
Discussiones Mathematicae 81
General Algebra and Applications 29 (2009 ) 81–107

SPECIAL M-HYPERIDENTITIES IN BIREGULAR

LEFTMOST GRAPH VARIETIES OF TYPE (2,0)

Apinant Anantpinitwatna and Tiang Poomsa-ard

Department of Mathematics, Faculty of Science

Mahasarakham University, Mahasarakham 44150, Thailand

e-mail: tiang@kku.ac.th

Abstract

Graph algebras establish a connection between directed graphs
without multiple edges and special universal algebras of type (2,0). We
say that a graph G satisfies a term equation s ≈ t if the corresponding
graph algebra A(G) satisfies s ≈ t. A class of graph algebras V is called
a graph variety if V = ModgΣ where Σ is a subset of T (X)×T (X). A

graph variety V ′ = ModgΣ
′

is called a biregular leftmost graph variety

if Σ
′

is a set of biregular leftmost term equations. A term equation
s ≈ t is called an identity in a variety V if A(G) satisfies s ≈ t for all
G ∈ V . An identity s ≈ t of a variety V is called a hyperidentity of a
graph algebra A(G), G ∈ V whenever the operation symbols occuring
in s and t are replaced by any term operations of A(G) of the appropri-
ate arity, the resulting identities hold in A(G). An identity s ≈ t of a
variety V is called an M -hyperidentity of a graph algebra A(G), G ∈ V
whenever the operation symbols occuring in s and t are replaced by
any term operations in a subgroupoid M of term operations of A(G)
of the appropriate arity, the resulting identities hold in A(G).

In this paper we characterize special M -hyperidentities in each
biregular leftmost graph variety. For identities, varieties and other
basic concepts of universal algebra see e.g. [3].
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1. Introduction

An identity s ≈ t of terms s, t of any type τ is called a hyperidentity (M-

hyperidentity) of an algebra A if whenever the operation symbols occurring
in s and t are replaced by any term operations (any term operations in
a subgroupoid M of term operations) of A of the appropriate arity, the
resulting identity holds in A. Hyperidentities can be defined more precisely
by using the concept of a hypersubstitution, which was introduced by K.
Denecke, D. Lau, R. Pöschel and D. Schweigert in [5].

We fix a type τ = (ni)i∈I , ni > 0 for all i ∈ I, and operation symbols
(fi)i∈I , where fi is ni − ary. Let Wτ (X) be the set of all terms of type τ
over some fixed alphabet X, and let Alg(τ) be the class of all algebras of
type τ . Then a mapping

σ : {fi|i ∈ I} −→ Wτ (X)

which assigns to every ni − ary operation symbol fi an ni − ary term will
be called a hypersubstitution of type τ (for short, a hypersubstitution). By
σ̂ we denote the extension of the hypersubstitution σ to a mapping

σ̂ : Wτ (X) −→ Wτ (X).

The term σ̂[t] is defined inductively by

(i) σ̂[x] = x for any variable x in the alphabet X, and

(ii) σ̂[fi(t1, ..., tni
)] = σ(fi)

Wτ (X)(σ̂[t1], ..., σ̂[tni
]).

Here σ(fi)
Wτ (X) on the right hand side of (ii) is the operation induced by

σ(fi) on the term algebra with the universe Wτ (X).
Graph algebras have been invented in [16] to obtain examples of non-

finitely based finite algebras. To recall this concept, let G = (V,E) be a
(directed) graph with the vertex set V and the set of edges E ⊆ V × V .
Define the graph algebra A(G) corresponding to G with the underlying set
V ∪ {∞}, where ∞ is a symbol outside V , and with two basic operations,
namely a nullary operation pointing to ∞ and a binary one denoted by
juxtaposition, given for u, v ∈ V ∪ {∞} by

uv =

{

u, if (u, v) ∈ E,
∞, otherwise.
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In [15] graph varieties had been investigated for finite undirected graphs
in order to get graph theoretic results (structure theorems) from universal
algebra via graph algebras. In [14] these investigations are extended to
arbitrary (finite) directed graphs where the authors ask for a graph theoretic
characterization of graph varieties, i.e., of classes of graphs which can be
defined by identities for their corresponding graph algebras. The answer is
a theorem of Birkhoff-type, which uses graph theoretic closure operations.
A class of finite directed graphs is equational (i.e., a graph variety) if and

only if it is closed with respect to finite restricted pointed subproducts and

isomorphic copies.
In [6] M. Kapeedaeng and T. Poomsa-ard characterized all biregular

leftmost graph varieties. In [1] Apinant Ananpinitwatna and Tiang Poomsa-
ard characterized identities in all biregular leftmost graph varieties. In [7] J.
Khampakdee and T. Poomsa-ard characterized hyperidentities in the class
of x(yx) ≈ x(yy) graph algebras. In [10] T. Poomsa-ard characterized hyper-
identities in the class of associative graph algebras. In [11, 12] T. Poomsa-
ard, J. Wetweerapong and C. Samartkoon characterized hyperidentitis in
the class of idempotent graph algebras and the class of transitive graph al-
gebras respectively. In [2] Amporn Ananpinitwatna and Tiang Poomsa-ard
characterized hyperidentities in all biregular leftmost graph varieties.

In this paper we characterize special M -hyperidentities in each biregular
leftmost graph variety.

2. Terms, identities and graph varieties

Dealing with terms for graph algebras, the underlying formal language has
to contain a binary operation symbol (juxtaposition) and a symbol for the
constant ∞ (denoted by ∞, too).

Definition 2.1. The set T (X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms;

(ii) if t1 and t2 are terms, then t1t2 is a term;

(iii) T (X) is the set of all terms which can be obtained from (i) and (ii)
in finitely many steps.
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Terms built up from the two-element set X2 = {x1, x2} of variables are thus
binary terms. We denote the set of all binary terms by T (X2). The leftmost
variable of a term t is denoted by L(t) and rightmost variable of a term t is
denoted by R(t). A term, in which the symbol ∞ occurs is called a trivial

term.

Definition 2.2. For each non-trivial term t of type τ = (2, 0) one can define
a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is the set of
all variables occurring in t and the edge set E(t) is defined inductively by

E(t) = φ if t is a variable and E(t1t2) = E(t1) ∪ E(t2) ∪ {(L(t1), L(t2))}

where t = t1t2 is a compound term.

L(t) is called the root of the graph G(t), and the pair (G(t), L(t)) is the
rooted graph corresponding to t. Formally, we assign the empty graph φ to
every trivial term t.

Definition 2.3. We say that a graph G = (V,E) satisfies an identity s ≈ t
if the corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t
for every assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write
G |= s ≈ t. Given a class G of graphs and a set Σ of identities (i.e.,
Σ ⊂ T (X) × T (X)) we introduce the following notation:

G |= Σ if G |= s ≈ t for all s ≈ t ∈ Σ,

G |= s ≈ t if G |= s ≈ t for all G ∈ G,

G |= Σ if G |= Σ for all G ∈ G,

IdG = {s ≈ t | s, t ∈ T (X), G |= s ≈ t,

ModgΣ = {G | G is a graph and G |= Σ}, Vg(G) = ModgIdG.

Vg(G) is called the graph variety generated by G and G is called graph

variety if Vg(G) = G. G is called equational if there exists a set Σ′ of identities
such that G = ModgΣ′. Obviously Vg(G) = G if and only if G is an equational
class.

