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Abstract

De Morgan quasirings are connected to De Morgan algebras in the
same way as Boolean rings are connected to Boolean algebras. The aim
of the paper is to establish a common axiom system for both De Morgan
quasirings and De Morgan algebras and to show how an interval of a
De Morgan algebra (or De Morgan quasiring) can be viewed as a De
Morgan algebra (or De Morgan quasiring, respectively).
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The concept of a (Boolean) quasiring was introduced by D. Dorninger,
H. Länger and M. Ma̧czyński [7] in order to get a ring-like counterpart
of an orthomodular lattice similarly as it was done by G. Birkhoff [1] for
Boolean rings and Boolean algebras. The motivation of this approach is its
application in logics of quantum mechanics, see e.g. [8] for details. Vari-
ous types of such quasirings were described and compared by the authors
in [2]. A similar way was applied when ring-like structures were assigned
to De Morgan algebras in [3]. The resulting ring-like structures were called
De Morgan quasirings. Presently, De Morgan algebras are studied in multi-
valued model checking in computer-science, see e.g. [9] and the references
given there.

The aim of the present paper is twofold: At first we find an axiom system
which determines both De Morgan algebras and De Morgan quasirings (in
dependence of the value of the algebraic constant 1+1). The second aim is to
show when an interval of a De Morgan algebra (resp. De Morgan quasiring)
A can be equipped by operations such that the resulting algebra is a De
Morgan algebra (resp. De Morgan quasiring) again and the operations are
polynomials over A.

For the reader’s convenience, we recall the necessary concepts.

A De Morgan algebra (see [1]) is an algebra A = (A;∨,∧, ′, 0, 1) of
type (2, 2, 1, 0, 0) such that (A;∨,∧, 0, 1) is a bounded distributive lattice
and the unary operation ′ is an antitone involution on A, i.e., x′′ = x and
x ≤ y implies y′ ≥ x′.

A De Morgan quasiring (see [3]) is an algebra A = (A; +, ·, 0, 1) of type
(2, 2, 0, 0) satisfying the following identities:

(Q1) x · x = x

(Q2) x · y = y · x

(Q3) x · (y · z) = (x · y) · z

(Q4) 0 · x = 0

(Q5) 1 · x = x

(Q6) 1 + 0 = 1, 1 + 1 = 0

(Q7) x · (1 + (1 + y) · (1 + z)) = 1 + (1 + x · y) · (1 + x · z).
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We say that a De Morgan quasiring A satisfies the correspondence identity
if x + y = 1 + (1 + x · (1 + y)) · (1 + y · (1 + x)) holds in A.

As usual, we will replace the multiplicative operation “·” by juxtaposition.

The following key result was proved in [3]:

Proposition 1.

(a) Let R = (R; +, ·, 0, 1) be a De Morgan quasiring. Define
x ∨ y = 1 + (1 + x)(1 + y), x ∧ y = xy and x′ = 1 + x.
Then A(R)= (R;∨,∧, ′, 0, 1) is a De Morgan algebra.

(b) Let A = (A;∨,∧, ′, 0, 1) be a De Morgan algebra. Define
x + y = (x′ ∧ y) ∨ (x ∧ y′), xy = x∧ y. Then R(A) = (A; +, ·, 0, 1) is
a De Morgan quasiring satisfying the correspondence identity.

(c) If R is a De Morgan quasiring satisfying the correspondence identity
and A is a De Morgan algebra, then the assignments A 7→ R(A) and
R 7→ A(R) are invers to each other, i.e., A(R(A)) = A and R(A(R)) =
R.

Let us note that this correspondence is the same as for Boolean algebras
and Boolean rings [1], for orthomodular lattices and Booelan quasirings [8].

1. The uniform axiom system

H. Dobbertin [6] has shown that if 1+1 = 1 holds in an associative Newman
algebra A then it becomes a Boolean algebra, and if 1+1 = 0 then it becomes
a Boolean ring. For ortholattices and Boolean quasirings, a similar algebra
(called N-algebra) was introduced in [5] by the first author and H. Länger
such that again for 1 + 1 = 1 it is an ortholattice, and for 1 + 1 = 0 it
is a Boolean quasiring. This motivated us to find an appropriate algebra
with this property also for De Morgan algebras and De Morgan quasirings.
Hence, we define the following

Definition. A D-algebra is an algebra A = (A; +, ·, ′, 0, 1) of type (2, 2, 1, 0, 0)
satisfying the following identities:
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(D1) xx = x

(D2) xy = yx

(D3) x(yz) = (xy)z

(D4) 0x = 0

(D5) 1x = x

(D6) 0′ = 1

(D7) ((xy)′x′)′ = x

(D8) x + y = ((((1 + 1)′x)′y)′(((1 + 1)′y)′x)′)′

(D9) x(y′z′)′ = ((xy)′(xz)′)′.

