the corresponding subgroups by G and H. We constructed the
subgroups in GLn(P ) corresponding to our knowledge bases. It is easy to
see that

Theorem 3.2 ([3]). Models (D1,Φ1, f1) and (D2,Φ2, f2) are automorphi-

cally equivalent if and only if the subgroups G and H are conjugated.

Hence, the problem of informational equivalence of the knowledge bases
whose domains are finite dimensional vector spaces is reduced to conjugacy
problem for given subgroups in the group GLn(P ).

Suppose now that we have finite domains for linear knowledge bases
KB(D1,Φ1, f1) and KB(D2,Φ2, f2). This means that the ground field P

is a finite field P = Fq, q = pn, p is prime. Then, according to Theorem
3.1 the question about informational equivalence of these knowledge bases is
algorithmically solvable. Hence, the next destination is to find out in which
cases we can rely on efficient (in some sense) algorithms.

So, in the case of linear knowledge bases with finite domains the problem
of informational equivalence of knowledge bases is reduced to the following
question.
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Let GLn(P ) be a general linear group of rank n defined over a finite field
P = Fq. Let G and H be two subgroups in GLn(P ). How to check that G and

H are isomorphic? If G and H are isomorphic, how to check that they are

conjugated in GLn(P )? These problems are quite popular in computational
group theory.

The answers heavily depend on the structure of the subgroups in ques-
tion.

Example 3.3. Let G and H lie in GLn(P ).

1. The subgroups G and H are maximal subgroups consisting of unipotent
elements. Then according to Lie-Kolchin theorem [2] they are conju-
gated. In order to check if all elements are unipotent it is enough to
compute the eigenvalues of the elements.

2. The subgroups G and H are cyclic. Then they are conjugated if and
only if their generators have the same Jordan structure.

3. Subgroups G and H are abelian. The isomorphism problem is reduced
to computing abelian invariants (see [13]).

4. If the groups are p-groups, there is an algorithm by E. O’Brien checking
isomorphism problem (see [6]).

5. There is a general approach described in [1].

6. For conjugation problem there is a practical algorithm described in [12].

Remark 3.4. Most of the algorithms mentioned above are implemented in
MAGMA and GAP computational systems.

Remark 3.5. All these algorithms are far from being polynomial. However
in many cases they work pretty fast.
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