Let var(t) be the set of all variables occurring in a term t. An equation
s ≈ t is said to be regular if var(s) = var(t), leftmost if L(s) = L(t) and
biregular leftmost if it is regular, leftmost and |var(s)| = 2. A graph variety
V = ModgΣ

′′

is said to be biregular leftmost graph variety if Σ
′′

is a set of
biregular leftmost term equation.
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3. Biregular leftmost graph varieties and identities

In [6] M. Kapeedaeng and T. Poomsa-ard characterized biregular leftmost
graph varieties and found that BRL = {K0,K1,K3, ...,K28}, where

K0 = Mod{xy ≈ xy}, K1 = Mod{xy ≈ x(yy)},

K2 = Mod{xy ≈ (xx)y}, K3 = Mod{xy ≈ (xx)(yy)},

K4 = Mod{xy ≈ x(yx)}, K5 = Mod{xy ≈ (xx)(yx)},

K6 = Mod{x(yy) ≈ (xx)y}, K7 = Mod{x(yy) ≈ (xx)(yy)},

K8 = Mod{x(yy) ≈ x(yx)}, K9 = Mod{x(yy) ≈ (xx)(yx)},

K10 = Mod{x(yy) ≈ x((yy)x)}, K11 = Mod{(xx)y ≈ (xx)(yy)},

K12 = Mod{(xx)y ≈ x(yx)}, K13 = Mod{(xx)y ≈ (xx)(yx)},

K14 = Mod{(xx)y ≈ x((yy)x)}, K15 = Mod{(xx)(yy) ≈ x(yx)},

K16 = Mod{(xx)(yy) ≈ (xx)(yx)}, K17 = Mod{(xx)(yy) ≈ (xx)((yy)x)}

K18 = Mod{x(yx) ≈ (xx)(yx)}, K19 = Mod{(xx)(yx) ≈ x((yy)x)},

K20 = Modg{xy ≈ x(yy), (xx)y ≈ x(yx)} = K1 ∩ K12,

K21 = Modg{xy ≈ (xx)y, x(yy) ≈ x(yx)} = K2 ∩ K8,

K22 = Modg{xy ≈ x(yx), (xx)y ≈ x(yy)} = K4 ∩ K6,

K23 = Modg{x(yy) ≈ (xx)y, x(yy) ≈ x(yx)} = K6 ∩ K8,

K24 = Modg{x(yy) ≈ (xx)y, x(yy) ≈ (xx)(yx)} = K6 ∩ K9,

K25 = Modg{x(yy) ≈ (xx)y, x(yx) ≈ (xx)(yx)} = K6 ∩ K18,

K26 = Modg{x(yy) ≈ (xx)(yy), x(yx) ≈ (xx)(yx)} = K7 ∩ K18,

K27 = Modg{x(yy) ≈ x((yy)x), (xx)y ≈ (xx)(yx)} = K10 ∩ K13,

K28 = Modg{(xx)y ≈ (xx)(yy), x(yx) ≈ (xx)(yx)} = K11 ∩ K18 is the set

of all biregular leftmost graph varieties.

In [1] Apinant Ananpinitwatna and Tiang Poomsa-ard characterized
identities in all biregular leftmost graph varieties. There are twentynine
biregular leftmost graph varieties and we want to skip the proof
about M -hyperidentity in some biregular leftmost graph variety.
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So we will quote the theorems about identity in biregular leftmost graph
variety only which will be needed as references. They are summarized in
following table:

Table 1. The property of biregular graph varieties of terms s and t.

Variety Property of s and t

K1 (i) L(s) = L(t), V (s) = V (t)

(ii) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(s)
iff there exists z ∈ V (t) such that (z, x) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) iff (x, y) ∈ E(t).

K2 (i) L(s) = L(t), V (s) = V (t)

(ii) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s)
iff there exists z ∈ V (t) such that (x, z) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) iff (x, y) ∈ E(t).

K4 (i) L(s) = L(t), V (s) = V (t)

(ii) for any x ∈ V (s), (x, x) ∈ E(s) iff (x, x) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s) iff
(x, y) ∈ E(t) or (y, x) ∈ E(t).

K9 (i) L(s) = L(t), V (s) = V (t)

(ii) for any x ∈ V (s), there exists y ∈ Vx(s) such that (y, y) ∈ E(s)
iff there exists z ∈ Vx(t) such that (z, z) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x) ∈ E(s),
and there exists z ∈ Vx(s) such that (z, z) ∈ E(s) iff (x, y) ∈ E(t)
or (y, x) ∈ E(t), and there exists z′ ∈ Vx(t) such that (z′, z′) ∈
E(t). Where for any non-trivial term t′ and x ∈ V (t), Vx(t′) =
{x′ ∈ V (t′) | there exists a dipath from x to x′ in G(t′)}.

K13 (i) L(s) = L(t), V (s) = V (t)

(iii) for any x ∈ V (s), (x, x) ∈ E(s) iff (x, x) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x), (y, y) ∈
E(s) iff (x, y) ∈ E(t) or (y, x), (y, y) ∈ E(t).

K27 (i) L(s) = L(t), V (s) = V (t)

(ii) for any x ∈ V (s), (x, x) ∈ E(s) iff (x, x) ∈ E(t),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(s) or (y, x), (x, x) ∈
E(s) or (y, x), (y, y) ∈ E(s) iff (x, y) ∈ E(t) or (y, x), (x, x) ∈ E(t)
or (y, x), (y, y) ∈ E(t).
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4. Hypersubstitution and proper hypersubstitution

Let K be a graph variety. Now we want to formulate precisely the concept
of a graph hypersubstitution for graph algebras.

Definition 4.1. A mapping σ : {f,∞} → T (X2), where X2 = {x1, x2} and
f is the operation symbol corresponding to the binary operation of a graph
algebra is called graph hypersubstitution if σ(∞) = ∞ and σ(f) = s ∈ T (X2).
The graph hypersubstitution with σ(f) = s is denoted by σs.

Definition 4.2. An identity s ≈ t is a K graph hyperidentity iff for all graph
hypersubstitutions σ, the equations σ̂[s] ≈ σ̂[t] are identities in K.

If we want to check that an identity s ≈ t is a hyperidentity in K we can
restrict our consideration to a (small) subset of HypG - the set of all graph
hypersubstitutions.

In [8] the following relation between hypersubstitutions was defined:

Definition 4.3. Two graph hypersubstitutions σ1, σ2 are called K-equivalent

iff σ1(f) ≈ σ2(f) is an idetity in K. In this case we write σ1 ∼K σ2.

The following lemma was proved in [9].

Lemma 4.1. If σ̂1[s] ≈ σ̂1[t] ∈ IdK and σ1 ∼K σ2 then, σ̂2[s] ≈ σ̂2[t] ∈
IdK.

Therefore, it is enough to consider the quotient set HypG/ ∼K.
In [13] it was shown that any non-trivial term t over the class of graph

algebras has a uniquely determined normal form term NF (t) and there is
an algorithm to construct the normal form term to a given term t. Now, we
want to describe how to construct the normal form term. Let t be a non-
trivial term. The normal form term of t is the term NF (t) constructed by
the following algorithm:

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)
) of all out-

neighbors (i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing
indices i1 ≤ ... ≤ ik(x) and let sx be the term (...((xxi1 )xi2)...xik(x)

).
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(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable
xi ∈ Z ∩ V (s) with the least index i, substitute the first occurrence
of xi by the term sxi

, denote the resulting term again by s and put
Z := Z \ {xi}. While Z 6= φ continue this procedure. The resulting
term is the normal form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted
graph. Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

The following definition was given in [4].

Definition 4.4. The graph hypersubstitution σNF (t), is called normal

form graph hypersubstitution. Here NF (t) is the normal form of the binary
term t.

Since for any binary term t the rooted graphs of t and NF (t) are the same,
we have t ≈ NF (t) ∈ IdK. Then for any graph hypersubstitution σt with
σt(f) = t ∈ T (X2), one obtains σt ∼K σNF (t).

In [4] all rooted graphs with at most two vertices were considered. Then
we formed the corresponding binary terms and used the algorithm to con-
struct normal form terms. The result is given in the Table 2.