Lemma 1. Every D-algebra satisfies

(a) x′′ = x,

(b) (x′y′)′x = x,

(c) if 1 + 1 = 0 then x′ = 1 + x.

Proof.

(a) Putting y = 0 in (D7) and applying (D2), (D4), (D6) and (D5), we
immediately get x′′ = x.

(b) This follows directly from (D7) and (a): Putting in (D7) x′ instead of
x and y′ instead of y, we get ((x′y′)′x′′)′ = x′, and application of (a)
yields the result.

(c) By (D2), (D8), (D5) and (a), we compute 1 + x = (((1 + 1)x)′((1 +
1)′x)′′)′. Hence, if 1 + 1 = 0 we get — using (D2), (D6) and (D5) —
1 + x = ((0x)′(0′x))′ = (1x)′ = x′.

We are going to show that D-algebras can serve as a uniform axiomatization
of both De Morgan algebras and De Morgan quasirings. In this context,
De Morgan quasirings are considered as algebras (A; +, ·, ′, 0, 1) with the
additional operation x′ = 1 + x.
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Theorem 1. Let A = (A; +, ·, ′, 0, 1) be an algebra of type (2, 2, 1, 0, 0).
Then A is a De Morgan algebra if and only if A is a D-algebra with 1+1 = 1.

Proof. Assume that A = (A; +, ·, ′, 0, 1) is a De Morgan algebra. Then
clearly 1+1 = 1. Since the retract (A; ·) is a meet-semilattice with 0 and 1,
it satisfies (D1)–(D5). The unary operation is an antitone involution thus
also (D6) holds. Due to the De Morgan laws we have x + y = (x′y′)′ thus,
using the absorption law, we infer ((xy)′x′)′ = xy + x = x proving (D7).

Further,

((((1 + 1)′x)′y)′(((1 + 1)′y)′x)′)′

= ((0′y)′(0′x)′)′ = (y′x′)′ = (x′y′)′ = x + y

proving (D8). Using distributivity in A, we obtain x(y ′z′)′ = x(y + z) =
xy + xz = ((xy)′(xz)′)′ proving (D9).

Conversely, let A = (A;+, ·, ′, 0, 1) be a D-algebra satisfying 1+1 = 1.
Applying (D1)–(D5), we recognize that (A; ·) is a meet-semilattice with
0 and 1. Using (D8), (D6), Lemma 1(a), (D4) and (D5), we derive

x + y = ((((1 + 1)′x)′y)′(((1 + 1)′y)′x)′)′ = ((0′y)′(0′x)′)′ = (y′x′)′ =

= (x′y′)′,

i.e.,

(∗) x + y = (x′y′)′

which is the De Morgan law. This implies — by use of (D1)—(D5) and
Lemma 1(a) – that (A; +) is a join-semilattice. By Lemma 1(b), we get

x = (x′y′)′x = (x + y)x

which is the first absorption law. By (D7) we derive the second one

xy + x = ((xy)′x′)′ = x.

Thus (A; +, ·, 0, 1) is a bounded lattice. Denote by ≤ its induced order.
By (D9) and (∗) we infer

x(y + z) = x(y′z′)′ = ((xy)′(xz)′)′ = xy + xz,

i.e., this lattice is distributive.
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By (∗) and Lemma 1(a), we obtain (xy)′ = x′ + y′. Assume x ≤ y. Then
xy = x and hence x′ = x′ + y′, i.e. y′ ≤ x′. Thus the mapping x 7→ x′ is
antitone and, by (a) of Lemma 1, it is an antitone involution of A. We have
shown that A = (A; +, ·, ′, 0, 1) is a De Morgan algebra.

Theorem 2. Let A = (A; +, ·, ′, 0, 1) be an algebra of type (2, 2, 1, 0, 0).
Then A is a De Morgan quasiring satisfying the correspondence identity if
and only if A is a D-algebra with 1 + 1 = 0.

Proof. Suppose that A is a De Morgan quasiring with the correspondence
identity. Then it satisfies (D1)–(D5). Since x′ = 1 + x, by (Q6) we infer
1 = 1 + 0 = 0′ which is (D6). By (Q7) we get

x(y′z′)′ = x(1 + (1 + y)(1 + z)) = 1 + (1 + xy)(1 + xz) = ((xy)′(xz)′)′

proving (D9). By Lemma 1(i) in [3], we have ((xy)′x′)′ = 1+(1+xy)(1+x) =
1+(1+x)(1+xy) = x proving (D7). By (Q6) we have 1+1 = 0. It remains
to show (D8). Using the correspondence identity, (Q2), 1 + 1 = 0, 1 = 0′

and (Q5), we infer

x + y = 1 + (1 + x(1 + y))(1 + y(1 + x)) = ((x′y)′(xy′)′)′

= ((((1 + 1)′x)′y)′(((1 + 1)′y)′x)′)′

thus A is a D-algebra satisfying 1 + 1 = 0.

Conversely, let A = (A; +, ·, ′, 0, 1) be a D-algebra satisfying 1 + 1 = 0.
From (D1)–(D5) we have (Q1)–(Q5). Since — by Lemma 1(c) — x′ = 1+x,
using (D6) we get 1 + 0 = 0′ = 1. Together with our assumption 1 + 1 = 0,
we obtain (Q6).

By (D9) we have

x(1 + (1 + y)(1 + z)) = x(y′z′)′ = ((xy)′(xz)′)′ = 1 + (1 + xy)(1 + xz)

which is (Q7). Hence, A is a De Morgan quasiring. We need to prove the
correspondence identity. For this, we put 0 instead of 1 + 1 in (D8) and
apply (D6), (D5) and (D2). Then we obtain

x + y = ((x′y)′(y′x)′)′ = 1 + (1 + y(1 + x))(1 + x(1 + y))

= 1 + (1 + x(1 + y))(1 + y(1 + x)).
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Remark 1. An example of a D-algebra which is neither a De Morgan
algebra nor a De Morgan quasiring (i.e., 1 + 1 /∈ {0, 1}) is a direct product
of a De Morgan algebra and a De Morgan quasiring (both with more than
one element).

Remark 2. As pointed out by Martin Goldstern, the following modifica-
tion of our Theorems 1 and 2 holds (which is much more general, but uses
different – and larger – sets of laws than our results):

Let V0 and V1 be varieties in the language {+, ∗, 0, 1} of type (2, 2, 0, 0)
such that

• x ∗ 1 = x, x ∗ 0 = 0 and x + 0 = x hold in both varieties,

• V1 satisfies x + 1 = 1,

• V0 satisfies 1 + 1 = 0.

Let E0 and E1 be laws defining V0 and V1, respectively. Let W be the variety
defined by the equations

s + (1 + 1) = t + (1 + 1) for (s = t) ∈ E0

and

s ∗ (1 + 1) = t ∗ (1 + 1) for (s = t) ∈ E1.

Then

1. V0 ⊆ W ,

2. V1 ⊆ W ,

3. V0 = W ∩ [1 + 1 = 0] (where [1 + 1 = 0] is the variety of all algebras
satisfying 1 + 1 = 0),

4. V1 = W ∩ [1 + 1 = 1] (where [1 + 1 = 1] is the variety of all algebras
satisfying 1 + 1 = 1).

Proof. Easy calculation.
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2. Interval algebras

If A = (A;∧,∨, ′, 0, 1) is a Boolean algebra and a, b ∈ A with a ≤ b then the
interval [a, b] can be made into a Boolean algebra ([a, b];∨,∧, ∗, a, b) in such a
way that x∗ = (x′∨a)∧b = (x′∧b)∨a, i.e., x∗ is a polynomial of the original
algebra A. This new algebra is called an interval Boolean algebra. Similarly,
one can establish interval MV-algebras (see [4]) or interval residuated lattices
or BL-algebras (see [10]). The aim of this section is to show under what
conditions this construction can be made for De Morgan algebras and, due
to Proposition 1, also for De Morgan quasirings.

Let A = (A;∨,∧, ′, 0, 1) be a De Morgan algebra. An element a ∈ A is
called Boolean if a ∧ a′ = 0 (or, equivalenty, a ∨ a′ = 1). It is evident that
the set B(A) of all Boolean elements of A forms a Boolean algebra which is
a subalgebra of A. We are going to show that Boolean elements play some
role for our construction.

Theorem 3. Let A = (A;∨,∧, ′, 0, 1) be a De Morgan algebra, a, b ∈ A
with a ≤ b, and put

x∗ = (x′ ∨ a) ∧ b = (x′ ∧ b) ∨ a.

Then ([a, b];∨,∧, ∗, a, b) is a De Morgan algebra if and only if b ≤ a∨a′ and
b ∧ b′ ≤ a.

Proof. If ([a, b];∨,∧, ∗, a, b) is a De Morgan algebra, we must have a∗ = b
and b∗ = a. Hence (a′ ∨ a) ∧ b = b and (b′ ∧ b) ∨ a = a, thus b ≤ a ∨ a′ and
b ∧ b′ ≤ a.

Conversely, suppose that b ≤ a∨ a′ and b∧ b′ ≤ a. Clearly, the mapping
x 7→ x∗ is antitone and maps [a, b] into [a, b]. So all we have to show is that
it is an involution. Let x ∈ [a, b] then, by using the De Morgan laws and
distributivity, we have

x∗∗ = (((x′ ∨ a) ∧ b)′ ∧ b) ∨ a = (((x ∧ a′) ∨ b′) ∧ b) ∨ a

= (x ∧ a′ ∧ b) ∨ (b′ ∧ b) ∨ a = (x ∧ a′ ∧ b) ∨ a

= (x ∨ a) ∧ (a′ ∨ a) ∧ (b ∨ a) = x ∧ (a′ ∨ a) ∧ b

= x ∧ b = x.

Corollary 1. If a, b are Boolean elements of A, then ([a, b];∨,∧, ∗, a, b) is
a De Morgan algebra.
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Corollary 2. Let a ∈ A and put xa = x′∨a, xa = x′∧a. Then the following
are equivalent:

(i) a is a Boolean element of A.

(ii) ([a, 1];∨,∧, a, a, 1) is a De Morgan algebra.

(iii) ([0, a];∨,∧, a, 0, a) is a De Morgan algebra.

We say that a De Morgan algebra is a De Morgan chain if it is a chain with
respect to the induced order.

Corollary 3. Let A= (A;∨,∧, ′, 0, 1) be a De Morgan chain and a, b ∈ A
with a < b. Then the following are equivalent:

(i) a′ = b.

(ii) b′ = a.

(iii) x′ ∈ [a, b] for every x ∈ [a, b].

(iv) x∗ = x′.

(v) ([a, b];∨,∧, ∗, a, b) is a De Morgan algebra.

Proof. Evidently, (i)–(iv) are equivalent, and by Theorem 3, (v) is equiv-
alent to (i) and (ii).

Example 1. Let A be a De Morgan algebra whose diagram is visualized in
Figure 1.
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By Theorem 3, the interval [a, b] = {a, d, b} is an interval De Morgan algebra
([a, b];∨,∧, ∗, a, b), and we have

a∗ = (a′ ∨ a) ∧ b = b ∧ b = b,

b∗ = (b′ ∨ a) ∧ b = a ∧ b = a,

d∗ = (d′ ∨ a) ∧ b = d ∧ b = d.

Note that the Boolean elements of A are only 0, 1, c, c′ hence the converse
of Corollary 1 does not hold.

Due to the correspondence given by Proposition 1, we can introduce the
induced order in every De Morgan quasiring given by

x ≤ y if and only if xy = x.

Since x′ = 1 + x, we call an element a of a De Morgan quasiring A to be
Boolean if

a(1 + a) = 0.

Now, we can state the following result.

Theorem 4. Let A = (A; +, ·, 0, 1) be a De Morgan quasiring satisfying
the correspondence identity, a, b ∈ A and a ≤ b. Define x+ab y = (x+y)∨a.
Then ([a, b]; +ab, ·, a, b) is a De Morgan quasiring satisfying the correspon-
dence identity if and only if a(1 + a) ≤ 1 + b and b(1 + b) ≤ a.

Proof. By Theorem 3 and Proposition 1, ([a, b],∨,∧, ∗, a, b) is a De Morgan
algebra where x∗ = (x′∨a)∧b if and only if a(1+a) = a∧a′ ≤ b′ = 1+b and
b(1+b) = b∧b′ ≤ a. Again by Proposition 1, this is equivalent to the fact that
([a, b];⊕ab, ·, a, b) is a De Morgan quasiring satisfying the correspondence
identity where xy = x∧ y and x⊕ab y = (x∗ ∧ y)∨ (x∧ y∗). We compute for
x, y ∈ [a, b]

x ⊕ab y = ((x′ ∨ a) ∧ b ∧ y) ∨ (x ∧ (y′ ∨ a) ∧ b)

= ((x′ ∨ a) ∧ y) ∨ ((y′ ∨ a) ∧ x)

= (x′ ∧ y) ∨ a ∨ (x ∧ y′) ∨ a

= (x′ ∧ y) ∨ (x ∧ y′) ∨ a = (x + y) ∨ a = x +ab y.
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Corollary 4. Let A = (A; +, ·, 0, 1) be a De Morgan quasiring satisfy-
ing the correspondence identity and a ∈ A. Then ([0, a]; +, ·, 0, a) is a De
Morgan quasiring satisfying the correspondence identity if and only if a is a
Boolean element. Define x +a y = (x + y) ∨ a. Then ([a, 1];+a, ·, a, 1) is a
De Morgan quasiring satisfying the correspondence identity if and only if a
is a Boolean element.
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