SEMI-OPEN SETS IN BICLOSURE SPACES

JEERANUNT KHAMPAKDEE AND CHAWALIT BOONPOK

Department of Mathematics, Brno University of Technology Technická 2, 616 69 Brno, Czech Republic

e-mail: jeeranunt@hotmail.com

Abstract

The aim of this paper is to introduce and study semi-open sets in biclosure spaces. We define semi-continuous maps and semi-irresolute maps and investigate their behavior. Moreover, we introduce pre-semiopen maps in biclosure spaces and study some of their properties.

Keywords: closure operator, biclosure space, semi-open set, semicontinuous map, semi-irresolute map, pre semi-open map.

2000 Mathematics Subject Classification: 54A05.

1. INTRODUCTION

In 1963, bitopological spaces were introduced by J.C. Kelly [10] as triples (X, τ_1, τ_2) where X is a set and τ_1 and τ_2 are topologies defined on X. After that, a larger number of papers have been written to generalize the topological concept to a bitopological setting, see for instance, [1, 7] and [8]. Closure spaces were introduced by E. Čech in [3] and then studied by many mathematicians, see e.g. [4, 5, 6] and [12]. The concept of biclosure spaces was introduced and studied in [2]. In 1966, N. Levine [11] introduced semi-open sets and semi-continuous maps in a topological space. If (X, τ) is a topological space and $A \subseteq X$, then A is semi-open if there exists $G \in \tau$ such that $G \subseteq A \subseteq \overline{G}$ where \overline{G} denotes the closure of G in (X, τ) . The concepts of semi-open sets and semi-continuous maps in closure spaces were introduced in [9]. In this paper, we introduce semi-open sets in biclosure spaces and investigate some of their fundamental properties. Then we use semi-open sets to define semi-open maps, semi-continuous maps, semi-irresolute maps and pre-semi-open maps. We obtain certain properties of semi-openness, semi-continuity, semi-irresoluteness and pre-semi-openness in biclosure spaces.

2. Preliminaries

In this section, we recall some basic definitions concerning closure spaces and biclosure spaces.

A map $u: P(X) \to P(X)$ defined on the power set P(X) of a set X is called a *closure operator* on X and the pair (X, u) is called a *closure space* if the following axioms are satisfied:

- (A1) $u\emptyset = \emptyset$,
- (A2) $A \subseteq uA$ for every $A \subseteq X$,
- (A3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

A closure operator u on a set X is called *idempotent* if $A \subseteq X \Rightarrow uuA = uA$. A subset $A \subseteq X$ is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement in X is closed. The empty set and the whole space are both open and closed.

A closure space (Y, v) is said to be a *subspace* of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$.

A subset A of a closure space (X, u) is called *semi-open* if there exists an open set G in (X, u) such that $G \subseteq A \subseteq uG$. A subset $A \subseteq X$ is called *semi-closed* if its complement is semi-open.

If (X, u) and (Y, v) are closure spaces, then a map $f : (X, u) \to (Y, v)$ is called:

- (i) open (respectively, closed) if the image of each open (respectively, closed) set in (X, u) is open (respectively, closed) in (Y, v).
- (ii) continuous if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$. One can see that, if f is continuous, then the inverse image under f of each open set in (Y, v) is open in (X, u).

A biclosure space is a triple (X, u_1, u_2) where X is a set and u_1, u_2 are two closure operators on X. A subset A of a biclosure space (X, u_1, u_2) is called closed if $u_1u_2A = A$. The complement of closed set is called open.

Let (X, u_1, u_2) be a biclosure space. A biclosure space (Y, v_1, v_2) is called a *subspace* of (X, u_1, u_2) if $Y \subseteq X$ and $v_i A = u_i A \cap Y$ for all $i \in \{1, 2\}$ and every subset A of Y.

Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $i \in \{1, 2\}$. Then a map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is called:

- (i) *i-open* (respectively, *i-closed*) if the map $f : (X, u_i) \to (Y, v_i)$ is open (respectively, closed).
- (ii) open (respectively, closed) if f is i-open (respectively, i-closed) for all $i \in \{1, 2\}$.
- (iii) biopen (respectively, biclosed) if the map $f: (X, u_1) \to (Y, v_2)$ is open (respectively, closed).
- (iv) *i-continuous* if the map $f : (X, u_i) \to (Y, v_i)$ is continuous for all $i \in \{1, 2\}$.
- (v) continuous if f is *i*-continuous for all $i \in \{1, 2\}$.
- (vi) *bi-continuous* if the map $f: (X, u_1) \to (Y, v_2)$ is continuous.

Remark 2.1. Let A be a subset of a biclosure space (X, u_1, u_2) .

- (i) A is open in (X, u_1, u_2) if and only if A is open in both (X, u_1) and (X, u_2)
- (ii) If A is an open set in (X, u_1, u_2) , then $u_1 u_2 (X A) = u_2 u_1 (X A)$.

The converse of the statement (ii) in Remark 2.1 need not be true as can be seen from the following example.

Example 2.2. Let $X = \{1, 2, 3\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = \{1\}$, $u_1\{2\} = \{2\}$, $u_1\{3\} = \{3\}$, $u_1\{1, 3\} = \{1, 3\}$ and $u_1\{1, 2\} = u_1\{2, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, $u_2\{1\} = \{1, 3\}$, $u_2\{2\} = \{2\}$, $u_2\{3\} = \{3\}$ and $u_2\{1, 2\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$. We can see that $u_1u_2(X - \{1\}) = u_2u_1(X - \{1\}) = X$ but $\{1\}$ is not open in (X, u_1, u_2) .

Proposition 2.3. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of open sets in a biclosure space (X, u_1, u_2) . Then $\bigcup_{\alpha \in J} A_{\alpha}$ is an open set.

Proof. Let A_{α} be open in (X, u_1, u_2) for each $\alpha \in J$, then $X - A_{\alpha}$ is closed for all $\alpha \in J$. Since $\cap_{\alpha \in J}(X - A_{\alpha}) \subseteq X - A_{\alpha}$ for all $\alpha \in J$, $u_1u_2 \cap_{\alpha \in J}(X - A_{\alpha}) \subseteq u_1u_2(X - A_{\alpha})$ for each $\alpha \in J$. But $X - A_{\alpha} = u_1u_2(X - A_{\alpha})$ for all $\alpha \in J$, hence $u_1u_2 \cap_{\alpha \in J} (X - A_{\alpha}) \subseteq X - A_{\alpha}$ for each $\alpha \in J$. Consequently, $u_1u_2 \cap_{\alpha \in J} (X - A_{\alpha}) \subseteq \cap_{\alpha \in J} (X - A_{\alpha}) \subseteq u_1u_2 \cap_{\alpha \in J} (X - A_{\alpha})$, i.e. $u_1u_2 \cap_{\alpha \in J} (X - A_{\alpha}) = \cap_{\alpha \in J} (X - A_{\alpha})$. Thus, $\cap_{\alpha \in J} (X - A_{\alpha}) = X - \bigcup_{\alpha \in J} A_{\alpha}$ is closed in (X, u_1, u_2) . Therefore, $\bigcup_{\alpha \in J} A_{\alpha}$ is open.