Table 2. Normal form terms.

normal form term graph hypers normal form term graph hypers

x1x2 σ0 x1 σ1

x2 σ2 x1x1 σ3

x2x2 σ4 x2x1 σ5

(x1x1)x2 σ6 (x2x1)x2 σ7

x1(x2x2) σ8 x2(x1x1) σ9

(x1x1)(x2x2) σ10 (x2(x1x1))x2 σ11

x1(x2x1) σ12 x2(x1x2) σ13

(x1x1)(x2x1) σ14 (x2(x1x2))x2 σ15

x1((x2x1)x2) σ16 x2((x1x1)x2) σ17

(x1x1)((x2x1)x2) σ18 (x2((x1x1)x2))x2 σ19

Let MG be the set of all normal form graph hypersubstitutions. Then we
get,
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MG =
{σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

The concept of a proper hypersubstitution of a class of algebras was intro-
duced in [9].

Definition 4.5. A hypersubstitution σ is called proper with respect to a

class K of algebras if σ̂[s] ≈ σ̂[t] ∈ IdK for all s ≈ t ∈ IdK.

The following lemma was proved in [4].

Lemma 4.2. For each non-trivial term s, (s 6= x ∈ X) and for all u, v ∈ X,

we have

E(σ̂6[s]) = E(s) ∪ {(u, u)|(u, v) ∈ E(s)},

E(σ̂8[s]) = E(s) ∪ {(v, v)|(u, v) ∈ E(s)},

and

E(σ̂12[s]) = E(s) ∪ {(v, u)|(u, v) ∈ E(s)}.

By the similar way we prove that,

E(σ̂10[s]) = E(s) ∪ {(u, u), (v, v)|(u, v) ∈ E(s)}.

For any non-trivial term t the dual term td is defined in the following way:
If t = x ∈ X, then xd = x, if t = t1t2, then td = t2

dt1
d. The dual term td

can be obtained by application of the graph hypersubstitution σ5, σ̂5[t] = td.
If s ≈ t is a graph identity, then sd ≈ td is called dual identity and the rooted
graph corresponding to td is dual to (G(t), L(t)).

Let PMK be the set of all proper graph hypersubstitutions with respect
to the class K. In [2] it was found out that,

PMK1
= {σ0, σ6, σ12} PMK2

= {σ0, σ8, σ12}

PMK4 = {σ0, σ10} PMK9 = {σ0, σ6, σ8, σ12}

PMK13
= {σ0, σ8, σ10, σ12, σ16} PMK27

= {σ0, σ10, σ12}.
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5. Special M-hyperidentities

We know that a graph identity s ≈ t is a graph hyperidentity, if σ̂[s] ≈ σ̂[t]
is a graph identity for all σ ∈ MG. Let M be a subgroupoid of MG. Then,
a graph identity s ≈ t is an M -graph hyperidentity (M -hyperidentity), if
σ̂[s] ≈ σ̂[t] is a graph identity for all σ ∈ M . In [3] K. Denecke and S.L.
Wismath defined special subgroupoid of Mg as the following.

Definition 5.1.

(i) A hypersubstitution σ ∈ Hyp(τ) is said to be leftmost if for every
i ∈ I, the first variable in σ̂[fi(x1, ..., xni

)] is x1. Let Left(τ) be the
set of all leftmost hypersubstitutions of type τ .

(ii) A hypersubstitution σ ∈ Hyp(τ) is said to be outermost if for every
i ∈ I, the first variable in σ̂[fi(x1, ..., xni

)] is x1 and the last variable
is xni

. Let Out(τ) be the set of all outermost hypersubstitutions of
type τ .

(iii) A hypersubstitution σ ∈ Hyp(τ) is said to be rightmost if for every
i ∈ I, the last variable in σ̂[fi(x1, ..., xni

)] is xni
. Let Right(τ) be the

set of all rightmost hypersubstitutions of type τ . Note that Out(τ) =
Right(τ) ∩ Left(τ).

(iv) A hypersubstitution σ ∈ Hyp(τ) is called regular if for every i ∈ I,
each of the variables x1, ..., xni

occurs in σ̂[fi(x1, ..., xni
)]. Let Reg(τ)

be the set of all regular hypersubstitutions of type τ .

(v) A hypersubstitution σ ∈ Hyp(τ) is called symmetrical if for every
i ∈ I, there is a permutation si on the set {1, ..., ni} such that
σ̂[fi(x1, ..., xni

)] = fi(xsi(1), ..., xsi(ni)). Let D(τ) be the set of all
symmetrical hypersubstitutions of type τ .

(vi) We will call a hypersubstitution σ of type τ a pre-hypersubstitution
if for every i ∈ I, the term σ(fi) is not a variable. Let Pre(τ) be the
set of all pre-hypersubstitutions of type τ .

From Definition 5.1, we have:
MLeft = {σ0, σ1, σ3, σ6, σ8, σ10, σ12, σ14, σ16, σ18}.

MRight = {σ0, σ2, σ4, σ6, σ7, σ8, σ10, σ11, σ13, σ15, σ16, σ17, σ18, σ19}.

MOut = {σ0, σ6, σ8, σ10, σ16, σ18}.

MReg = {σ0, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.

MD = {σ0, σ5}.

MPre={σ0, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}.



Special m-hyperidentities in biregular leftmost ... 91

Definition 5.2. Let V be a graph variety of type τ , and let s ≈ t be an
identity of V . Let M be a subgroupoid of Hyp(τ). Then s ≈ t is called an
M -hyperidentity with respect to V , if for every σ ∈ M , σ̂[s] ≈ σ̂[t] is an
identity of V .

For any biregular leftmost graph variety K and for any s ≈ t ∈ IdK.
We want to characterize the property of s and t such that s ≈ t is
an MLeft-hyperidentity, MRight-hyperidentity, MOut-hyperidentity, MReg-
hyperidentity, MD-hyperidentity and MPre-hyperidentity with respect to K

for all biregular leftmost graph varieties K.

At first we consider the MD-hyperidentity. Since MD = {σ0, σ5}, let K

be any biregular leftmost graph variety and for any s ≈ t ∈ IdK. We see
that if s and t are trivial terms, then s ≈ t is an MD-hyperidentity with
respect to K. If s ≈ t is a non-trivial equation and G(s) = G(t), then s ≈ t
is an MD-hyperidentity with respect to K, too. For the case s ≈ t is a non-
trivial equation and G(s) 6= G(t). We have s ≈ t is an MD-hyperidentity
with respect to K if and only if σ̂5[s] ≈ σ̂5[t] ∈ IdK (i.e. sd ≈ td ∈ IdK).

For MLeft-hyperidentity. Since MLeft = {σ0, σ1, σ3, σ6, σ8, σ10, σ12, σ14,
σ16, σ18}, let K be any biregular leftmost graph variety and for any s ≈
t ∈ IdK. We see that if s and t are trivial terms, then s ≈ t is an MLeft-
hyperidentity with respect to K if and only if L(s) = L(t). If s ≈ t is a
non-trivial equation and G(s) = G(t), then s ≈ t is an MLeft-hyperidentity
with respect to K, too. Now we consider the case s ≈ t is non-trivial equation
and G(s) 6= G(t). We characterize MLeft-hyperidentity with respect to all
biregular leftmost graph varieties as the following theorems:

Theorem 5.1. Let s ≈ t be a non-trivial equation with G(s) 6= G(t). If

s ≈ t ∈ IdK, then s ≈ t is an MLeft-hyperidentity with respect to K for all

biregular leftmost graph varieties K with K /∈ {K4,K13,K27}.

Proof. Consider for K1. If σ ∈ {σ0, σ6, σ12}, then σ is a proper hyper-
substitution. Hence σ̂[s] ≈ σ̂[t] ∈ IdK1. Since σ̂1[s] = L(s) = L(t) = σ̂1[t]
and σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t], we have σ̂1[s] ≈ σ̂1[t] ∈ IdK1

and σ̂3[s] ≈ σ̂3[t] ∈ IdK1. By Table 1, we have σ0∼K1σ8, σ6∼K1σ10 and
σ12∼K1σ14∼K1σ16∼K1σ18. We get that σ̂8[s] ≈ σ̂8[t] ∈ IdK1, σ̂10[s] ≈
σ̂10[t] ∈ IdK1, σ̂14[s] ≈ σ̂14[t] ∈ IdK1, σ̂16[s] ≈ σ̂16[t] ∈ IdK1 and σ̂18[s] ≈
σ̂18[t] ∈ IdK1. Hence s ≈ t is an MLeft-hyperidentity with respect to K1. In
the same way, we can prove the statement for the other biregular leftmost
graph variety K with K /∈ {K4,K13,K27}.
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Theorem 5.2. Let s ≈ t be a non-trivial equation with G(s) 6= G(t). If

s ≈ t ∈ IdK13, then s ≈ t is an MLeft-hyperidentity with respect to K13 if

and only if for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(s) if

and only if there exists z ∈ V (s) such that (x, z) ∈ E(t).

Proof. For any x ∈ V (s) suppose that there exists y ∈ V (s) such that
(x, y) ∈ E(s). By Lemma 4.2, we have (x, x) ∈ E(σ̂6[s]). Since σ̂6[s] ≈
σ̂6[t] ∈ IdK13, we get (x, x) ∈ E(σ̂6[t]). If (x, x) /∈ E(t), then there exists
z ∈ V (s) such that (x, z) ∈ E(t). In the same way we prove the converse.

Conversely, assume that s ≈ t ∈ IdK13 and for any x ∈ V (s), there
exists y ∈ V (s) such that (x, y) ∈ E(s) if and only if there exists z ∈ V (s)
such that (x, z) ∈ E(t). We have to prove that s ≈ t is closed under all
graph hypersubstitutions from MLeft.

If σ ∈ PMK13 = {σ0, σ8, σ10, σ12, σ16}, then σ̂[s] ≈ σ̂[t] ∈ IdK13. Since
σ̂1[s] = L(s) = L(t) = σ̂1[t] and σ̂3[s] = L(s)L(s) = L(t)L(t) = σ̂3[t], we
have σ1[s] ≈ σ1[t] ∈ IdK13 and σ3[s] ≈ σ3[t] ∈ IdK13

For σ6 and for any x ∈ V (s) suppose that (x, x) ∈ E(σ̂6[s]). By Lemma
4.2, (x, x) ∈ E(s) or there exists y ∈ V (s) such that (x, y) ∈ E(s). Then
there exists z ∈ V (s) such that (x, z) ∈ E(t). Hence (x, x) ∈ E(σ̂6[t]).
In the same way, we can prove the converse. For any x, y ∈ V (s) with
x 6= y suppose that (x, y) ∈ E(σ̂6[s]) or (y, x), (y, y) ∈ E(σ̂6[s]). If (x, y) ∈
E(σ̂6[s]), then (x, y) ∈ E(s). We have (x, y) ∈ E(t) or (y, x), (y, y) ∈ E(t).
Hence we get (x, y) ∈ E(σ̂6[t]) or (y, x), (y, y) ∈ E(σ̂6[t]). If (y, x), (y, y) ∈
E(σ̂6[s]), then (y, x) ∈ E(s). We have (y, x) ∈ E(t) or (x, y), (x, x) ∈ E(t).
By Lemma 4.2, we get (y, x), (y, y) ∈ E(σ̂6[t]) or (x, y) ∈ E(σ̂6[t]). In the
same way, we can prove the converse. By Table 1, we get σ̂6[s] ≈ σ̂6[t] ∈
IdK13.

Since σ6∼K13
σ14 and σ10∼K13

σ18, we get that σ̂14[s] ≈ σ̂14[t] ∈ IdK13

and σ̂18[s] ≈ σ̂18[t] ∈ IdK13.

Theorem 5.3. Let s ≈ t be a non-trivial equation with G(s) 6= G(t). Let

K ∈ {K4, K27} and s ≈ t ∈ IdK. Then s ≈ t is an MLeft-hyperidentity

with respect to K if and only if the following are satisfied:

(i) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(t),

(ii) for any x ∈ V (s), there exists y′ ∈ V (s) such that (y′, x) ∈ E(s) if

and only if there exists z ′ ∈ V (s) such that (z′, x) ∈ E(t).
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Proof. For K4. Suppose that s ≈ t is MLeft-hyperidentity with respect
to K4. To prove (i), for any x ∈ V (s) suppose that there exists y ∈ V (s)
such that (x, y) ∈ E(s). By Lemma 4.2, we have (x, x) ∈ E(σ̂6[s]). Since
σ̂6[s] ≈ σ̂6[t] ∈ IdK4, we have (x, x) ∈ E(σ̂6[t]). If (x, x) /∈ E(t), then there
exists z ∈ V (s) such that (x, z) ∈ E(t). In the same way, we prove the
converse. Similarly, since σ̂8[s] ≈ σ̂8[t] ∈ IdK4, we can prove (ii).

Conversely, assume that s ≈ t ∈ IdK4 and that (i) and (ii) are satisfied.
We have to prove that s ≈ t is closed under all graph hypersubstitutions
from MLeft.

If σ ∈ PMK4
= {σ0, σ10}, then σ̂[s] ≈ σ̂[t] ∈ IdK4.

For σ1, σ3, we have σ̂1[s] = L(s) = L(t) = σ̂1[t] and σ̂3[s] = L(s)L(s) =
L(t)L(t) = σ̂3[t]. We have σ̂1[s] ≈ σ̂1[t] ∈ IdK4 and σ̂3[s] ≈ σ̂3[t] ∈ IdK4.

For σ6 and for any x ∈ V (s) suppose that (x, x) ∈ E(σ̂6[s]). By Lemma
4.2, (x, x) ∈ E(s) or there exists y ∈ V (s) such that (x, y) ∈ E(s). Then by
(i) there exists z ∈ V (s) such that (x, z) ∈ E(t). Hence (x, x) ∈ E(σ̂6[t]). In
the same way, we prove the converse. For any x, y ∈ V (s) with x 6= y suppose
that (x, y) ∈ E(σ̂6[s]) or (y, x) ∈ E(σ̂6[s]). By Lemma 4.2, (y, x) ∈ E(s) or
(x, y) ∈ E(s). Then (y, x) ∈ E(t) or (x, y) ∈ E(t) and thus (x, y) ∈ E(σ̂6[t])
or (y, x) ∈ E(σ̂6[t]). In the same way, we can prove the converse. Hence we
get σ̂6[s] ≈ σ̂6[t] ∈ IdK4.

Similarly, by (ii) we can prove that σ̂8[s] ≈ σ̂8[t] ∈ IdK4.

Since σ0∼K4σ12, σ6∼K4σ14, σ8∼K4σ16 and σ10∼K4σ18, we get that
σ̂12[s] ≈ σ̂12[t] ∈ IdK4, σ̂14[s] ≈ σ̂14[t] ∈ IdK4, σ̂16[s] ≈ σ̂16[t] ∈ IdK4 and
σ̂18[s] ≈ σ̂18[t] ∈ IdK4.

In the similarly way, we can prove the statement for K27.

For MOut-hyperidentity. Since MOut = {σ0, σ6, σ8, σ10, σ16, σ18}, let K be
any biregular leftmost graph variety and for any s ≈ t ∈ IdK. We see that
if s and t are trivial terms, then s ≈ t is an MOut-hyperidentity with respect
to K. If s ≈ t is a non-trivial equation and G(s) = G(t), then s ≈ t is an
MOut-hyperidentity with respect to K, too. For the case s ≈ t is non-trivial
equation and G(s) 6= G(t). Since MOut ⊂ MLeft, so we can check that it
has the same results as MLeft-hyperidentity.

For MReg-hyperidentity. Since MReg = {σ0, σ5, σ6, σ7, σ8, σ9, σ10, σ11, σ12,
σ13, σ14, σ15, σ16, σ17, σ18, σ19}, let K be any biregular leftmost graph variety
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and for any s ≈ t ∈ IdK. We see that if s and t are trivial terms, then s ≈ t
is an MReg-hyperidentity with respect to K. If s ≈ t is a non-trivial equation
and G(s) = G(t), then s ≈ t is an MReg-hyperidentity with respect to K,
too. For the case s ≈ t is non-trivial equation and G(s) 6= G(t). We get the
same result as hyperidentity. That is we have the following theorems:

Theorem 5.4. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let K be a biregular leftmost graph variety with K /∈ {K4,K13,K27}. If

s ≈ t ∈ IdK and sd ≈ td ∈ IdK, then s ≈ t is an MReg-hyperidentity with

respect to K.

Theorem 5.5. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and let

s ≈ t ∈ IdK13. Then s ≈ t is an MReg-hyperidentity with respect to K13 if

and only if the following are satisfied:

(i) sd ≈ td ∈ IdK13,

(ii) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(t),

(iii) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (x, z) ∈ E(td).

Theorem 5.6. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let K be a biregular leftmost graph variety with K ∈ {K4,K27}. Then s ≈ t
is an MReg- hyperidentity with respect to K if and only if the following are

satisfied:

(i) sd ≈ td ∈ IdK,

(ii) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(t),

(iii) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(s) if and

only if there exists z ∈ V (s) such that (z, x) ∈ E(t),

(iv) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(v) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (z, x) ∈ E(td).
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For MPre-hyperidentity. Since MPre = {σ0, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10, σ11,
σ12, σ13, σ14, σ15, σ16, σ17, σ18, σ19}, let K be any biregular leftmost graph
variety and for any s ≈ t ∈ IdK. We see that if s and t are trivial terms,
then s ≈ t is an MPre-hyperidentity with respect to K if and only if they
have the same leftmost and the same rightmost. If s ≈ t is a non-trivial
equation and G(s) = G(t), then s ≈ t is an MPre-hyperidentity with respect
to K, too. For the case s ≈ t is non-trivial equation and G(s) 6= G(t). Since
MReg = MPre − {σ3, σ4}, we have the same results as MReg-hyperidentity.

For MRight-hyperidentity. Since MRight = {σ0, σ2, σ4, σ6, σ7, σ8, σ10, σ11,
σ13, σ15, σ16, σ17, σ18, σ19}, let K be any biregular leftmost graph variety and
for any s ≈ t ∈ IdK. We see that if s and t are trivial terms, then s ≈ t is
an MRight-hyperidentity with respect to K if and only if they have the same
rightmost variables. If s ≈ t is a non-trivial equation and G(s) = G(t),
then s ≈ t is an MRight-hyperidentity with respect to K, too. Now we
consider the case s ≈ t is non-trivial equation and G(s) 6= G(t). Since
σ2 ∈ MRight, hence the first property of s and t is R(s) = R(t). Further since
σ̂6[td] = σ̂7[t], σ̂8[td] = σ̂9[t], σ̂10[td] = σ̂11[t], σ̂12[td] = σ̂13[t], σ̂14[td] = σ̂15[t],
σ̂16[td] = σ̂17[t], and σ̂18[td] = σ̂19[t] for all terms t. Then use the properties
of hypersubstitution that (a) if σ1(f) ≈ σ2(f) ∈ IdK, then σ1 ∼K σ2 and
(b) if σ1 ∼K σ2 and σ̂1(s) ≈ σ̂1(t) ∈ IdK, then σ̂2(s) ≈ σ̂2(t) ∈ IdK. Hence
we only find the properties of s and t such that σ̂(s) ≈ σ̂(t) ∈ IdK and
σ̂(sd) ≈ σ̂(td) ∈ IdK for all σ ∈ {σ6, σ8, σ10, σ12, σ14, σ16, σ18}. The proof of
each next theorem are the same pattern, so we will prove only some theorems
and skip the others. Then we characterize MRight-hyperidentity with respect
to each biregular leftmost graph variety as the following theorems:

Theorem 5.7. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK. Then s ≈ t is an MRight-hyperidentity with respect to

K ∈ {K1,K25,K28} if and only if the following are satisfied:

(i) R(s) = R(t),

(ii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) if and only if (x, y) ∈ E(td).

Proof. Suppose that s ≈ t is an MRight-hyperidentity with respect to K1.
Since σ̂2[s] ≈ σ̂2[t] ∈ IdK1, we have R(s) = R(t). For any x, y ∈ V (s)
with x 6= y, suppose that (x, y) ∈ E(sd). By Lemma 4.2, we have (x, y) ∈
E(σ̂6[sd]). Since σ̂7[s] ≈ σ̂7[t] ∈ IdK1 and σ̂6[t′d] = σ̂7[t′], for all terms t′,
we get σ̂6[sd] ≈ σ̂6[td] ∈ IdK1. Hence (x, y) ∈ E(σ̂6[td]). By Lemma 4.2,
(x, y) ∈ E(td). In the same way, we can prove the converse.
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Conversely, assume that s ≈ t ∈ IdK1 and that (i) and (ii) are satisfied. We
have to prove that s ≈ t is closed under all graph hypersubstitutions from
MRight.

If σ is proper, then σ̂[s] ≈ σ̂[t] ∈ IdK1. We get that σ̂[s] ≈ σ̂[t] ∈ IdK1

for all σ ∈ {σ0, σ6, σ12}.
Since σ0∼K1σ8, σ6∼K1σ10 and σ12∼K1σ14∼K1σ16∼K1σ18, by Lemma

4.1, we get that σ̂[s] ≈ σ̂[t] ∈ IdK1 for all σ ∈ {σ8, σ10, σ16, σ18}.
For σ2 and σ4, we have σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] =

R(s)R(s) = R(t)R(t) = σ̂4[t]. We have σ2[s] ≈ σ2[t] ∈ IdK1 and σ4[s] ≈
σ4[t] ∈ IdK1.

Next we will show that σ̂6[sd] ≈ σ̂6[td] ∈ IdK1 and σ̂12[sd] ≈ σ̂12[td] ∈
IdK1. For σ̂6, V (σ̂6[sd]) = V (s) = V (t) = V (σ̂6[td]), L(σ̂6[sd]) = R(s) =
R(t) = L(σ̂6[td]). For any x ∈ V (s), suppose that x = L(sd) = L(td). Since
s ≈ t is a non-trivial equation and G(s) 6= G(t), we get (x, x) ∈ E(σ̂6[sd])
and (x, x) ∈ E(σ̂6[td]). If x 6= L(sd), then there exist y, y′ ∈ V (s) such that
(y, x) ∈ E(σ̂6[sd]) and (y′, x) ∈ E(σ̂6[td]).

For any x, y ∈ V (s) with x 6= y suppose that (x, y) ∈ E(σ̂6[sd]). By
Lemma 4.2, (x, y) ∈ E(sd). By (ii), (x, y) ∈ E(td). We have (x, y) ∈
E(σ̂6[td]). In the same way, we can prove the converse. Hence we get that
σ̂6[sd] ≈ σ̂6[td] ∈ IdK1 and thus σ̂7[s] ≈ σ̂7[t] ∈ IdK1.

For σ̂12, V (σ̂12[sd]) = V (s) = V (t) = V (σ̂12[td]), L(σ̂12[sd]) = R(s) =
R(t) = L(σ̂12[td]). For any x ∈ V (s), suppose that x = L(sd) = L(td). Since
s ≈ t is a non-trivial equation with G(s) 6= G(t) and G(sd), G(td) are the
rooted graphs, then there exist y, y ′ ∈ V (s) such that (x, y) ∈ E(sd) and
(x, y′) ∈ E(td). By Lemma 4.2, we have (y, x) ∈ E(σ̂12[sd]) and (y′, x) ∈
E(σ̂12[td]). If x 6= L(sd), then there exist y, y′ ∈ V (s) with x 6= y, x 6= y′

such that (y, x) ∈ E(sd) and (y′, x) ∈ E(td). By Lemma 4.2 again, we get
that (y, x) ∈ E(σ̂12[sd]) and (y′, x) ∈ E(σ̂12[td]).

For any x, y ∈ V (s) with x 6= y suppose that (x, y) ∈ E(σ̂12[sd]). By
Lemma 4.2, (x, y) ∈ E(sd) or (y, x) ∈ E(sd). By (ii), (x, y) ∈ E(td) or
(y, x) ∈ E(td). We have (x, y) ∈ E(σ̂12[td]). In the same way, we prove
the converse. Therefore we get that σ̂12[sd] ≈ σ̂12[td] ∈ IdK1, and thus
σ̂13[s] ≈ σ̂13[t] ∈ IdK1,

Since σ7∼K1σ11 and σ13∼K1σ15∼K1σ17∼K1σ19, we get that σ̂[s] ≈ σ̂[t] ∈
IdK1 for all σ ∈ {σ11, σ15, σ17, σ19}.

In the similar way, we can prove the statement for K25 and K28.

Theorem 5.8. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and let

s ≈ t ∈ IdK. Then s ≈ t is an MRight-hyperidentity with respect to K ∈
{K2,K3,K5,K6,K7,K10,K11,K13,K21,K22} if and only if sd ≈ td ∈ IdK.
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Proof. Suppose that s ≈ t is an MRight-hyperidentity with respect to K2.
Since σ̂7[s] ≈ σ̂7[t] ∈ IdK2 and σ5∼K2σ7, we get that σ̂5[s] ≈ σ̂5[t] ∈ IdK2,
i.e., sd ≈ td ∈ IdK2.

Conversely, assume that s ≈ t ∈ IdK2 and sd ≈ td is an identity in K2.
We have to prove that s ≈ t is closed under all graph hypersubstitutions
from MRight.

If σ is proper, then σ̂[s] ≈ σ̂[t] ∈ IdK2. We get σ̂[s] ≈ σ̂[t] ∈ IdK2 for
all σ ∈ {σ0, σ8, σ12}.

For σ2 and σ4, we have σ̂2[s] = L(sd) = L(td) = σ̂2[t] and σ̂4[s] =
L(sd)L(sd) = L(td)L(td) = σ̂4[t]. We have σ̂2[s] ≈ σ̂2[t] ∈ IdK2 and σ̂4[s] ≈
σ̂4[t] ∈ IdK2.

Since σ0∼K2
σ6, σ8∼K2

σ10 and σ12∼K2
σ16∼K2

σ18, we get that σ̂[s] ≈
σ̂[t] ∈ IdK2 for all σ ∈ {σ6, σ10, σ16, σ18}.

Since sd ≈ td ∈ IdK2, σ0∼K2σ6, σ8∼K2σ10 and σ0, σ8, σ12 are proper
graph hypersubstitutions, we get that σ̂[s] ≈ σ̂[t] ∈ IdK2 for all σ ∈
{σ7, σ11, σ13}.

Since σ13∼K2σ15∼K2σ17∼K2σ19, we get that σ̂[s] ≈ σ̂[t] ∈ IdK2 for all
σ ∈ {σ15, σ17, σ19}.

In the similar way, we can prove for the others Ki, i ∈ {3, 5, 6, 7, 10, 11, 13,
21, 22}.

Theorem 5.9. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and let

s ≈ t ∈ IdK4. Then s ≈ t is an MRight-hyperidentity with respect to K4 if

and only if the following are satisfied:

(i) sd ≈ td ∈ IdK4,

(ii) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(t),

(iii) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(s) if and

only if there exists z ∈ V (s) such that (z, x) ∈ E(t),

(iv) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(v) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (z, x) ∈ E(td).

Proof. Suppose that s ≈ t is MRight-hyperidentity with respect to K4.
Since σ̂13[s] ≈ σ̂13[t] ∈ IdK4 and σ5∼K4σ13, we get that σ̂5[s] ≈ σ̂5[t] ∈
IdK4, i.e., sd ≈ td ∈ IdK4. To prove (ii), for any x ∈ V (s) suppose that
there exists y ∈ V (s) such that (x, y) ∈ E(s). By Lemma 4.2, we have
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(x, x) ∈ E(σ̂6[s]). Since σ̂6[s] ≈ σ̂6[t] ∈ IdK4, we get (x, x) ∈ E(σ̂6[t]).
If (x, x) /∈ E(t), then by Lemma 4.2, we have there exists z ∈ V (s) such
that (x, z) ∈ E(t). In the same way, we can prove the converse. Similarly,
since σ̂8[s] ≈ σ̂8[t] ∈ IdK4, we can prove (iii). To prove (iv), for any x ∈
V (s) suppose that there exists y ∈ V (s) such that (x, y) ∈ E(sd). By
Lemma 4.2, we have (x, x) ∈ E(σ̂6[sd]). Since σ̂7[s] ≈ σ̂7[t] ∈ IdK4, we get
σ̂6[sd] ≈ σ̂6[td] ∈ IdK4 and thus (x, x) ∈ E(σ̂6[td]). If (x, x) /∈ E(td), then
there exists z ∈ V (s) such that (x, z) ∈ E(td). In the same way, we prove
the converse. Similarly, since σ̂17[s] ≈ σ̂17[t] ∈ IdK4 and σ9∼K4

σ17, we get
σ̂8[sd] ≈ σ̂8[td] ∈ IdK4. Then, we can prove (v).

Conversely, assume that s ≈ t is an identity in K4 and that (i), (ii),
(iii), (iv) and (v) are satisfied. We have to prove that s ≈ t is closed under
all graph hypersubstitutions from MRight.

If σ ∈ {σ0, σ10}, then σ is proper and we get that σ̂[s] ≈ σ̂[t] ∈ IdK4.

For σ2 and σ4, we have σ̂2[s] = L(sd) = L(td) = σ̂2[t] and σ̂4[s] =
L(sd)L(sd) = L(td)L(td) = σ̂4[t]. We have σ̂2[s] ≈ σ̂2[t] ∈ IdK4 and σ̂4[s] ≈
σ̂4[t] ∈ IdK4.

For σ6, for any x ∈ V (s) suppose that (x, x) ∈ E(σ̂6[s]). By Lemma
4.2, (x, x) ∈ E(s) or there exists y ∈ V (s) such that (x, y) ∈ E(s). Then by
(ii), there exists z ∈ V (s) such that (x, z) ∈ E(t). Hence (x, x) ∈ E(σ̂6[t]).
In the same way, we can prove the converse. For any x, y ∈ V (s) with x 6= y
suppose that (x, y) ∈ E(σ̂6[s]) or (y, x) ∈ E(σ̂6[s]). If (x, y) ∈ E(σ̂6[s]), then
(x, y) ∈ E(s). We have (x, y) ∈ E(σ̂6[t]) or (y, x) ∈ E(σ̂6[t]). Suppose that
(y, x) ∈ E(σ̂6[s]). We see that (y, x) ∈ E(s). Then we get (y, x) ∈ E(t) or
(x, y) ∈ E(t) and thus (x, y) ∈ E(σ̂6[t]) or (y, x) ∈ E(σ̂6[t]). In the same
way, we prove the converse. Hence we get σ̂6[s] ≈ σ̂6[t] ∈ IdK4.

Similarly, by (iii) we can prove σ̂8[s] ≈ σ̂8[t] ∈ IdK4.

Next we will show that σ̂6[sd] ≈ σ̂6[td] ∈ IdK4. For any x ∈ V (s)
suppose that (x, x) ∈ E(σ̂6[sd]). By Lemma 4.2, (x, x) ∈ E(sd) or there
exists y ∈ V (s) such that (x, y) ∈ E(sd). Then by (iv), there exists z ∈ V (s)
such that (x, z) ∈ E(td). Hence (x, x) ∈ E(σ̂6[td]). In the same way, we can
prove the converse. For any x, y ∈ V (s) with x 6= y suppose that (x, y) ∈
E(σ̂6[sd]) or (y, x) ∈ E(σ̂6[sd]). If (x, y) ∈ E(σ̂6[sd]), then (x, y) ∈ E(sd).
We have (x, y) ∈ E(σ̂6[td]) or (y, x) ∈ E(σ̂6[td]). Suppose that (y, x) ∈
E(σ̂6[sd]). We see that (y, x) ∈ E(sd). Then we get that (y, x) ∈ E(td) or
(x, y) ∈ E(td) and thus (x, y) ∈ E(σ̂6[td]) or (y, x) ∈ E(σ̂6[td]). In the same
way, we can prove the converse. Therefore we get σ̂6[sd] ≈ σ̂6[td] ∈ IdK4

and thus σ̂7[s] ≈ σ̂7[t] ∈ IdK4.
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Similarly, by (v), we prove σ̂8[sd] ≈ σ̂8[td] ∈ IdK4 and thus σ̂9[s] ≈ σ̂9[t] ∈
IdK4.

Since sd ≈ td ∈ IdK4, σ10 is proper, we have σ̂10[sd] ≈ σ̂10[td] ∈ IdK4

and thus σ̂11[s] ≈ σ̂11[t] ∈ IdK4.

Since σ̂7[t′] = σ̂6[t′d], σ̂9[t′] = σ̂8[t′d] and σ̂11[t′] = σ̂10[t′d] for all t′ ∈
T (X), we have that σ̂[s] ≈ σ̂[t] ∈ IdK4 for all σ ∈ {σ7, σ9, σ11}.

Since σ5∼K4
σ13, σ7∼K4

σ15, σ8∼K4
σ16, σ9∼K4

σ17, σ10∼K4
σ18 and

σ11∼K4
σ19, by Lemma 4.1, we get that σ̂[s] ≈ σ̂[t] ∈ IdK4 for all σ ∈

{σ13, σ15, σ16, σ17, σ18, σ19}.

Theorem 5.10. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK. Then s ≈ t is an MRight-hyperidentity with respect to

K ∈ {K8,K12,K20,K23} if and only if the following are satisfied:

(i) R(s) = R(t),

(ii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd) if and

only if (x, y) ∈ E(td) or (y, x) ∈ E(td).

Theorem 5.11. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK9. Then s ≈ t is an MRight-hyperidentity with respect to K9

if and only if the following are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(iii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd), and there

exists z ∈ V (s) such that (x, z) ∈ E(sd) if and only if (x, y) ∈ E(td)
or (y, x) ∈ E(td), and there exists z′ ∈ V (s) such that (x, z′) ∈ E(td),

(iv) there exists x ∈ V (s) such that (x, x) ∈ E(sd) if and only if there

exists x′ ∈ V (s) such that (x′, x′) ∈ E(td).

Proof. Suppose that s ≈ t is an MRight-hyperidentity with respect to K9.
To prove (i), since σ̂2[s] ≈ σ̂2[t] ∈ IdK1, we have R(s) = R(t).

To prove (ii), for any x ∈ V (s) suppose that there exists y ∈ V (sd)
such that (x, y) ∈ E(sd). By Lemma 4.2, we have (x, x) ∈ E(σ̂6[sd]). Since
σ̂7[s] ≈ σ̂7[t] ∈ IdK9 and σ̂6[t′d] = σ7[t′] for all t′ ∈ T (X), we get that
σ̂6[sd] ≈ σ̂6[td] ∈ IdK9. Hence there exists y′ ∈ Vx(td) such that (y′, y′) ∈
E(σ̂6[td]), we get that there exists z ∈ V (s) such that (x, z) ∈ E(td). In the
same way, we can prove the converse.
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To prove (iii), for any x, y ∈ V (s), x 6= y. Suppose that (x, y) ∈ E(sd) or
(y, x) ∈ E(sd), and there exists z ∈ V (s) such that (x, z) ∈ E(sd). We get
(x, y) ∈ E(σ̂6[sd]) or (y, x) ∈ E(σ̂6[sd]), and there exists z′ ∈ Vx(σ̂6[sd]) such
that (x, z′) ∈ E(σ̂6[sd]). Since σ̂7[s] ≈ σ̂7[t] ∈ IdK9, and σ̂6[t′d] = σ7[t′] for
all t′ ∈ T (X), we get that σ̂6[sd] ≈ σ̂6[td] ∈ IdK9. Hence (x, y) ∈ E(σ̂6[td])
or (y, x) ∈ E(σ̂6[td]), and there exists w ∈ Vx(σ̂6[td]) such that (x,w) ∈
E(σ̂6[td]). By Lemma 4.2, we have (x, y) ∈ E(td) or (y, x) ∈ E(td), and
there exists w′ ∈ V (s) such that (x,w′) ∈ E(td). In the same way, we can
prove the converse.

To prove (iv), suppose that there exists x ∈ V (s) such that (x, x) ∈
E(sd). By Lemma 4.2, we have (x, x) ∈ E(σ̂12[sd]). Hence there exists
y ∈ V (s) which there exists x ∈ Vy(σ̂12[sd]) such that (x, x) ∈ E(σ̂12[sd]).
Since σ̂13[s] ≈ σ̂13[t] ∈ IdK9 and σ̂12[t′d] = σ13[t′] for all t′ ∈ T (X), we get
that σ̂12[sd] ≈ σ̂12[td] ∈ IdK9. Therefore there exists x′ ∈ Vy(σ̂12[td]) such
that (x′, x′) ∈ E(σ̂12[td]). By Lemma 4.2, (x′, x′) ∈ E(td). In the same way,
we can prove the converse.

Conversely, assume that s ≈ t ∈ IdK9 and that (i), (ii), (iii) and (iv)
are satisfied. We have to prove that s ≈ t is closed under all graph hyper-
substitutions from MRight.

If σ is proper, then σ̂[s] ≈ σ̂[t] ∈ IdK9. We get that σ̂[s] ≈ σ̂[t] ∈ IdK9

for all σ ∈ {σ0, σ6, σ8, σ12}.

Since σ8∼K9σ10∼K9σ14∼K9σ16∼K9σ18, we get that σ̂[s] ≈ σ̂[t] ∈ IdK9

for all σ ∈ {σ10, σ16, σ18}.

For σ2 and σ4, we have σ̂2[s] = R(s) = R(t) = σ̂2[t] and σ̂4[s] =
R(s)R(s) = R(t)R(t) = σ̂4[t]. We have σ̂2[s] ≈ σ̂2[t] ∈ IdK9 and σ̂4[s] ≈
σ̂4[t] ∈ IdK9.

We will show that σ̂6[sd] ≈ σ̂6[td] ∈ IdK9. By (ii) and Lemma 4.2, we see
that for any x ∈ V (s) there exists y ∈ Vx(σ̂6[sd]) such that (y, y) ∈ E(σ̂6[sd])
if and only if there exists z ∈ Vx(σ̂6[td]) such that (z, z) ∈ E(σ̂6[td]). For any
x, y ∈ V (s) with x 6= y suppose that (x, y) ∈ E(σ̂6[sd]) or (y, x) ∈ E(σ̂6[sd]),
and there exists z ∈ Vx(σ̂6[sd]) such that (z, z) ∈ E(σ̂6[sd]). By Lemma 4.2,
we have (x, y) ∈ E(sd) or (y, x) ∈ E(sd), and there exists z′ ∈ V (s) such
that (x, z′) ∈ E(sd). By (iii), we get (x, y) ∈ E(td) or (y, x) ∈ E(td), and
there exists w ∈ V (s) such that (x,w) ∈ E(td). We have (x, y) ∈ E(σ̂6[td])
or (y, x) ∈ E(σ̂6[td]), and there exists w′ ∈ Vx(σ̂6[td]) such that (w′, w′) ∈
E(σ̂6[td]). In the same way, we can prove the converse. Therefore we get
σ̂6[sd] ≈ σ̂6[td] ∈ IdK9 and thus σ̂7[s] ≈ σ̂7[t] ∈ IdK9.

Similarly, we can prove σ̂8[sd] ≈ σ̂8[td] ∈ IdK9 and thus σ̂9[s] ≈ σ̂9[t] ∈
IdK9.



Special m-hyperidentities in biregular leftmost ... 101

Next we will show that σ̂12[sd] ≈ σ̂12[td] ∈ IdK9. For any x ∈ V (s) suppose
that there exists y ∈ Vx(σ̂12[sd]) such that (y, y) ∈ E(σ̂12[sd]). By Lemma
4.2, we have (y, y) ∈ E(sd). By (iv), we get that there exists y ′ ∈ V (s)
such that (y′, y′) ∈ E(td). By Lemma 4.2, we have for any x 6= y, (x, y) ∈
E(σ̂12[td]) if and only if (y, x) ∈ E(σ̂12[td]). Hence y′ ∈ Vx(σ̂12[td]) such
that (y′, y′) ∈ E(σ̂12[td]). In the same way, we can prove the converse.
For any x, y ∈ V (s) with x 6= y suppose that (x, y) ∈ E(σ̂12[sd]) or (y, x) ∈
E(σ̂12[sd]), and there exists z ∈ Vx(σ̂12[sd]) such that (z, z) ∈ E(σ̂12[sd]). By
Lemma 4.2, we have (z, z) ∈ E(sd) and z ∈ Vx′(σ̂12[sd]) for all x′ ∈ V (sd).
Therefore (x, y) ∈ E(σ̂12[sd]) or (y, x) ∈ E(σ̂12[sd]), and z ∈ Vx(σ̂12[td])
such that (z, z) ∈ E(σ̂12[td]). In the same way, we can prove the converse.
Therefore we get σ̂12[sd] ≈ σ̂12[td] ∈ IdK9 and thus σ̂13[s] ≈ σ̂13[t] ∈ IdK9.

Since σ9∼K9σ11∼K9σ15∼K9σ17∼K9σ19, we get that σ̂[s] ≈ σ̂[t] ∈ IdK9

for all σ ∈ {σ11, σ15, σ17, σ19}.

Theorem 5.12. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK14. Then s ≈ t is an MRight-hyperidentity with respect to

K14 if and only if the following are satisfied:

(i) R(s) = R(t),

(ii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd), and there

exists z ∈ V (s) such that (x, z) ∈ E(sd) if and only if (x, y) ∈ E(td)
or (y, x) ∈ E(td), and there exists z′ ∈ V (s) such that (x, z′) ∈ E(td),

(iii) there exists x ∈ V (s) such that (x, x) ∈ E(sd) if and only if there

exists x′ ∈ V (s) such that (x′, x′) ∈ E(td).

Theorem 5.13. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK15. Then s ≈ t is an MRight-hyperidentity with respect to

K15 if and only if the following are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td).

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd),
and there exists z ∈ V (s) such that (x, z) ∈ E(sd) if and only if

(x, y) ∈ E(td) or (y, x) ∈ E(td), and there exists z′ ∈ V (s) such that

(x, z′) ∈ E(td).
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Theorem 5.14. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK. Then s ≈ t is an MRight-hyperidentity with respect to

K ∈ {K16,K17} if and only if the following conditions are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(iii) there exists x ∈ V (s) such that (x, x) ∈ E(sd) if and only if there

exists y ∈ V (s) such that (y, y) ∈ E(td),

(iv) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd) if

and only if (x, y) ∈ E(td) or (y, x) ∈ E(td).

Theorem 5.15. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK18. Then s ≈ t is an MRight-hyperidentity with respect to

K18 if and only if the following conditions are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(sd) if and only if (x, y) ∈
E(td).

Theorem 5.16. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK19. Then s ≈ t is an MRight-hyperidentity with respect to

K19 if and only if the following conditions are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(iii) there exists x ∈ V (s) such that (x, x) ∈ E(sd) if and only if there

exists z ∈ V (s) such that (z, z) ∈ E(td),

(iv) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) if and only if (x, y) ∈ E(td).

Theorem 5.17. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK24. Then s ≈ t is an MRight-hyperidentity with respect to

K24 if and only if the following conditions are satisfied:
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(i) R(s) = R(t),

(ii) there exists x ∈ V (s) such that (x, x) ∈ E(sd) if and only if there

exists y ∈ V (s) such that (y, y) ∈ E(td)

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd) if

and only if (x, y) ∈ E(td) or (y, x) ∈ E(td).

Theorem 5.18. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK26. Then s ≈ t is an MRight-hyperidentity with respect to

K26 if and only if the following conditions are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s) there exists y ∈ V (s) such that (x, y) ∈ E(sd) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(iii) for any x, y ∈ V (s), x 6= y, (x, y) ∈ E(sd) if and only if (x, y) ∈ E(td).

Theorem 5.19. Let s ≈ t be a non-trivial equation with G(s) 6= G(t) and

let s ≈ t ∈ IdK27. Then s ≈ t is an MRight-hyperidentity with respect to

K27 if and only if the following conditions are satisfied:

(i) R(s) = R(t),

(ii) for any x ∈ V (s), (x, x) ∈ E(sd) if and only if (x, x) ∈ E(td),

(iii) for any x, y ∈ V (s) with x 6= y, (x, y) ∈ E(sd) or (y, x) ∈ E(sd) if

and only if (x, y) ∈ E(td) or (y, x) ∈ E(td),

(iv) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(s) if and

only if there exists z ∈ V (s) such that (x, z) ∈ E(t),

(v) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(s) if and

only if there exists z ∈ V (s) such that (z, x) ∈ E(t),

(vi) for any x ∈ V (s), there exists y ∈ V (s) such that (x, y) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (x, z) ∈ E(td),

(vii) for any x ∈ V (s), there exists y ∈ V (s) such that (y, x) ∈ E(sd) if

and only if there exists z ∈ V (s) such that (z, x) ∈ E(td).

Proof. Suppose that s ≈ t is an MRight-hyperidentity with respect to
K27. To prove (i), Since σ̂2[s] ≈ σ̂2[t] ∈ IdK27, we have R(s) = R(t).
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To prove (ii), For any x ∈ V (s) suppose that (x, x) ∈ E(sd). By Lemma 4.2,
we have (x, x) ∈ E(σ̂12[sd]). Since σ̂13[s] ≈ σ̂13[t] ∈ IdK27 and σ̂12[t′d] =
σ̂13[t′] for all t′ ∈ T (X), we get σ̂12[sd] ≈ σ̂12[td] ∈ IdK27. Hence (x, x) ