THE MAXIMAL SUBSEMIGROUPS
 OF THE IDEALS OF SOME SEMIGROUPS OF PARTIAL INJECTIONS

Ilinka Dimitrova
Faculty of Mathematics and Natural Science
South-West University "Neofit Rilski"
Blagoevgrad, 2700, Bulgaria
e-mail: ilinka_dimitrova@yahoo.com
AND
Jörg Koppitz*
Institute of Mathematics, Potsdam University
Potsdam, 14469, Germany
e-mail: koppitz@rz.uni-potsdam.de

Abstract

We study the structure of the ideals of the semigroup $I O_{n}$ of all isotone (order-preserving) partial injections as well as of the semigroup $I M_{n}$ of all monotone (order-preserving or order-reversing) partial injections on an n-element set. The main result is the characterization of the maximal subsemigroups of the ideals of $I O_{n}$ and $I M_{n}$.

Keywords: finite transformation semigroup, isotone and monotone partial transformations, maximal subsemigroups.

2000 Mathematics Subject Classification: 20M20.

[^0]
1. Introduction

Let $X_{n}=\{1,2, \ldots, n\}$ be an n - element set ordered in the usual way. The monoid $P T_{n}$ of all partial transformations of X_{n} is a very interesting object. In this paper we will multiply transformations from the right to the left and use the corresponding notation for the right to the left composition of transformations: $x(\alpha \beta)=(x \alpha) \beta$, for $x \in X_{n}$. We say that a transformation $\alpha \in P T_{n}$ is isotone (order-preserving) if $x \leq y \Longrightarrow x \alpha \leq y \alpha$ for all x, y from the domain of α, antitone (order-reversing) if $x \leq y \Longrightarrow y \alpha \leq x \alpha$ for all x, y from the domain of α and monotone if it is isotone or antitone.

In the present paper, we study the structure of the semigroups $I O_{n}$ of all isotone partial injections and $I M_{n}$ of all monotone partial injections of X_{n}. From the definition of monotone transformations, it is clear that $I O_{n} \subseteq I M_{n}$.

Some semigroups of transformations have been studied since the sixties. In fact, presentations of the semigroup O_{n} of all isotone transformations and of the semigroup $P O_{n}$ of all isotone partial transformations (excluding the permutation in both cases) were established by Aǐens̆tat ([1]) in 1962 and by Popova ([16]), respectively, in the same year. Some years later (1971), Howie ([14]) studied some combinatorial and algebraic properties of O_{n} and, in 1992, Gomes and Howie ([13]) established some more properties of O_{n}, namely its rank and idempotent rank. In recent years it has been studied in different aspects by several authors (for example [4, 15, 17, 18]). The monoid $I O_{n}$ of all isotone partial injections of X_{n} has been the object of study since 1997 by Fernandes in various papers ($[7,8,9]$). Some basic properties of $I O_{n}$, in particular, a description of Green's relations, congruences and a presentation, were obtained in [2]. Ganyushkin and Mazorchuk ([12]) studied some properties of $I O_{n}$ as describe ideals, systems of generators, maximal subsemigroups and maximal inverse subsemigroups of $I O_{n}$.

In [10], Fernandes, Gomes and Jesus gave a presentation of both the semigroups M_{n} of all monotone transformations of X_{n} and the semigroup $P M_{n}$ of all monotone partial transformations. Dimitrova and Koppitz ([4]) considered the maximal subsemigroups of M_{n} and its ideals. Delgado and Fernandes ([3]) have computed the abelian kernels of the semigroup $I M_{n}$. Fernandes, Gomes and Jesus ([11]) exhibited some properties as well as a presentation for the semigroup $I M_{n}$. Dimitrova and Koppitz ([5]) characterized the maximal subsemigroups of $I M_{n}$.

In this paper we consider the ideals of the semigroups $I O_{n}$ and $I M_{n}$. In Section 2 we describe the maximal subsemigroups of the ideals of the semigroup $I O_{n}$. Each of the considered ideals has exactly $2\binom{n}{r}-2$ maximal subsemigroups. In Section 3 we characterize the maximal subsemigroups of the ideals of the semigroup $I M_{n}$. It happens that each of the considered ideals has exactly $2\binom{n}{r}+1$ maximal subsemigroups.

We will try to keep the standard notation. For every partial transformation α by dom α and im α we denote the domain and the image of α, respectively. If α is injective, the number rank $\alpha:=|\operatorname{dom} \alpha|=|\operatorname{im} \alpha|$ is called the rank of α. Clearly, rank $\alpha \beta \leq \min \{\operatorname{rank} \alpha, \operatorname{rank} \beta\}$ and $\operatorname{im} \beta=\operatorname{im} \alpha \beta$ as well as dom $\alpha=\operatorname{dom} \alpha \beta$ if im $\alpha=\operatorname{dom} \beta$. From the definition of isotone and antitone transformation, it follows that every element $\alpha \in I M_{n}$ is uniquely determined by dom α and $\operatorname{im} \alpha$ satisfying $|\operatorname{dom} \alpha|=|\operatorname{im} \alpha|$. Moreover, for every $A, B \subset X_{n}$ of the same cardinality there exists one isotone transformation $\alpha \in I O_{n} \subseteq I M_{n}$ and one antitone transformation $\beta \in I M_{n}$ such that dom $\alpha=\operatorname{dom} \beta=A$ and $\operatorname{im} \alpha=\operatorname{im} \beta=B$. We will denote by $\alpha_{A, B}$ the unique isotone element $\alpha \in I M_{n}$ for which $A=\operatorname{dom} \alpha$ and $B=\operatorname{im} \alpha$, and by $\beta_{A, B}$ the unique antitone element $\beta \in I M_{n}$ for which $A=\operatorname{dom} \beta$ and $B=\operatorname{im} \beta$. The elements $\alpha_{A, A}, A \in X_{n}$, exhaust all idempotents in $I O_{n}$ as well as in $I M_{n}$. For the elements $\beta_{A, A}$, we have $\beta_{A, A}^{2}=\alpha_{A, A}$. In case $A=B=X_{n}$, we will use the notations α_{n} and β_{n} instead of $\alpha_{X_{n}, X_{n}}$ and $\beta_{X_{n}, X_{n}}$.

The Green's relations $\mathcal{L}, \mathcal{R}, \mathcal{J}$ and \mathcal{H} on $I O_{n}$ as well as on $I M_{n}$ are characterized as follows:

$$
\begin{gathered}
\alpha \mathcal{L} \beta \Longleftrightarrow \operatorname{im} \alpha=\operatorname{im} \beta \\
\alpha \mathcal{R} \beta \Longleftrightarrow \operatorname{dom} \alpha=\operatorname{dom} \beta \\
\alpha \mathcal{J} \beta \Longleftrightarrow \operatorname{rank} \alpha=\operatorname{rank} \beta \\
\mathcal{H}=\mathcal{L} \cap \mathcal{R} .
\end{gathered}
$$

Obviously, every \mathcal{H}-class in $I O_{n}$ contains exactly one element and every \mathcal{H} class in $I M_{n} \backslash\left\{\alpha \in I M_{n}\right.$: rank $\left.\alpha \leq 1\right\}$ contains exactly two elements. In the set $\left\{\alpha \in I M_{n}:\right.$ rank $\left.\alpha \leq 1\right\}$, every \mathcal{H}-class contains exactly one element.

2. Maximal subsemigroups of the ideals of $I O_{n}$

The semigroup $I O_{n}$ is the union of the \mathcal{J}-classes $J_{0}, J_{1}, \ldots, J_{n}$, where

$$
J_{r}:=\left\{\alpha \in I O_{n}: \operatorname{rank} \alpha=r\right\} \text { for } r=0, \ldots, n .
$$

It is well known that the ideal $I(n, r)(r=0, \ldots, n)$ of the semigroup $I O_{n}$ is the union of \mathcal{J}-classes $J_{0}, J_{1}, \ldots, J_{r}$, i.e.

$$
I(n, r)=\left\{\alpha \in I O_{n}: \operatorname{rank} \alpha \leq r\right\} .
$$

Every principal factor on $I O_{n}$ is a Rees quotient $I(n, r) / I(n, r-1)(1 \leq$ $r \leq n$) of which we think as $J_{r} \cup\{0\}$ (as it is usually convenient), where the product of two elements of J_{r} is taken to be zero if it falls into $I(n, r-1)$.

Let us denote by Λ_{r} the collection of all subsets of X_{n} of cardinality r. The $\mathcal{R}-, \mathcal{L}$ - and \mathcal{H} - classes in J_{r} have the following form:

$$
\begin{aligned}
R_{A} & :=\{\alpha \in I(n, r): \operatorname{dom} \alpha=A\}, \quad A \in \Lambda_{r} ; \\
L_{B} & :=\{\alpha \in I(n, r): \operatorname{im} \alpha=B\}, \quad B \in \Lambda_{r} ; \\
H_{A, B} & :=\left\{\alpha_{A, B}\right\}=R_{A} \cap L_{B}, \quad A, B \in \Lambda_{r} .
\end{aligned}
$$

Clearly, each R_{A} - class (L_{A} - class), $A \in \Lambda_{r}$ contains exactly one idempotent $\alpha_{A, A}$. Thus if E_{r} is the set of all idempotents in the class J_{r}, then $\left|E_{r}\right|=\binom{n}{r}$.

Since the product $\alpha \beta$ for all $\alpha, \beta \in J_{r}$ belongs to the class J_{r} if and only if $\operatorname{im} \alpha=\operatorname{dom} \beta$, it is obvious that

Lemma 1.

1. $L_{B} R_{A}= \begin{cases}J_{r}, & \text { if } A=B, \\ 0, & \text { if } A \neq B .\end{cases}$
2. $\alpha_{A, B} \alpha_{C, D}= \begin{cases}\alpha_{A, D}, & \text { if } B=C, \\ 0, & \text { if } B \neq C .\end{cases}$

Proposition 1 [7]. $\left\langle J_{r}\right\rangle=I(n, r)$, for $0 \leq r \leq n-1$.

Now we begin with the description of the maximal subsemigroups of the ideals of the semigroup $I O_{n}$.

Let us denote by $\operatorname{Dec}\left(\Lambda_{r}\right)$ the set of all decompositions $\left(N_{1}, N_{2}\right)$ of Λ_{r}, i.e. $N_{1} \cup N_{2}=\Lambda_{r}$ and $N_{1} \cap N_{2}=\emptyset$ where $N_{1}, N_{2} \neq \emptyset$.

Definition 1. Let $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)(r=1, \ldots, n-1)$. Then we put

$$
S_{\left(N_{1}, N_{2}\right)}:=I(n, r-1) \cup\left\{\alpha_{A, B}: A \in N_{1} \text { or } B \in N_{2}\right\} .
$$

The maximal subsemigroups of the ideal $I(n, n)=I O_{n}$ were described by Ganyushkin and Mazorchuk:

Theorem 1 [12]. A subsemigroup S of $I O_{n}$ is maximal if and only if $S=$ $I(n, n-1)$ or $S=\left\{\alpha_{n}\right\} \cup S_{\left(N_{1}, N_{2}\right)}$, where $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{n-1}\right)$.

In the following, we will consider the maximal subsemigroups of the ideals $I(n, r)$ for $r=1, \ldots, n-1$.

Lemma 2. Every maximal subsemigroup in $I(n, r)$ contains the ideal $I(n, r-1)$.

Proof. Let S be a maximal subsemigroup of $I(n, r)$. Assume that $J_{r} \subseteq S$, then according to Proposition 1 it follows that $I(n, r)=\left\langle J_{r}\right\rangle \subseteq S$, i.e. $S=I(n, r)$, a contradiction. Thus $J_{r} \nsubseteq S$. Then $S \cup I(n, r-1)$ is a proper subsemigroup of $I(n, r)$ since $I(n, r-1)$ is an ideal, and hence $S \cup I(n, r-1)=$ S by maximality of S. This implies $I(n, r-1) \subseteq S$.

Theorem 2. Let $1 \leq r \leq n-1$. Then a subsemigroup S of $I(n, r)$ is maximal if and only if there is an element $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$ with $S=S_{\left(N_{1}, N_{2}\right)}$.

Proof. Let $S=S_{\left(N_{1}, N_{2}\right)}$ for some $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$. Then

$$
S=I(n, r-1) \cup\left\{\alpha_{A, B}: A \in N_{1} \text { or } B \in N_{2}\right\} .
$$

Therefore, if $\alpha_{A, B} \notin S$ then $A \in N_{2}$ and $B \in N_{1}$, and thus $\alpha_{B, A} \in S$.

From Lemma 1 it follows that S is a semigroup. Really, let $\alpha_{A, B}, \alpha_{C, D} \in S$, i.e. $A, C \in N_{1}$ or $B, D \in N_{2}$ or $A \in N_{1}, D \in N_{2}$. Then we have $\alpha_{A, B} \alpha_{C, D}=$ $\alpha_{A, D} \in S$ for $B=C$ and $\alpha_{A, B} \alpha_{C, D}=0 \in I(n, r-1) \subseteq S$ for $B \neq C$.

Now we will show that S is maximal. Let $\alpha_{C, D} \in I(n, r) \backslash S$, i.e. $C \notin N_{1}$ and $D \notin N_{2}$. Then $D \in N_{1}$, since $N_{1} \cup N_{2}=\Lambda_{r}$ and so $\alpha_{D, P} \in S$ for all $P \in \Lambda_{r}$ and thus $R_{D}=\left\{\alpha_{D, P}: P \in \Lambda_{r}\right\} \subseteq S$. Moreover, we have $\alpha_{C, P}=\alpha_{C, D} \alpha_{D, P}$, for all $P \in \Lambda_{r}$, by Lemma 1. Thus we obtain the \mathcal{R}-class $R_{C}=\left\{\alpha_{C, P}: P \in \Lambda_{r}\right\} \subseteq\left\langle S \cup\left\{\alpha_{C, D}\right\}\right\rangle$. Moreover, $C \in N_{2}$ and so $L_{C}=$ $\left\{\alpha_{P, C}: P \in \Lambda_{r}\right\} \subseteq S$. Using Lemma 1, we have $L_{C} R_{C}=J_{r} \subseteq\left\langle S \cup\left\{\alpha_{C, D}\right\}\right\rangle$. Thus, we obtain that $\left\langle S \cup\left\{\alpha_{C, D}\right\}\right\rangle=I(n, r)$. Therefore, S is a maximal subsemigroup of the ideal $I(n, r)$.

For the converse part let S be a maximal subsemigroup of the ideal $I(n, r)$. From Lemma 2, we have that $I(n, r-1) \subseteq S$. Then $S=I(n, r-1)$ $\cup T$, where $T \subseteq J_{r}$.

Let $\alpha_{A, B} \notin S$. Then $\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle=I(n, r)$. Let now $P, Q \in \Lambda_{r}$. Suppose that $\alpha_{P, Q} \notin S$. Then $\alpha_{P, Q} \in\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle$ and $\alpha_{P, Q}=\alpha_{P, A} \alpha_{A, B} \alpha_{B, Q}$. Moreover, $\alpha_{P, A}=\alpha_{P, A} \alpha_{A, B} \alpha_{B, A}$ and $\alpha_{B, Q}=\alpha_{B, A} \alpha_{A, B} \alpha_{B, Q}$. This shows that we need $\alpha_{P, A}$ and $\alpha_{B, Q}$ to generate $\alpha_{P, A}$ and $\alpha_{B, Q}$, respectively, with elements of $S \cup\left\{\alpha_{A, B}\right\}$. Hence $\alpha_{P, A}, \alpha_{B, Q} \in S$.

Assume that $\alpha_{Q, P} \notin S$. Then $\alpha_{Q, P}=\alpha_{Q, A} \alpha_{A, B} \alpha_{B, P}$ and by the same arguments, we obtain that $\alpha_{Q, A}, \alpha_{B, P} \in S$.

Further, from $\alpha_{Q, P}=\alpha_{Q, A} \alpha_{A, P}$ it follows that $\alpha_{A, P} \notin S$. But $\alpha_{P, Q} \notin$ $\left\langle S \cup\left\{\alpha_{A, P}\right\}\right\rangle$ since $\alpha_{P, Q}=\alpha_{P, A} \alpha_{A, P} \alpha_{P, Q}$. This contradicts the maximality of S and thus $\alpha_{Q, P} \in S$. Hence if $\alpha_{P, Q} \notin S$ then $\alpha_{Q, P} \in S$ for any $P, Q \in \Lambda_{r}$. Therefore, for $N_{1}=\left\{B: \alpha_{A, B} \notin S\right\}$ and $N_{2}=\left\{A: \alpha_{A, B} \notin S\right\}$ we have that $S=S_{\left(N_{1}, N_{2}\right)}$.

There are exactly $2\binom{n}{r}-2$ maximal subsemigroups of the ideal $I(n, r)$, for $r=1, \ldots, n-1$ and $2^{n}-1$ maximal subsemigroups of $I(n, n)$.

3. Maximal subsemigroups of the ideals of $I M_{n}$

The semigroup $I M_{n}$ is the union of the \mathcal{J}-classes $J_{0}, J_{1}, \ldots, J_{n}$, where

$$
J_{r}:=\left\{\alpha \in I M_{n}: \operatorname{rank} \alpha=r\right\} \text { for } r=0, \ldots, n .
$$

It is well known that the ideal $I(n, r)(r=0, \ldots, n)$ of the semigroup $I M_{n}$ is the union of \mathcal{J}-classes $J_{0}, J_{1}, \ldots, J_{r}$, i.e.

$$
I(n, r)=\left\{\alpha \in I M_{n}: \operatorname{rank} \alpha \leq r\right\} .
$$

Every principal factor on $I M_{n}$ is a Rees quotient $I(n, r) / I(n, r-1)(1 \leq r \leq$ n) of which we think as $J_{r} \cup\{0\}$, where the product of two elements of J_{r} is taken to be zero if it falls into $I(n, r-1)$.

The $\mathcal{R}-, \mathcal{L}$ - and \mathcal{H} - classes in J_{r} have the following form:

$$
\begin{aligned}
R_{A} & :=\{\alpha \in I(n, r): \operatorname{dom} \alpha=A\}, \\
L_{B} & :=\{\alpha \in I(n, r): \operatorname{im} \alpha=B\}, \\
H_{A, B} & :=\left\{\alpha_{A, B}, \beta_{A, B}\right\}=\Lambda_{A} ; \\
H_{A}, & A, B \in \Lambda_{r} .
\end{aligned}
$$

The \mathcal{L}-class, \mathcal{R}-class and \mathcal{H}-class, respectively, containing the element $\alpha \in$ $I M_{n}$ will be denoted by L_{α}, R_{α}, and H_{α}, respectively.

Since the product $\alpha \beta$ for all $\alpha, \beta \in J_{r}$ belongs to the class J_{r} if and only if im $\alpha=\operatorname{dom} \beta$, it is easy to show that

Lemma 3.

1. $L_{B} R_{A}=\left\{\begin{array}{cc}J_{r}, & \text { if } A=B, \\ 0, & \text { if } A \neq B .\end{array}\right.$
2. $H_{A, B} H_{C, D}= \begin{cases}H_{A, D}, & \text { if } B=C, \\ 0, & \text { if } B \neq C .\end{cases}$

Let U be a subset of the semigroup $I M_{n}$. We denote by U^{i} (respectively U^{a}) the set of all isotone (respectively antitone) transformations in the set U. An immediate but important property is that the product of two isotone transformations or two antitone transformations is an isotone, and the product of an isotone transformation with an antitone transformation, or vice versa, is an antitone one.

Proposition 2. $J_{r} \subseteq\left\langle J_{r}^{a}\right\rangle$ and $J_{r} \subseteq\left\langle J_{r}^{i} \cup\left\{\beta_{A, B}\right\}\right\rangle$, for all $A, B \in \Lambda_{r}$.

Proof. Let $A, B \in \Lambda_{r}$. Then for all $C \in \Lambda_{r}$, we have $\alpha_{A, B}=\beta_{A, C} \beta_{C, B}$. Therefore, $J_{r} \subseteq\left\langle J_{r}^{a}\right\rangle$.

From $L_{A}^{i} \beta_{A, B}=L_{B}^{a}$ and $L_{B}^{a} R_{B}^{i}=J_{r}^{a}$, we have $J_{r} \subseteq\left\langle J_{r}^{i} \cup\left\{\beta_{A, B}\right\}\right\rangle$.

Proposition 3. $\left\langle J_{r}\right\rangle=I(n, r)$, for $0 \leq r \leq n-1$.
Proof. Clearly $\left\langle J_{0}\right\rangle=I(n, 0)$. In [5], it was shown that $J_{r-1}^{i} \subseteq J_{r}^{i} J_{r}^{i}$ and $J_{r-1}^{a} \subseteq J_{r-1}^{i} J_{r}^{a} J_{r-1}^{i}$ for $1 \leq r \leq n-1$. Since $I(n, r)=J_{0} \cup J_{1} \cup \cdots \cup J_{r}$, we have $\left\langle J_{r}\right\rangle=I(n, r)$.

From Proposition 2 and Proposition 3 we have
Corollary 1. Let $1 \leq r \leq n-1$. Then $\left\langle J_{r}^{a}\right\rangle=\left\langle J_{r}^{i} \cup\left\{\beta_{A, B}\right\}\right\rangle=I(n, r)$, for all $A, B \in \Lambda_{r}$.

Now we begin with the description of the maximal subsemigroups of the ideals of the semigroup $I M_{n}$.

Clearly, the ideal $I(n, 1)$ of $I M_{n}$ coincides with the ideal $I(n, 1)$ of $I O_{n}$. Thus the maximal subsemigroups of this ideal are characterized in Theorem 2 and there are exactly $2^{n}-2$ such semigroups.

Now we will consider the maximal subsemigroups of the ideals $I(n, r)$ for $r=2, \ldots, n-1$.
Lemma 4. Every maximal subsemigroup in $I(n, r)$ contains the ideal $I(n, r-1)$.

The proof is similar as that in Lemma 2.
Theorem 3 Let $2 \leq r \leq n-1$. Then a subsemigroup S of $I(n, r)$ is maximal if and only if it belongs to one of the following three types:
(1) $S^{(1)}:=I(n, r-1) \cup J_{r}^{i}$;
(2) $S_{\left(N_{1}, N_{2}\right)}^{(2)}:=\bigcup\left\{H_{\alpha}: \alpha \in S_{\left(N_{1}, N_{2}\right)}\right\}, \quad$ for $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$;
(3) $S_{\left(N_{1}, N_{2}\right)}^{(3)}:=I(n, r-1) \cup\left\{\alpha_{A, B}: A, B \in N_{1}\right.$ or $\left.A, B \in N_{2}\right\} \cup$

$$
\cup\left\{\beta_{A, B}: A \in N_{1}, B \in N_{2} \text { or } A \in N_{2}, B \in N_{1}\right\} \text { for }\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right) .
$$

Proof.

(1) It is obvious that $S^{(1)}=I(n, r-1) \cup J_{r}^{i}$ is a semigroup, since $I(n, r-1)$ is an ideal and $\left(J_{r}^{i}\right)^{2} \subseteq I^{i}(n, r) \subseteq I(n, r-1) \cup J_{r}^{i}$. From Proposition 2, we have that $J_{r} \subseteq\left\langle J_{r}^{i} \cup\left\{\beta_{A, B}\right\}\right\rangle$ for all $\beta_{A, B} \in J_{r}^{a}$. Since $I(n, r) \backslash S^{(1)}=J_{r}^{a}$, we obtain $\left\langle S^{(1)} \cup\left\{\beta_{A, B}\right\}\right\rangle=I(n, r)$ for all $\beta_{A, B} \in J_{r}^{a}$. Therefore, $S^{(1)}$ is maximal in $I(n, r)$.
(2) Let $S=S_{\left(N_{1}, N_{2}\right)}^{(2)}$ for some $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$. Then

$$
S=I(n, r-1) \cup\left\{H_{A, B}: A \in N_{1} \text { or } B \in N_{2}\right\} .
$$

From Lemma 3 it follows that S is a semigroup. Really, let $H_{A, B}, H_{C, D} \subseteq$ S, i.e. $A, C \in N_{1}$ or $B, D \in N_{2}$ or $A \in N_{1}, D \in N_{2}$. Then we have $H_{A, B} H_{C, D}=H_{A, D} \subseteq S$ for $B=C$ and $H_{A, B} H_{C, D} \subseteq I(n, r-1) \subseteq S$ for $B \neq C$.

Now we will show that S is maximal. Let $H_{C, D}=\left\{\alpha_{C, D}, \beta_{C, D}\right\} \subseteq$ $I(n, r) \backslash S$, i.e. $C \notin N_{1}$ and $D \notin N_{2}$. Then $D \in N_{1}$, since $N_{1} \cup N_{2}=\Lambda_{r}$ and so $H_{D, P} \in S$ for all $P \in \Lambda_{r}$ and thus $R_{D}=\bigcup_{P \in \Lambda_{r}} H_{D, P} \subseteq S$. Moreover, we have

$$
H_{C, P}=H_{C, D} H_{D, P}, \quad \text { for } P \in \Lambda_{r},
$$

by Lemma 3. Thus we obtain the \mathcal{R}-class $R_{C}=\bigcup_{P \in \Lambda_{r}} H_{C, P} \subseteq\langle S \cup$ $\left.H_{C, D}\right\rangle$. Moreover, $C \in N_{2}$ and so $L_{C}=\bigcup_{P \in \Lambda_{r}} H_{P, C} \subseteq S$. Using Lemma 3, we have $L_{C} R_{C}=J_{r} \subseteq\left\langle S \cup H_{C, D}\right\rangle$. Since $\alpha_{C, D}=\beta_{C, D} \beta_{D, D}$ and $\beta_{C, D}=\alpha_{C, D} \beta_{D, D}$, where $\beta_{D, D} \in R_{D} \subseteq S$, we obtain that $\left\langle S \cup\left\{\alpha_{C, D}\right\}\right\rangle=$ $I(n, r)$ and $\left\langle S \cup\left\{\beta_{C, D}\right\}\right\rangle=I(n, r)$. Therefore, S is a maximal subsemigroup of the ideal $I(n, r)$.
(3) Let $S=S_{\left(N_{1}, N_{2}\right)}^{(3)}$ for some $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$. From Lemma 3, it follows that S is a semigroup. We will show that S is maximal. Let

$$
\begin{aligned}
V:= & I(n, r) \backslash S=\left\{\beta_{A, B}: A, B \in N_{1} \text { or } A, B \in N_{2}\right\} \cup \\
& \cup\left\{\alpha_{A, B}: A \in N_{1}, B \in N_{2} \text { or } A \in N_{2}, B \in N_{1}\right\}
\end{aligned}
$$

and let $\gamma \in V$. Then for the transformation γ we have four possibilities:

Let $\gamma \in\left\{\beta_{A, B}: A, B \in N_{1}\right\}$. Then $\alpha_{C, A} \in S$ (since $A \in N_{1}$) and so $\alpha_{C, A} \beta_{A, B}=\beta_{C, B} \in\langle S \cup\{\gamma\}\rangle$ for all $C \in N_{1}$. Also, we have $\beta_{C, A} \in S$ and thus $\beta_{C, A} \beta_{A, B}=\alpha_{C, B} \in\langle S \cup\{\gamma\}\rangle$ for all $C \in N_{2}$. Since $\alpha_{C, B} \in S$ for all $C \in N_{1}$ and $\beta_{C, B} \in S$ for all $C \in N_{2}$, we obtain $L_{B}=\bigcup_{C \in \Lambda_{r}} H_{C, B} \subseteq$ $\langle S \cup\{\gamma\}\rangle$. Further, $\beta_{B, B} \in L_{B}$ and $\beta_{B, B} \beta_{B, D}=\alpha_{B, D}$ for all $D \in N_{2}$ as well as $\beta_{B, B} \alpha_{B, D}=\beta_{B, D}$ for all $D \in N_{1}$. Thus since $\alpha_{B, D} \in S$ for all $D \in N_{1}$ and $\beta_{B, D} \in S$ for all $D \in N_{2}$, we obtain $R_{B}=\bigcup_{D \in \Lambda_{r}} H_{B, D} \subseteq\langle S \cup\{\gamma\}\rangle$. From Lemma 3, we have $L_{B} R_{B}=J_{r}$ and therefore $\langle S \cup\{\gamma\}\rangle=I(n, r)$.

- For $\gamma \in\left\{\beta_{A, B}: A, B \in N_{2}\right\}$, the proof is similar.
- Let $\gamma \in\left\{\alpha_{A, B}: A \in N_{1}, B \in N_{2}\right\}$. Then $\alpha_{C, A} \in S$ (since $A \in N_{1}$) and so $\alpha_{C, A} \alpha_{A, B}=\alpha_{C, B} \in\langle S \cup\{\gamma\}\rangle$ for all $C \in N_{1}$. Also, we have $\beta_{C, A} \in S$ and thus $\beta_{C, A} \alpha_{A, B}=\beta_{C, B} \in\langle S \cup\{\gamma\}\rangle$ for all $C \in N_{2}$. Since $\alpha_{C, B} \in S$ for all $C \in N_{2}$ and $\beta_{C, B} \in S$ for all $C \in N_{1}$, we obtain $L_{B}=$ $\bigcup_{C \in \Lambda_{r}} H_{C, B} \subseteq\langle S \cup\{\gamma\}\rangle$. Further, $\beta_{B, B} \in L_{B}$ and $\beta_{B, B} \alpha_{B, D}=\beta_{B, D}$ for all $D \in N_{2}$ as well as $\beta_{B, B} \beta_{B, D}=\alpha_{B, D}$ for all $D \in N_{1}$. Thus since $\alpha_{B, D} \in S$ for all $D \in N_{2}$ and $\beta_{B, D} \in S$ for all $D \in N_{1}$, we obtain $R_{B}=\bigcup_{l \in \Lambda_{r}} H_{B, D} \subseteq\langle S \cup\{\gamma\}\rangle$. From Lemma 3, we have $L_{B} R_{B}=J_{r}$ and therefore $\langle S \cup\{\gamma\}\rangle=I(n, r)$.
- For $\gamma \in\left\{\alpha_{A, B}: A \in N_{2}, B \in N_{1}\right\}$, the proof is similar.

Altogether, this shows that S is maximal.
For the converse part let S be a maximal subsemigroup of the ideal $I(n, r)$. From Lemma 4, we have that $I(n, r-1) \subseteq S$. Then $S=I(n, r-1)$ $\cup T$, where $T \subseteq J_{r}$. We consider two cases for the set T.

1. Let $T=J_{r}^{i}$. Then $S=I(n, r-1) \cup J_{r}^{i}=S^{(1)}$.
2. Let now $T \neq J_{r}^{i}$. Assume that $J_{r}^{i} \subseteq T$. Then $T=J_{r}^{i} \cup T^{\prime}$ where $\emptyset \neq T^{\prime} \subseteq J_{r}^{a}$. From Corollary 1, we have $S=I(n, r)$, a contradiction. Thus $J_{r}^{i} \nsubseteq T$. We also have that $J_{r}^{a} \nsubseteq T$ since $\left\langle J_{r}^{a}\right\rangle=I(n, r)$.

Admit that $H_{A, B} \subseteq S$ or $H_{A, B} \cap S=\emptyset$, for all $A, B \in \Lambda_{r}$. Assume that $S^{i}=S \cap I^{i}(n, r)$ is not a maximal subsemigroup of $I^{i}(n, r)$. Then there is an isotone transformation $\alpha_{A, B} \in I(n, r) \backslash S$ such that $\left\langle S^{i} \cup\left\{\alpha_{A, B}\right\}\right\rangle$ is a proper subset of $I^{i}(n, r)$. Therefore, there exists an $\alpha_{C, D} \in I(n, r) \backslash S$ such that $\alpha_{C, D} \notin\left\langle S^{i} \cup\left\{\alpha_{A, B}\right\}\right\rangle$. But $\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle=I(n, r)$ since S is maximal and $\alpha_{C, D}=\beta_{C, A} \alpha_{A, B} \beta_{B, D}$. Moreover, $\beta_{C, A}=\beta_{C, A} \alpha_{A, B} \alpha_{B, A}=\alpha_{C, A} \alpha_{A, B} \beta_{B, A}$ and $\beta_{B, D}=\beta_{B, A} \alpha_{A, B} \alpha_{B, D}=\alpha_{B, A} \alpha_{A, B} \beta_{B, D}$. This shows that we need
$\beta_{C, A}$ or $\alpha_{C, A}$ and $\beta_{B, D}$ or $\alpha_{B, D}$ to generate $\beta_{C, A}$ and $\beta_{B, D}$, respectively, with elements of $S \cup\left\{\alpha_{A, B}\right\}$. This implies that $\beta_{C, A}, \alpha_{C, A}, \beta_{B, D}, \alpha_{B, D} \in S$, since we assume that $H_{A, B} \subseteq S$ or $H_{A, B} \cap S=\emptyset$, for all $A, B \in \Lambda_{r}$. Hence $\alpha_{C, D}=\alpha_{C, A} \alpha_{A, B} \alpha_{B, D} \in\left\langle S^{i} \cup\left\{\alpha_{A, B}\right\}\right\rangle$, a contradiction. Therefore, we obtain that S^{i} is maximal in $I^{i}(n, r)$. Since all maximal subsemigroups of the ideal $I^{i}(n, r)$ are of type $S_{\left(N_{1}, N_{2}\right)}$ we have $S=\cup\left\{H_{\alpha}: \alpha \in S^{i}\right\}=S_{\left(N_{1}, N_{2}\right)}^{(2)}$, for some $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{r}\right)$.

Now, admit that $\left|H_{A, B} \cap S\right|=1$, for some $A, B \in \Lambda_{r}$. Suppose that $\alpha_{A, B} \notin S$ and $\beta_{A, B} \in S$. Then from $\alpha_{A, B}=\beta_{A, B} \beta_{B, B}$ and $\alpha_{A, B}=$ $\beta_{A, A} \beta_{A, B}$, it follows that $\beta_{A, A}, \beta_{B, B} \notin S$. Moreover, from $\beta_{A, B} \alpha_{B, A}=$ $\beta_{A, A} \notin S$, we get $\alpha_{B, A} \notin S$. Assume that $\beta_{B, A} \notin S$. Then $\beta_{B, A} \in\langle S \cup$ $\left.\left\{\alpha_{B, A}\right\}\right\rangle$, because of the maximality of S, and since $\beta_{B, A}=\beta_{B, B} \alpha_{B, A} \alpha_{A, A}=$ $\alpha_{B, B} \alpha_{B, A} \beta_{A, A}$, we obtain $\beta_{A, A} \in S$ or $\beta_{B, B} \in S$, a contradiction, and thus $\beta_{B, A} \in S$.

Further, let $P, Q \in \Lambda_{r}$. Suppose that $\alpha_{P, Q} \notin S$. Then from $\alpha_{P, Q}=$ $\alpha_{P, A} \beta_{A, B} \beta_{B, Q}$, it follows that if $\alpha_{P, A} \in S$ then $\beta_{B, Q} \notin S$ and vice versa. Also from $\alpha_{P, Q}=\beta_{P, A} \beta_{A, B} \alpha_{B, Q}$, it follows that if $\beta_{P, A} \in S$ then $\alpha_{B, Q} \notin S$ and vice versa. Moreover, $\alpha_{P, Q} \in\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle$ since S is maximal. Hence $\alpha_{P, Q}=\alpha_{P, A} \alpha_{A, B} \alpha_{B, Q}=\beta_{P, A} \alpha_{A, B} \beta_{B, Q}$. Therefore, we have $\alpha_{P, A}, \alpha_{B, Q} \in S$ and $\beta_{P, A}, \beta_{B, Q} \notin S$ or vice versa.

Assume that $\beta_{P, Q} \notin S$. Then $\beta_{P, Q} \in\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle$ and so $\beta_{P, Q}=$ $\alpha_{P, A} \alpha_{A, B} \beta_{B, Q}=\beta_{P, A} \alpha_{A, B} \alpha_{B, Q}$. But we obtain already that if $\alpha_{P, A}, \alpha_{B, Q} \in$ S then $\beta_{P, A}, \beta_{B, Q} \notin S$ or vice versa. Therefore, $\beta_{P, Q} \notin\left\langle S \cup\left\{\alpha_{A, B}\right\}\right\rangle$. This contradicts the maximality of S and thus $\beta_{P, Q} \in S$.

Further, from $\alpha_{P, Q}=\beta_{P, Q} \beta_{Q, Q}$ and $\alpha_{P, Q}=\beta_{P, P} \beta_{P, Q}$, it follows that $\beta_{P, P}, \beta_{Q, Q} \notin S$. Moreover, from $\beta_{P, Q} \alpha_{Q, P}=\beta_{P, P} \notin S$, we get $\alpha_{Q, P} \notin$ S. Assume that $\beta_{Q, P} \notin S$. Then $\beta_{Q, P} \in\left\langle S \cup\left\{\alpha_{Q, P}\right\}\right\rangle$, because of the maximality of S, and since $\beta_{Q, P}=\beta_{Q, Q} \alpha_{Q, P} \alpha_{P, P}=\alpha_{Q, Q} \alpha_{Q, P} \beta_{P, P}$, we obtain $\beta_{P, P} \in S$ or $\beta_{Q, Q} \in S$, a contradiction, and thus $\beta_{Q, P} \in S$.

Analogously, if $\beta_{P, Q} \notin S$ we have that $\beta_{Q, P} \notin S$ and $\alpha_{P, Q}, \alpha_{Q, P} \in S$.
Suppose that $\alpha_{P, Q} \in S$ for some $P, Q \in \Lambda_{r}$. Then $\beta_{P, Q} \notin S$. Otherwise, from $\alpha_{A, B}=\alpha_{A, P} \beta_{P, Q} \beta_{Q, B} \notin S$ it follows
i) $\alpha_{A, P} \notin S$ and $\beta_{Q, B} \in S$, i.e. $\beta_{A, P} \in S$ and $\beta_{Q, B} \in S$;
ii) $\alpha_{A, P} \in S$ and $\beta_{Q, B} \notin S$, i.e. $\alpha_{A, P} \in S$ and $\alpha_{Q, B} \in S$;
iii) $\alpha_{A, P} \notin S$ and $\beta_{Q, B} \notin S$, i.e. $\beta_{A, P} \in S$ and $\alpha_{Q, B} \in S$.

Then $\alpha_{A, B}=\beta_{A, P} \alpha_{P, Q} \beta_{Q, B}=\alpha_{A, P} \alpha_{P, Q} \alpha_{Q, B}=\beta_{A, P} \beta_{P, Q} \alpha_{Q, B}$, which contradicts that $\alpha_{A, B} \notin S$.

The proof when $\alpha_{A, B} \in S$ and $\beta_{A, B} \notin S$ is similar.
Finally, we obtain that

$$
\begin{equation*}
\alpha_{P, Q} \in S \Longleftrightarrow \beta_{P, Q} \notin S \tag{1}
\end{equation*}
$$

for $P, Q \in \Lambda_{r}$.
Let $\rho_{r}:=\left\{(P, Q): \alpha_{P, Q} \in S\right\}$. Obviously, ρ_{r} is an equivalence relation on Λ_{r} with $\Lambda_{r} / \rho_{r}=\left\{N_{1}, N_{2}, \ldots, N_{m}\right\}(m \geq 2)$. Indeed, ρ_{r} is reflexive since $E_{r} \subseteq S$, symmetric because of the previous considerations and transitive since $\alpha_{P, Q} \alpha_{Q, R}=\alpha_{P, R} \in S$ for $\alpha_{P, Q}, \alpha_{Q, R} \in S$. Moreover, $m \geq 2$ becomes clear by $J_{r}^{i} \nsubseteq T$. Assume that the decomposition contains more than two elements, i.e. $m>2$. Then there are N_{1}, N_{2}, N_{3} in our decomposition such that $A \in N_{1}, B \in N_{2}$ and $C \in N_{3}$. Thus $\alpha_{A, B}=\beta_{A, C} \beta_{C, B} \in S$, a contradiction. Therefore, $\Lambda_{r} / \rho_{r}=\left\{N_{1}, N_{2}\right\}$ and $S=S_{\left(N_{1}, N_{2}\right)}^{(3)}$, because of (1).

There are exactly $\left.2 \begin{array}{c}n \\ r\end{array}\right)-2$ maximal subsemigroups of the ideal $I^{i}(n, r)$ and exactly $2\binom{n}{r}-2$ maximal subsemigroups of type (3). Taking $I(n, r-1) \cup J_{r}^{i}$ into account, we get $2\binom{n}{r}+1$ maximal subsemigroups of the ideal $I(n, r)$, for $r=2, \ldots, n-1$.

Finally, we characterize the maximal subsemigroups of the ideal $I(n, n)=$ $I M_{n}$.

For $A \in \Lambda_{n-1}$ we put $\bar{A}:=\{n+1-i: i \in A\}$ and for $N \subseteq \mathcal{P}\left(X_{n}\right)$ we set $\bar{N}:=\{\bar{A}: A \in N\}$. Then we have

$$
\begin{aligned}
& \beta_{A, \bar{A}} \alpha_{\bar{A}, B}=\beta_{n} \alpha_{\bar{A}, B}=\beta_{A, B}, \\
& \beta_{A, \bar{A}} \beta_{\bar{A}, B}=\beta_{n} \beta_{\bar{A}, B}=\alpha_{A, B}, \\
& \alpha_{B, A} \beta_{A, \bar{A}}=\alpha_{B, A} \beta_{n}=\beta_{B, \bar{A}}, \\
& \beta_{B, A} \beta_{A, \bar{A}}=\beta_{B, A} \beta_{n}=\alpha_{B, \bar{A}} .
\end{aligned}
$$

Theorem 4. A subsemigroup S of $I M_{n}$ is maximal if and only if it belongs to one of the following three types:
(1) $T:=I(n, n-1) \cup\left\{\alpha_{n}\right\}$;
(2) $T_{\left(N_{1}, N_{2}\right)}:=J_{n} \cup\left\{H_{\alpha}: \alpha \in S_{\left(N_{1}, N_{2}\right)}\right\}$, for $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{n-1}\right)$ with $\bar{N}_{1}=N_{1}$ and $\bar{N}_{2}=N_{2}$;
(3) $T_{(N, \bar{N})}:=J_{n} \cup I(n, n-2) \cup\left\{\alpha_{A, B}: A, B \in N\right.$ or $\left.A, B \in \bar{N}\right\}$

$$
\cup\left\{\beta_{A, B}: A \in N, B \in \bar{N} \text { or } A \in \bar{N}, B \in N\right\} \text { for }(N, \bar{N}) \in \operatorname{Dec}\left(\Lambda_{n-1}\right) .
$$

Proof. It is clear that T is a maximal subsemigroup of $I M_{n}$. Further, we put

$$
\text { Inv }:=\left\{\beta_{A, \bar{A}}: A \in \Lambda_{n-1}\right\} .
$$

Let $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{n-1}\right)$ be a decomposition with the required properties. Since $I n v \subseteq T_{\left(N_{1}, N_{2}\right)}$ and by (2) it is easy to verify that $T_{\left(N_{1}, N_{2}\right)}$ is a subsemigroup of $I M_{n}$. Since $T_{\left(N_{1}, N_{2}\right)} \backslash J_{n}$ is a maximal subsemigroup of $I(n, n-1)$ by Theorem 3 and $J_{n} \subseteq T_{\left(N_{1}, N_{2}\right)}$, it follows that $T_{\left(N_{1}, N_{2}\right)}$ is a maximal subsemigroup of $I M_{n}$. Analogously, one can show that $T_{(N, \bar{N})}$ is a maximal subsemigroup of $I M_{n}$.

For the converse part, let S be maximal in $I M_{n}$. Admit that $J_{n} \nsubseteq S$. Then it is easy to see that $S=T$. Now suppose that $J_{n} \subseteq S$. Assume that Inv $\nsubseteq S$. Then there is an $A \in \Lambda_{n-1}$ with $\beta_{A, \bar{A}} \notin S$. Since S is maximal, we have $I M_{n}=\left\langle S \cup\left\{\beta_{A, \bar{A}}\right\}\right\rangle=S \cup\left\{\beta_{A, \bar{A}}\right\}$ by (2). Thus $S=I M_{n} \backslash\left\{\beta_{A, \bar{A}}\right\}$. But $\beta_{A, \bar{A}}=\alpha_{A, B} \beta_{B, \bar{A}}$ for some $B \in \Lambda_{n-1}$ with $B \neq A$. Since $\alpha_{A, B}, \beta_{B, \bar{A}} \in S$, we have $S=I M_{n}$, a contradiction. Hence $\operatorname{Inv} \subseteq S$. Let $S_{n-1}:=S \cap I(n, n-1)$. Assume that S_{n-1} is not a maximal subsemigroup of $I(n, n-1)$. Clearly, $S_{n-1} \neq I(n, n-1)$. Let $\gamma \in I(n, n-1) \backslash S_{n-1}$. Then for all $\delta \in I(n, n-1)$, we have $\delta \in\langle S \cup\{\gamma\}\rangle=\left\langle S_{n-1} \cup\{\gamma\}\right\rangle \cup J_{n}$ by (2) and since Inv $\subseteq S$. This shows that $\delta \in\left\langle S_{n-1} \cup\{\gamma\}\right\rangle$ and thus $\left\langle S_{n-1} \cup\{\gamma\}\right\rangle=I(n, n-1)$. Consequently, S_{n-1} is a maximal subsemigroup of $I(n, n-1)$. Using Theorem 3 we choose all decompositions $\left(N_{1}, N_{2}\right) \in \operatorname{Dec}\left(\Lambda_{n-1}\right)$ such that $\operatorname{Inv} \subseteq S_{\left(N_{1}, N_{2}\right)}^{(2)}$ and $I n v \subseteq S_{\left(N_{1}, N_{2}\right)}^{(3)}$, respectively. In this way we obtain the semigroups $T_{\left(N_{1}, N_{2}\right)}$ and $T_{(N, \bar{N})}$.

It is straightforward to calculate that there are exactly $2^{\frac{n+1}{2}}-1$ maximal subsemigroups of $I M_{n}$ if n is odd and exactly $\left.{ }^{3} \quad \overline{2}\right)-1$ maximal subsemigroups of $I M_{n}$ if n is even.

Acknowledgments

The authors would like to thank Professor Vítor H. Fernandes for his helpful suggestions and remarks in preparing this paper.

References

[1] A.Ja. Aǐzenštat, Defining Relations of the Semigroup of Endomorphisms of a Finite Linearly Ordered Set, Sibirsk. Matem. Z̆urn. 3 (1962), 161-169.
[2] M. Delgado and V.H. Fernandes, Abelian Kernels of Some Monoids of Injective Partial Transformations and an Application, Semigroup Forum 61 (2000), 435-452.
[3] M. Delgado and V.H. Fernandes, Abelian Kernels of Monoids of OrderPreserving Maps and of Some of Its Extensions, Semigroup Forum 68 (2004), 335-356.
[4] I. Dimitrova and J. Koppitz, On the Maximal Subsemigroups of Some Transformation Semigroups, Asian-European Journal of Mathematics 1 (2) (2008), 189-202.
[5] I. Dimitrova and J. Koppitz, The Maximal Subsemigroups of the Semigroup of all Monotone Partial Injections, Communications in Algebra, submited.
[6] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: a new class of divisors, Semigroup Forum 54 (2)(1997), 230-236.
[7] V.H. Fernandes, The Monoid of All Injective Order-preserving Partial Transformations on a Finite Chain, Semigroup Forum 62 (2001), 178-204.
[8] V.H. Fernandes, Semigroups of Order-preserving Mappings on a Finite Chain: another class of divisors, Izvestiya VUZ Matematika 3 (478) (2002), 51-59.
[9] V.H. Fernandes, Presentations for Some Monoids of Partial Transformations on a Finite Chain: a survey, Semigroups, Algorithms, Automata and Languages, World Scientific (2002), 363-378.
[10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra 33 (2005), 587-604.
[11] V.H. Fernandes G.M.S. Gomes and M.M. Jesus, Presentations for Some Monoids of Injective Partial Transformations on a Finite Chain, Southeast Asian Bull. Math. 28 (2004), 903-918.
[12] O. Ganyushkin and V. Mazorchuk, On the Structure of $I O_{n}$, Semigroup Forum 66 (2003), 455-483.
[13] G.M.S. Gomes and J.M. Howie, On the Rank of Certain Semigroups of Orderpreserving Transformations, Semigroup Forum 51 (1992), 275-282.
[14] J.M. Howie, Products of Idempotents in Certain Semigroups of Transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236.
[15] J.M. Howie and B.M. Shein, Products of Idempotent Order-Preserving Transformations, J. London Math. Soc. 7 (2) (1973), 357-366.
[16] L.M. Popova, Defining Relations of the Semigroup of Partial Endomorphisms of a Finite Linearly Ordered Set, Leningrad Gos. Ped. Inst. Učen. Zap. 238 (1962), 78-88.
[17] X. Yang, A Classiffication of Maximal Subsemigroups of Finite OrderPreserving Transformation Semigroups, Communications in Algebra 28 (3) (2000), 1503-1513.
[18] X. Yang and Ch. Lu, Maximal Properties of Some Subsemigroups in Finite Order-Preserving Transformation Semigroups, Communications in Algebra 28 (2000), 3125-3135.

[^0]: *Supported by Humboldt Foundation.