The intersection of two open sets in a biclosure space (X, u_1, u_2) need not be an open set as can be seen from Example 2.2 where $\{1, 2\}$ and $\{1, 3\}$ are open in (X, u_1, u_2) but $\{1, 2\} \cap \{1, 3\}$ is not open.

Proposition 2.4. If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of subsets in a biclosure space (X, u_1, u_2) , then $u_1u_2 \cap_{\alpha \in J} A_{\alpha} \subseteq \cap_{\alpha \in J} u_1u_2A_{\alpha}$.

By Example 2.2, $u_1u_2\{1,2\} \cap u_1u_2\{1,3\}$ is not contained in $u_1u_2(\{1,2\} \cap \{1,3\})$, i.e. the inclusion of Proposition 2.4 cannot be replaced by equality in general.

Proposition 2.5. If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of closed subsets in a biclosure space (X, u_1, u_2) , then $u_1 u_2 \cap_{\alpha \in J} A_{\alpha} = \cap_{\alpha \in J} u_1 u_2 A_{\alpha}$.

Proof. Let A_{α} be closed in (X, u_1, u_2) for all $\alpha \in J$. Then $X - A_{\alpha}$ is open and $A_{\alpha} = u_1 u_2 A_{\alpha}$ for each $\alpha \in J$. By Proposition 2.3, $\bigcup_{\alpha \in J} (X - A_{\alpha})$ is open. But $\bigcup_{\alpha \in J} (X - A_{\alpha}) = X - \bigcap_{\alpha \in J} A_{\alpha}$, hence $\bigcap_{\alpha \in J} A_{\alpha}$ is closed in (X, u_1, u_2) . Therefore, $u_1 u_2 \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in J} A_{\alpha} = \bigcap_{\alpha \in J} u_1 u_2 A_{\alpha}$.

The converse of Proposition 2.5 is not true in general as shown in the following example.

Example 2.6. Let $X = \{1, 2, 3\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{2\} = u_1\{3\} = u_1\{2, 3\} = \{2, 3\}$ and $u_1\{1\} = u_1\{1, 2\} = u_1\{1, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$, $u_2\{1\} = u_2\{2\} = u_2\{1, 2\} = \{1, 2\}$ and $u_2\{3\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$. It is easy to see that $u_1u_2(\{1, 2\} \cap \{1, 3\}) = u_1u_2\{1, 2\} \cap u_1u_2\{1, 3\}$ but neither $\{1, 2\}$ nor $\{1, 3\}$ is closed in (X, u_1, u_2) .

Proposition 2.7. Let (X, u_1, u_2) be a biclosure space. If G is a subset of X, then $u_1u_2G - G$ has no nonempty open subset of (X, u_1, u_2) .

Proof. Let G be a subset of X and H be a nonempty open subset of (X, u_1, u_2) such that $H \subseteq u_1 u_2 G - G$. Since H is nonempty, there is $x \in H \subseteq u_1 u_2 G - G$, i.e. $x \notin X - H$. Thus, $u_1 u_2 G$ is not contained in X - H. Since $H \subseteq u_1 u_2 G - G$, $G \subseteq u_1 u_2 G - H \subseteq X - H$. It follows that $u_1 u_2 G \subseteq u_1 u_2 (X - H)$. But H is open in $(X, u_1, u_2), u_1 u_2 (X - H) = X - H$. Consequently, $u_1 u_2 G \subseteq X - H$, which is a contradiction. Therefore, $u_1 u_2 G - G$ contains no nonempty open set of (X, u_1, u_2) .

Remark 2.8. The following statement is equivalent to Proposition 2.7:

Let (X, u_1, u_2) be a biclosure space and G be a subset of X. If H is an open subset of (X, u_1, u_2) with $H \subseteq u_1 u_2 G - G$, then H is an empty set.

Moreover, if the subset H is an open subset of (X, u_1) but not open in (X, u_2) , then H need not be empty. And if the subset H is an open subset of (X, u_2) but not open in (X, u_1) , then H need not be empty. By Example 2.6, $\{2\}$ is a subset of X such that $\{1\}$ and $\{3\}$ are nonempty subsets of $u_1u_2\{2\} - \{2\}$. We can see that $\{1\}$ is open in (X, u_1) but not open in (X, u_2) , and $\{3\}$ is an open subset of (X, u_2) but not open in (X, u_1) .

Proposition 2.9. If (Y, v_1, v_2) is a biclosure subspace of (X, u_1, u_2) , then for every open subset G of (X, u_1, u_2) , $G \cap Y$ is an open set in (Y, v_1, v_2) .

Proof. Let G be an open set in (X, u_1, u_2) . By Remark 2.1 (i), G is open in both (X, u_1) and (X, u_2) . Thus, $v_i(Y - (G \cap Y)) = u_i(Y - (G \cap Y)) \cap Y \subseteq$ $u_i(X - G) \cap Y = (X - G) \cap Y = Y - (G \cap Y)$ for each $i \in \{1, 2\}$. Consequently, $G \cap Y$ is open in both (Y, v_1) and (Y, v_2) . Therefore, $G \cap Y$ is open in (Y, v_1, v_2) .

Remark 2.10. By Proposition 2.9, if $E \subseteq Y$ and $E = G \cap Y$ for some open subset G of (X, u_1, u_2) , then E is an open set in (Y, v_1, v_2) . The converse is not true as can be seen from the following example.

Example 2.11. Let $X = \{1, 2, 3\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = \{1, 3\}$, $u_1\{2\} = u_1\{2, 3\} = \{2, 3\}$, $u_1\{3\} = \{3\}$ and $u_1\{1, 2\} = u_1\{1, 3\} = u_1 X = X$. Define a closure operator u_2 on X by

 $u_2\emptyset = \emptyset, u_2\{1\} = \{1,2\}, u_2\{2\} = \{2,3\}, u_2\{3\} = \{3\} \text{ and } u_2\{1,2\} = u_2\{1,3\} = u_2\{2,3\} = u_2X = X.$ Thus, there are only three open subset of (X, u_1, u_2) , namely $\emptyset, \{1,2\}$ and X. Let $Y = \{1,2\}$ and (Y, v_1, v_2) be a biclosure subspace of (X, u_1, u_2) . Then $v_1\emptyset = \emptyset, v_1\{1\} = \{1\}, v_1\{2\} = \{2\}, v_1Y = Y, v_2\emptyset = \emptyset, v_2\{2\} = \{2\} \text{ and } v_2\{1\} = v_2Y = Y.$ We can see that $\{1\}$ is an open subset of (Y, v_1, v_2) but there is no any open subset G of (X, u_1, u_2) such that $\{1\} = G \cap Y.$

Proposition 2.12. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces, let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \to (Z, w_1, w_2)$ be maps.

- (i) If f is 1-open and g is biopen, then $g \circ f$ is biopen.
- (ii) If f is biopen and g is 2-open, then $g \circ f$ is biopen.

Proof.

- (i) Let G be an open set in (X, u_1) . Since f is 1-open, f(G) is open in (Y, v_1) . As g is biopen, $g(f(G)) = g \circ f(G)$ is open in (Z, w_2) . Thus, $g \circ f$ is biopen.
- (ii) Let G be an open set in (X, u_1) . Since f is biopen, f(G) is open in (Y, v_2) . And since g is 2-open, $g(f(G)) = g \circ f(G)$ is open in (Z, w_2) . Thus, $g \circ f$ is biopen.

The composition of two biopen maps need not be a biopen map as can be seen from the following example.

Example 2.13. Let $X = Y = Z = \{1, 2\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{2\} = \{2\}$, and $u_1\{1\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$ and $u_2\{1\} = u_2\{2\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$, $v_1\{1\} = \{1\}$ and $v_1\{2\} = v_1Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$, $v_2\{1\} = \{1\}$, $v_2\{2\} = \{2\}$ and $v_2Y = Y$. Define a closure operator w_1 on Z by $w_1 \emptyset = \emptyset$ and $w_1\{1\} =$ $w_1\{2\} = w_1Z = Z$ and define a closure operator w_2 on Z by $w_2 \emptyset = \emptyset$, $w_2\{1\} = \{1\}$ and $w_2\{2\} = w_2Z = Z$. Let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \to (Z, w_1, w_2)$ be identity maps. We can see that f and g are biopen. But $g \circ f$ is not biopen because $\{1\}$ is open in (X, u_1) but $g \circ f(\{1\})$ is not open in (Z, w_2) . **Proposition 2.14.** Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces and let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \to (Z, w_1, w_2)$ be maps.

- (i) If $g \circ f$ is biopen and f is a 1-continuous surjection, then g is biopen.
- (ii) If $g \circ f$ is biopen and g is a 2-continuous injection, then f is biopen.

Proof.

- (i) Let H be an open set in (Y, v_1) . Since f is 1-continuous, $f^{-1}(H)$ is open in (X, u_1) . But $g \circ f$ is biopen, hence $g \circ f(f^{-1}(H))$ is open in (Z, w_2) . As f is a surjection, $g \circ f(f^{-1}(H)) = g(H)$. Therefore, g is biopen.
- (ii) Let G be an open set in (X, u_1) . Since $g \circ f$ is biopen, $g \circ f(G)$ is open in (Z, w_2) . But g is 2-continuous, hence $g^{-1}(g \circ f(G))$ is open in (Y, v_2) . As g is an injection, $g^{-1}(g \circ f(G)) = f(G)$. Therefore, f is biopen.

Proposition 2.15. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. If f is open, then f(G) is open in (Y, v_1, v_2) for every open subset G of (X, u_1, u_2) .

Proof. Let G be an open subset of (X, u_1, u_2) . By Remark 2.1 (i), G is open in both (X, u_1) and (X, u_2) . Since f is open, f is both 1-open and 2-open. Hence, f(G) is open in both (Y, v_1) and (Y, v_2) . Consequently, f(G) is open in (Y, v_1, v_2) by Remark 2.1 (i).

The converse of Proposition 2.15 is not true in general as can be seen from the following example.

Example 2.16. Let $X = \{1, 2\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1 \{2\} = \{2\}$ and $u_1 \{1\} = u_1 X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$ and $u_2 \{1\} = u_2 \{2\} = u_2 X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$ and $v_1 \{1\} = v_1 \{2\} = v_1 Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$, $v_2 \{1\} = \{1\}$ and $v_2 \{2\} = v_2 Y = Y$. Let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that f(G) is open in (Y, v_1, v_2) for every open subset G of (X, u_1, u_2) . But f is not 1-open because $f(\{1\})$ is not open in (Y, v_1) while $\{1\}$ is open in (X, u_1) . Consequently, f is not open.

Proposition 2.17. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ be a map. If f is continuous, then $f^{-1}(H)$ is open in (X, u_1, u_2) for every open subset H of (Y, v_1, v_2) .

Proof. Let H be an open subset of (Y, v_1, v_2) . By Remark 2.1 (i), H is open in both (Y, v_1) and (Y, v_2) . Since f is continuous, f is both 1-continuous and 2-continuous. It follows that $f^{-1}(H)$ is open in both (X, u_1) and (X, u_2) . Therefore, $f^{-1}(H)$ is open in (X, u_1, u_2) by Remark 2.1 (i).

The converse of Proposition 2.17 need not be true in general as can be seen from the following example.

Example 2.18. In Example 2.16, $f^{-1}(H)$ is open in (X, u_1, u_2) for every open subset H of (Y, v_1, v_2) . But the map f is not 2-continuous because $f^{-1}\{2\}$ is not open in (X, u_2) while $\{2\}$ is open in (Y, v_2) . Consequently, f is not continuous.

Definition 2.19. A map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$, where (X, u_1, u_2) and (Y, v_1, v_2) are biclosure spaces, is called a *homeomorphism* if f is bijective, continuous and open.

Proposition 2.20. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. If f is a bijective continuous map, then the following statements are equivalent:

- (i) f is a homeomorphism,
- (ii) f is a closed map,
- (iii) f is an open map.

Proof. (i) \rightarrow (ii) Since f is a homeomorphism, i.e. f is open and bijective. It follows that f is both 1-open and 2-open. Let $i \in \{1,2\}$ and let F_i be a closed subset of (X, u_i) . Then $f(X - F_i) = Y - f(F_i)$ is open in (Y, v_i) . Hence, $f(F_i)$ is closed in (Y, v_i) . Thus, f is both 1-closed and 2-closed. Therefore, f is closed.

(ii) \rightarrow (iii) Let $i \in \{1, 2\}$ and let G_i be an open subset of (X, u_i) . Then $X - G_i$ is closed in (X, u_i) . By the assumption, f is both closed and bijective. It follows that f is both 1-closed and 2-closed. Consequently, $f(X - G_i) = Y - f(G_i)$ is closed in (Y, v_i) . Hence, $f(G_i)$ is open in (Y, v_i) . Thus, f is both 1-open and 2-open. Therefore, f is open.

(iii) \rightarrow (i) By the assumption, f is a homeomorphism.

3. Semi-open sets in biclosure spaces

In this section, we introduce a new type of open sets in biclosure spaces and study some of their properties.

Definition 3.1. A subset A of a biclosure space (X, u_1, u_2) is called *semi-open*, if there exists an open subset G of (X, u_1) such that $G \subseteq A \subseteq u_2G$. The complement of a semi-open set in X is called *semi-closed*.

Clearly, if (X, u_1, u_2) is a biclosure space and A is open (respectively, closed) in (X, u_1) , then A is semi-open (respectively, semi-closed) in (X, u_1, u_2) . The converse is not true as can be seen from the following example.

Example 3.2. Let $X = \{1, 2, 3\}$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = u_1\{3\} = u_1\{1,3\} = \{1,3\}$, $u_1\{2\} = \{2,3\}$ and $u_1\{1,2\} = u_1\{2,3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$, $u_2\{3\} = \{3\}$ and $u_2\{1\} = u_2\{2\} = u_2\{1,2\} = u_2\{1,3\}, u_2\{2,3\} = u_2X = X$. It follows that $\{2,3\}$ is semi-open in (X, u_1, u_2) but $\{2,3\}$ is open in neither (X, u_1) nor (X, u_2) . Moreover, $\{1\}$ is semi-closed in (X, u_1, u_2) but $\{1\}$ is closed in neither (X, u_1) nor (X, u_2) .

Proposition 3.3. Let (X, u_1, u_2) be a biclosure space and let $A \subseteq X$. Then A is semi-closed if and only if there exists a closed subset F of (X, u_1) such that $X - u_2(X - F) \subseteq A \subseteq F$.

Proof. Let A be semi-closed in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq X - A \subseteq u_2G$. Thus, there exists a closed subset F of (X, u_1) such that G = X - F and $X - F \subseteq X - A \subseteq u_2(X - F)$. Therefore, $X - u_2(X - F) \subseteq A \subseteq F$.

Conversely, by the assumption, there is a closed subset F of (X, u_1) such that $X - u_2(X - F) \subseteq A \subseteq F$. Thus, there exists an open set G in (X, u_1) such that F = X - G and $X - u_2G \subseteq A \subseteq X - G$. It follows that $G \subseteq X - A \subseteq u_2G$. Therefore, A is semi-closed in (X, u_1, u_2) .

Proposition 3.4. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of semi-open sets in a biclosure space (X, u_1, u_2) . Then $\bigcup_{\alpha \in J} A_{\alpha}$ is a semi-open set in (X, u_1, u_2) .

Proof. Let A_{α} be semi-open in (X, u_1, u_2) for all $\alpha \in J$. Hence, for each $\alpha \in J$, we have an open set G_{α} in (X, u_1) such that $G_{\alpha} \subseteq A_{\alpha} \subseteq u_2 G_{\alpha}$.

J. Khampakdee and C. Boonpok

Thus, $\bigcup_{\alpha \in J} G_{\alpha} \subseteq \bigcup_{\alpha \in J} A_{\alpha} \subseteq \bigcup_{\alpha \in J} u_2 G_{\alpha}$. Since $G_{\alpha} \subseteq \bigcup_{\alpha \in J} G_{\alpha}$ for each $\alpha \in J$, $u_2 G_{\alpha} \subseteq u_2 \bigcup_{\alpha \in J} G_{\alpha}$ for all $\alpha \in J$. Thus, $\bigcup_{\alpha \in J} u_2 G_{\alpha} \subseteq u_2 \bigcup_{\alpha \in J} G_{\alpha}$. Consequently, $\bigcup_{\alpha \in J} G_{\alpha} \subseteq \bigcup_{\alpha \in J} A_{\alpha} \subseteq u_2 \bigcup_{\alpha \in J} G_{\alpha}$. As G_{α} is open in (X, u_1) for all $\alpha \in J$, $u_1 \cap_{\alpha \in J} (X - G_{\alpha}) \subseteq u_1(X - G_{\alpha}) = X - G_{\alpha}$ for each $\alpha \in J$. Thus, $u_1 \cap_{\alpha \in J} (X - G_{\alpha}) \subseteq \cap_{\alpha \in J} (X - G_{\alpha})$. It follows that $\cap_{\alpha \in J} (X - G_{\alpha})$ is closed in (X, u_1) , i.e. $\bigcup_{\alpha \in J} G_{\alpha}$ is open in (X, u_1) . Therefore, $\bigcup_{\alpha \in J} A_{\alpha}$ is semi-open in (X, u_1, u_2) .

If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of semi-open sets in a biclosure space (X, u_1, u_2) , then $\bigcap_{\alpha \in J} A_{\alpha}$ need not be a semi-open set in (X, u_1, u_2) as shown in the following example.

Example 3.5. In the biclosure space (X, u_1, u_2) from Example 2.2, we can see that $\{1, 2\}$ and $\{1, 3\}$ are semi-open but $\{1, 2\} \cap \{1, 3\}$ is not semi-open.

Proposition 3.6. Let $\{A_{\alpha}\}_{\alpha \in J}$ be a collection of semi-closed sets in a biclosure space (X, u_1, u_2) . Then $\cap_{\alpha \in J} A_{\alpha}$ is semi-closed.

Proof. Clearly, the complement of $\bigcap_{\alpha \in J} A_{\alpha}$ is $\bigcup_{\alpha \in J} (X - A_{\alpha})$. Since A_{α} is semi-closed in (X, u_1, u_2) for each $\alpha \in J$, $X - A_{\alpha}$ is semi-open for all $\alpha \in J$. But $\bigcup_{\alpha \in J} (X - A_{\alpha})$ is a semi-open set by Proposition 3.4. Therefore, $\bigcap_{\alpha \in J} A_{\alpha}$ is semi-closed in (X, u_1, u_2) .

If $\{A_{\alpha}\}_{\alpha \in J}$ is a collection of semi-closed sets in a biclosure space (X, u_1, u_2) , then $\bigcup_{\alpha \in J} A_{\alpha}$ need not be a semi-closed set as shown in the following example.

Example 3.7. In the biclosure space (X, u_1, u_2) from Example 2.2, we can see that $\{2\}$ and $\{3\}$ are semi-closed but $\{2\} \cup \{3\}$ is not semi-closed.

Proposition 3.8. Let (X, u_1, u_2) be a biclosure space and u_2 be idempotent. If A is semi-open in (X, u_1, u_2) and $A \subseteq B \subseteq u_2A$, then B is semi-open.

Proof. Let A be semi-open in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq A \subseteq u_2G$, hence $u_2A \subseteq u_2u_2G$. Since u_2 is idempotent, $u_2A \subseteq u_2G$. Thus, $G \subseteq A \subseteq B \subseteq u_2A \subseteq u_2G$. Therefore, B is semi-open.

Proposition 3.9. Let (Y, v_1, v_2) be a biclosure subspace of (X, u_1, u_2) and $A \subseteq Y$. If A is semi-open in (X, u_1, u_2) , then A is semi-open in (Y, v_1, v_2) .

Proof. Let A be semi-open in (X, u_1, u_2) . Then there exists an open set G in (X, u_1) such that $G \subseteq A \subseteq u_2G$. It follows that $A \cap Y \subseteq u_2G \cap Y$. But $A = A \cap Y$, hence $G \subseteq A = A \cap Y \subseteq u_2G \cap Y = v_2G$. Since G is open in $(X, u_1), v_1(Y-G) = u_1(Y-G) \cap Y \subseteq u_1(X-G) \cap Y = (X-G) \cap Y = Y-G$. Thus, Y - G is closed in (Y, v_1) , i.e. G is open in (Y, v_1) . Therefore, A is semi-open in (Y, v_1, v_2) .

The converse of Proposition 3.9 need not be true as can be seen from the following example.

Example 3.10. In the biclosure spaces (X, u_1, u_2) and (Y, v_1, v_2) from Example 2.11, we can see that $\{2\} \subseteq Y$ and $\{2\}$ is semi-open in (Y, v_1, v_2) but $\{2\}$ is not semi-open in (X, u_1, u_2) .

Definition 3.11. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ is called *semi-open* (respectively, *semi-closed*) if f(A) is semi-open (respectively, semi-closed) in (Y, v_1, v_2) for every open (respectively, closed) subset A of (X, u_1, u_2) .

Clearly, if f is open (respectively, closed), then f is semi-open (respectively, semi-closed). The converse need not be true in general as can be seen from the following example.

Example 3.12. Let $X = \{1, 2\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = \{1\}$ and $u_1\{2\} = u_1 X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$, $u_2\{1\} = \{1\}$, $u_2\{2\} = \{2\}$ and $u_2 X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$, $v_1\{1\} = \{1\}$ and $v_1\{2\} = v_1 Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$ and $v_2\{1\} = v_2\{2\} = v_2 Y = Y$. Let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that f is semi-open but not open because $f(\{2\})$ is not open in (Y, v_1, v_2) while $\{2\}$ is open in (X, u_1, u_2) . Moreover, we can see that f is semi-closed but not closed because $f(\{1\})$ is not closed in (Y, v_1, v_2) while $\{1\}$ is closed in (X, u_1, u_2) .

Proposition 3.13. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. Let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. Then $g \circ f$ is semi-open if f is open and g is semi-open.

Proof. Let G be an open subset of (X, u_1, u_2) and let f be open. By Proposition 2.15, f(G) is open in (Y, v_1, v_2) . As g is semi-open, $g(f(G)) = g \circ f(G)$ is semi-open in (Z, w_1, w_2) . Therefore, $g \circ f$ is semi-open.

Proposition 3.14. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces. Let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. If $g \circ f$ is semi-open and f is a continuous surjection, then g is semi-open.

Proof. Let H be an open set in (Y, v_1, v_2) and let f be continuous. By Proposition 2.17, $f^{-1}(H)$ is open in (X, u_1, u_2) . Since $g \circ f$ is semi-open, $g \circ f(f^{-1}(H))$ is semi-open in (Z, w_1, w_2) . But f is a surjection, hence $g \circ f(f^{-1}(H)) = g(H)$. Thus, g(H) is semi-open in (Z, w_1, w_2) . Therefore, g is semi-open.

4. Semi-continuous maps in biclosure spaces

In this section, we study the concept of semi-continuous maps obtained by using semi-open sets.

Definition 4.1. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ is called *semi-continuous* if $f^{-1}(G)$ is a semi-open subset of (X, u_1, u_2) for every open subset G of (Y, v_1, v_2) .

Clearly, if f is continuous, then f is semi-continuous. The converse need not be true as can be seen from the following example.

Example 4.2. Let $X = \{1, 2\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = \{1\}$, $u_1\{2\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$ and $u_2\{1\} = u_2\{2\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$, $v_1\{1\} = \{1\}$, $v_1\{2\} = \{2\}$, $v_1Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$, $v_2\{1\} = \{1\}$ and $v_2\{2\} = v_2Y = Y$. Let $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that f is semi-continuous but not continuous because $f^{-1}(\{2\})$ is not open in (X, u_1, u_2) while $\{2\}$ is open in (Y, v_1, v_2) .

Proposition 4.3. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is semi-continuous if and only if $f^{-1}(F)$ is a semi-closed subset of (X, u_1, u_2) for every closed subset F of (Y, v_1, v_2) .

Proposition 4.4. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. If g is continuous and f is semi-continuous, then $g \circ f$ is semi-continuous.

192

Proof. Let H be an open subset of (Z, w_1, w_2) and let g be continuous. By Proposition 2.17, $g^{-1}(H)$ is open in (Y, v_1, v_2) . As f is semi-continuous, $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$ is semi-open in (X, u_1, u_2) . Therefore, $g \circ f$ is semi-continuous.

Definition 4.5. A biclosure space (X, u_1, u_2) is said to be a T_s -space if every semi-open set in (X, u_1, u_2) is open in (X, u_1, u_2) . Clearly, the closure space (X, u_1, u_2) in Example 3.12 is a T_s -space.

Proposition 4.6. Let (X, u_1, u_2) and (Z, w_1, w_2) be biclosure spaces and (Y, v_1, v_2) be a T_s -space and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. If f and g are semi-continuous, then $g \circ f$ is semi-continuous.

Proof. Let H be open in (Z, w_1, w_2) . Since g is semi-continuous, $g^{-1}(H)$ is semi-open in (Y, v_1, v_2) . But (Y, v_1, v_2) is a T_s -space, hence $g^{-1}(H)$ is open in (Y, v_1, v_2) . As f is semi-continuous, $f^{-1}(g^{-1}(H)) = (g \circ f)^{-1}(H)$ is semi-open in (X, u_1, u_2) . Therefore, $g \circ f$ is semi-continuous.

Proposition 4.7. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces, and let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \to (Z, w_1, w_2)$ be maps.

- (i) If f is a semi-open surjection and $g \circ f$ is continuous, then g is semicontinuous.
- (ii) If g is a semi-continuous injection and $g \circ f$ is open, then f is semiopen.
- (iii) If g is an open injection and $g \circ f$ is semi-continuous, then f is semicontinuous.

Proof.

- (i) Let H be an open subset of (Z, w_1, w_2) and let $g \circ f$ be continuous. By Proposition 2.17, $(g \circ f)^{-1}(H)$ is open in (X, u_1, u_2) . Since f is a semi-open map, $f((g \circ f)^{-1}(H)) = f(f^{-1}(g^{-1}(H)))$ is semi-open in (Y, v_1, v_2) . But f is a surjection, thus $f(f^{-1}(g^{-1}(H))) = g^{-1}(H)$. Therefore, g is semi-continuous.
- (ii) Let G be an open subset of (X, u_1, u_2) and let $g \circ f$ be open. By Proposition 2.15, $g \circ f(G)$ is open in (Z, w_1, w_2) . Since g is semi-continuous,

 $g^{-1}(g \circ f(G))$ is semi-open in (Y, v_1, v_2) . But g is an injection, hence $g^{-1}(g \circ f(G)) = f(G)$. Therefore, f is semi-open.

(iii) Let H be an open subset of (Y, v_1, v_2) and let g is open. By Proposition 2.15, g(H) is open in (Z, w_1, w_2) . Since $g \circ f$ is semi-continuous, $(g \circ f)^{-1}(g(H))$ is semi-open in (X, u_1, u_2) . But g is an injection, it follows that $(g \circ f)^{-1}(g(H)) = f^{-1}(g^{-1}(g(H))) = f^{-1}(H)$. Therefore, f is semi-continuous.

5. Semi-irresolute maps in biclosure spaces

In this section, we introduce semi-irresolute maps in biclosure spaces obtained by using semi-open sets. We then study some of their basic properties.

Definition 5.1. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ is called *semi-irresolute* if $f^{-1}(G)$ is semi-open in (X, u_1, u_2) for every semi-open set G in (Y, v_1, v_2) .

It is easy to show that the composition of two semi-irresolute maps of biclosure spaces is again a semi-irresolute map.

Remark 5.2. If a map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ is semi-irresolute, then f is semi-continuous. The converse need not be true as shown in the following example.

Example 5.3. Let $X = \{1,2\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$ and $u_1\{1\} = u_1\{2\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$ and $u_2\{1\} = u_2\{2\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$, $v_1\{1\} = \{1\}$, $v_1\{2\} = v_1Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$ and $v_2\{1\} = v_2\{2\} = v_2Y = Y$. Let $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. It is easy to see that there are only two open sets in (Y, v_1, v_2) , namely \emptyset and Y, and their inverse images are semi-open in (X, u_1, u_2) . Thus, f is semi-continuous. But f is not semi-irresolute because $f^{-1}(\{2\})$ is not semi-open in (X, u_1, u_2) .

Proposition 5.4. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. Then f is semi-irresolute if and only if $f^{-1}(B)$ is semi-closed in (X, u_1, u_2) , whenever B is semi-closed in (Y, v_1, v_2) .

Proposition 5.5. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be an open, semi-irresolute and surjective map. Then (Y, v_1, v_2) is a T_s -space if (X, u_1, u_2) is a T_s -space.

Proof. Let (X, u_1, u_2) be a T_s -space and let B be a semi-open subset of (Y, v_1, v_2) . Since f is semi-irresolute, $f^{-1}(B)$ is semi-open in (X, u_1, u_2) . As (X, u_1, u_2) is a T_s -space, $f^{-1}(B)$ is open in (X, u_1, u_2) . Since f is open, $f(f^{-1}(B))$ is open in (Y, v_1, v_2) by Proposition 2.15. But f is a surjection, hence $f(f^{-1}(B)) = B$. Thus, B is open in (Y, v_1, v_2) . Therefore, (Y, v_1, v_2) is a T_s -space.

Proposition 5.6. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces, and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \rightarrow (Z, w_1, w_2)$ be maps. If f is semi-irresolute and g is semi-continuous, then $g \circ f$ is semi-continuous.

Proposition 5.7. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f: (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a bijective map.

- (i) If f is 1-continuous and f^{-1} is 2-continuous, then f is semi-irresolute.
- (ii) If f is 2-continuous and f^{-1} is 1-continuous, then f^{-1} is semi-irresolute.

Proof.

- (i) Let B be semi-open in (Y, v_1, v_2) . Then there exists an open subset H of (Y, v_1) such that $H \subseteq B \subseteq v_2 H$. Since f^{-1} is 2-continuous, f^{-1} : $(Y, v_2) \to (X, u_2)$ is continuous. Thus, $f^{-1}(v_2(H)) \subseteq u_2 f^{-1}(H)$, i.e. $f^{-1}(H) \subseteq f^{-1}(B) \subseteq u_2 f^{-1}(H)$. As f is 1-continuous, $f: (X, u_1) \to$ (Y, v_1) is continuous, hence $f^{-1}(H)$ is open in (X, u_1) . Consequently, $f^{-1}(B)$ is semi-open in (X, u_1, u_2) . Therefore, f is semi-irresolute.
- (ii) Let A be semi-open in (X, u_1, u_2) . Then there exists an open set G of (X, u_1) such that $G \subseteq A \subseteq u_2G$. Since f is 2-continuous, f : $(X, u_2) \to (Y, v_2)$ is continuous. Thus, $f(u_2G) \subseteq v_2f(G)$, i.e. $f(G) \subseteq$ $f(A) \subseteq v_2f(G)$. But f^{-1} is 1-continuous, hence $f^{-1}: (Y, v_1) \to (X, u_1)$ is continuous. Since f(G) is the inverse image of G under $f^{-1}, f(G)$ is open in (Y, v_1) . Consequently, f(A) is semi-open in (Y, v_1, v_2) . But f(A) is the inverse image of A under f^{-1} , thus f^{-1} is semi-irresolute.

6. Pre-semi-open maps in biclosure spaces

In this section, we introduce pre-semi-open maps obtained by using semiopen sets. We study some of their properties.

Definition 6.1. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces. A map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ is called *pre-semi-open* (respectively, *pre-semi-closed*) if f(A) is a semi-open (respectively, semi-closed) subset of (Y, v_1, v_2) for every semi-open (respectively, semi-closed) subset A of (X, u_1, u_2) .

It is easy to show that the composition of two pre-semi-open maps in biclosure spaces is again a pre-semi-open map.

Clearly, if a map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ is pre-semi-open, then f is semi-open. The converse need not be true as shown in the following example.

Example 6.2. In Example 2.16, the map f is semi-open but f is not presemi-open because $\{1\}$ is semi-open in (X, u_1, u_2) but $f(\{1\})$ is not semi-open in (Y, v_1, v_2) .

Proposition 6.3. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. Then the following statements are equivalent:

- (i) f is pre-semi-open
- (ii) If $B \subseteq Y$ and C is a semi-closed subset of (X, u_1, u_2) such that $f^{-1}(B) \subseteq C$, then $B \subseteq E$ and $f^{-1}(E) \subseteq C$ for some semi-closed subset E of (Y, v_1, v_2) .

Proof. (i) \rightarrow (ii) Let *B* be a subset of *Y* and let *C* be a semi-closed subset of (X, u_1, u_2) such that $f^{-1}(B) \subseteq C$. Then f(X - C) is a semi-open subset of (Y, v_1, v_2) . Put E = Y - f(X - C). Then *E* is semi-closed in (Y, v_1, v_2) and $X - C \subseteq X - f^{-1}(B) = f^{-1}(Y - B)$. Hence, $f(X - C) \subseteq f(f^{-1}(Y - B)) \subseteq Y - B$. Thus, $Y - (Y - B) \subseteq Y - f(X - C)$, i.e. $B \subseteq E$ and $f^{-1}(E) = f^{-1}(Y - f(X - C)) = X - f^{-1}(f(X - C)) \subseteq X - (X - C) = C$. Therefore, *E* is a semi-closed subset of (Y, v_1, v_2) such that $B \subseteq E$ and $f^{-1}(E) \subseteq C$.

(ii) \rightarrow (i) Let A be a semi-open subset of (X, u_1, u_2) . Then X - A is semi-closed in (X, u_1, u_2) and $f^{-1}(Y - f(A)) = X - f^{-1}(f(A)) \subseteq X - A$ where Y - f(A) is a subset of Y. By the assumption, there is a semi-closed

subset E of (Y, v_1, v_2) such that $Y - f(A) \subseteq E$ and $f^{-1}(E) \subseteq X - A$. Hence, $Y - E \subseteq f(A)$ and $A \subseteq X - f^{-1}(E)$. It follows that $Y - E \subseteq f(A) \subseteq f(X - f^{-1}(E)) = f(f^{-1}(Y - E)) \subseteq Y - E$, i.e. f(A) = Y - E. Thus, f(A) is semi-open in (Y, v_1, v_2) . Therefore, f is pre-semi-open.

Proposition 6.4. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ be a map. If f is pre-semi-open, then for every $y \in Y$ and every semi-closed subset C of (X, u_1, u_2) such that $f^{-1}(\{y\}) \subseteq C$, there exists a semi-closed subset E of (Y, v_1, v_2) such that $y \in E$ and $f^{-1}(E) \subseteq C$.

Proof. Let $y \in Y$ and let C be a semi-closed subset of (X, u_1, u_2) such that $f^{-1}(\{y\}) \subseteq C$. Since $\{y\} \subseteq Y$, there exists a semi-closed subset E of (Y, v_1, v_2) such that $y \in E$ and $f^{-1}(E) \subseteq C$ by Proposition 6.3.

The converse of the previous statement is not true in general as can be seen from the following example.

Example 6.5. Let $X = \{1, 2, 3\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{1\} = u_1\{2\} = u_1\{1, 2\} = \{1, 2\}$ and $u_1\{3\} = u_1\{1, 3\} = u_1\{2, 3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2 \emptyset = \emptyset$, $u_2\{3\} = \{3\}$ and $u_2\{1\} = u_2\{2\} = u_2\{1, 2\} = u_2\{1, 3\} = u_2\{2, 3\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1 \emptyset = \emptyset$, $v_1\{1\} = \{1\}$, $v_1\{2\} = \{2\}$, $v_1\{3\} = v_1\{1, 2\} = v_1\{1, 3\} = v_1\{2, 3\} = v_1Y = Y$ and define a closure operator v_2 on Y by $v_2 \emptyset = \emptyset$ and $v_2\{1\} = v_2\{2\} = v_2\{3\} = v_2\{1, 2\} = v_2\{1, 3\} = v_2\{2, 3\} = v_2Y = Y$. Let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ be an identity map. Then there are only three semi-closed subsets of (X, u_1, u_2) , namely \emptyset , $\{1\}$, $\{2\}$ and Y. Then for every $y \in Y$ and every semi-closed subset C of (X, u_1, u_2) such that $f^{-1}(\{y\}) \subseteq C$, there exists a semi-closed subset E of (Y, v_1, v_2) such that $y \in E$ and $f^{-1}(E) \subseteq C$. But f is not pre-semi-open because $\{3\}$ is semi-open in (X, u_1, u_2) but $f(\{3\})$ is not semi-open in (Y, v_1, v_2) .

Proposition 6.6. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a map. Then the following statements are equivalent:

(i) f is pre-semi-closed.

- (ii) If D ⊆ Y and A is a semi-open subset of (X, u₁, u₂) such that f⁻¹(D) ⊆ A, then D ⊆ M and f⁻¹(M) ⊆ A for some semi-open subset M of (Y, v₁, v₂).
- (iii) If $y \in Y$ and A is a semi-open subset of (X, u_1, u_2) such that $f^{-1}(\{y\}) \subseteq A$, then $y \in M$ and $f^{-1}(M) \subseteq A$ for some semi-open subset M of (Y, v_1, v_2) .

Proof. (i) \rightarrow (ii) The proof is a minor modification of the proof (i) \rightarrow (ii) in Proposition 6.3.

(ii) \rightarrow (iii) Let $y \in Y$ and A be a semi-open subset of (X, u_1, u_2) such that $f^{-1}(\{y\}) \subseteq A$. By (ii), put $D = \{y\}$. Then there exists a semi-open subset M of (Y, v_1, v_2) such that $y \in M$ and $f^{-1}(M) \subseteq A$.

(iii)→(i) Let C be a semi-closed subset of (X, u_1, u_2) . Then X - C is semi-open in (X, u_1, u_2) and $f^{-1}(Y - f(C)) = X - f^{-1}(f(C)) \subseteq X - C$. Let $y \in Y - f(C) \subseteq Y$ and put A = X - C. Then $f^{-1}(\{y\}) \subseteq X - C = A$. By (iii), there exists a semi-open subset M_y of (Y, v_1, v_2) such that $y \in M_y$ and $f^{-1}(M_y) \subseteq A = X - C$, i.e. $C \subseteq X - f^{-1}(M_y)$. Hence, $f(C) \subseteq f(X - f^{-1}(M_y)) = f(f^{-1}(Y - M_y)) \subseteq Y - M_y$. Thus, $y \in M_y \subseteq Y - f(C)$ for all $y \in Y - f(C)$. It follows that $Y - f(C) = \bigcup_{y \in Y - f(C)} M_y$. By Proposition 3.4, $\bigcup_{y \in Y - f(C)} M_y$ is semi-open in (Y, v_1, v_2) . Consequently, f(C) is semiclosed in (Y, v_1, v_2) . Therefore, f is pre-semi-closed.

Proposition 6.7. Let (X, u_1, u_2) , (Y, v_1, v_2) and (Z, w_1, w_2) be biclosure spaces and let $f : (X, u_1, u_2) \to (Y, v_1, v_2)$ and $g : (Y, v_1, v_2) \to (Z, w_1, w_2)$ be maps.

- (i) If f is a semi-irresolute surjection and $g \circ f$ is pre-semi-open, then g is pre-semi-open.
- (ii) If g is a semi-irresolute injection and $g \circ f$ is pre-semi-open, then f is pre-semi-open.
- (iii) If f is a pre-semi-open surjection and $g \circ f$ is semi-irresolute, then g is semi-irresolute.
- (iv) If g is a pre-semi-open injection and $g \circ f$ is semi-irresolute, then f is semi-irresolute.

Proof. (i) Let B be semi-open in (Y, v_1, v_2) . Since f is semi-irresolute, $f^{-1}(B)$ is semi-open in (X, u_1, u_2) . But $g \circ f$ is pre-semi-open and f is surjective, hence $g \circ f(f^{-1}(B)) = g(B)$ is semi-open in (Z, w_1, w_2) . Therefore, g is pre-semi-open.

The proofs of (ii)-(iv) are minor modifications of that of (i)

Proposition 6.8. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a continuous, pre-semi-open and injective map. Then (X, u_1, u_2) is a T_s -space if (Y, v_1, v_2) is a T_s -space.

Proof. Let (Y, v_1, v_2) be a T_s -space and let A be a semi-open subset of (X, u_1, u_2) . Since f is pre-semi-open, f(A) is semi-open in (Y, v_1, v_2) . But (Y, v_1, v_2) is a T_s -space, hence f(A) is open in (Y, v_1, v_2) . As f is continuous, $f^{-1}(f(A))$ is open in (X, u_1, u_2) by Proposition 2.17. Since f is injective, $f^{-1}(f(A)) = A$. Thus, A is open in (X, u_1, u_2) Therefore, (X, u_1, u_2) is a T_s -space.

Proposition 6.9. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ is a 1-open and 2-continuous map, then f is pre-semi-open.

Proof. Let A be semi-open in (X, u_1, u_2) . Then there exists an open subset G of (X, u_1) such that $G \subseteq A \subseteq u_2G$. Consequently, $f(G) \subseteq f(A) \subseteq f(u_2G)$. Since f is 2-continuous, $f: (X, u_2) \to (Y, v_2)$ is continuous. Hence, $f(u_2G)) \subseteq v_2f(G)$, i.e. $f(G) \subseteq f(A) \subseteq v_2f(G)$. But f is 1-open, thus $f: (X, u_1) \to (Y, v_1)$ is open. It follows that f(G) is open in (Y, v_1) . Thus, f(A) is a semi-open set in (Y, v_1, v_2) . Therefore, f is pre-semi-open.

Definition 6.10. A map $f : (X, u_1, u_2) \to (Y, v_1, v_2)$, where (X, u_1, u_2) and (Y, v_1, v_2) are biclosure spaces, is called a *semi-homeomorphism* if f is bijective, semi-irresolute and pre-semi-open.

It is easy to show that the composition of two semi-homeomorphisms of biclosure spaces is again a semi-homeomorphism.

Remark 6.11. The concepts of a homeomorphism and a semi-homeomorphism are independent as can be seen from two following examples.

Example 6.12. In Example 3.12, the map f is a semi-homeomorphism but f is not open. Consequently, f is not a homeomorphism.

Example 6.13. Let $X = \{1, 2, 3\} = Y$ and define a closure operator u_1 on X by $u_1 \emptyset = \emptyset$, $u_1\{2\} = u_1\{3\} = u_1\{2,3\} = \{2,3\}$ and $u_1\{1\} = u_1\{1,2\} = u_1\{1,3\} = u_1X = X$. Define a closure operator u_2 on X by $u_2\emptyset = \emptyset$, $u_2\{1\} = \{1,3\}$ and $u_2\{2\} = u_2\{3\} = u_2\{1,2\} = u_2\{1,3\} = u_2\{2,3\} = u_2X = X$. Define a closure operator v_1 on Y by $v_1\emptyset = \emptyset$, $v_1\{2\} = v_1\{3\} = v_1\{2,3\} = \{2,3\}$ and $v_1\{1\} = v_1\{1,2\} = v_1\{1,3\} = v_1Y = Y$. Define a closure operator v_2 on Y by $v_2\emptyset = \emptyset$ and $v_2\{1\} = v_2\{2\} = v_2\{3\} = v_2\{1,2\} = v_2\{1,3\} = v_2\{2,3\} = v_2Y = Y$. Let $f: (X, u_1, u_2) \to (Y, v_1, v_2)$ be the identity map. Then f is a homeomorphism but f is not semi-irresolute because $f^{-1}(\{1,2\})$ is not semi-open in (X, u_1, u_2) while $\{1,2\}$ is semi-open in (Y, v_1, v_2) , i.e. f is not semi-homeomorphism.

Proposition 6.14. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a bijective map. Then f is pre-semi-open if and only if f is pre-semi-closed.

As a direct consequence of Proposition 6.14, we have:

Proposition 6.15. Let (X, u_1, u_2) and (Y, v_1, v_2) be biclosure spaces and let $f : (X, u_1, u_2) \rightarrow (Y, v_1, v_2)$ be a bijective semi-irresolute map, then the following statements are equivalent:

- (i) f is a semi-homeomorphism,
- (ii) f is a pre-semi-closed map,
- (iii) f is a pre-semi-open map.

References

- J.M. Aarts and M. Mršević, A bitopological view on cocompact extensions, Topol. Appl. 83 (1991), 1–16.
- [2] C. Boonpok and J. Khampakdee, Generalized closed sets in biclosure spaces, to appear.
- [3] E. Čech, *Topological spaces*, (revised by Z. Frolík, M. Katětov), Academia, Prague 1966.
- [4] E. Čech, *Topological spaces*, Topological papers of Eduard Čech, Academia, Prague (1968), 436–472.

- [5] J. Chvalina, On homeomorphic topologies and equivalent set-systems, Arch. Math. Scripta Fac. Sci. Nat. UJEP Brunensis, XII 2 (1976), 107–116.
- [6] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math., Scripta Fac. Sci. Nat. UJEP Brunensis, XVII 2 (1981), 81–86.
- [7] J. Deak, On bitopological spaces, I, Stud. Sci. Math. Hungar. 25 (1990), 457–481.
- [8] B. Dvalishvili, On some bitopological applications, Mat.Vesn. 42 (1990), 155–165.
- [9] J. Khampakdee, Semi-open sets in closure spaces, to appear.
- [10] J.C. Kelly, *Bitopological spaces*, Proc. London Math. Soc. **3** (13) (1969), 71–79.
- [11] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36–41.
- [12] J. Šlapal, Closure operations for digital topology, Theoret. Comput. Sci. 305 (2003), 457–471.

Received 29 April 2009 Revised 1 July 2009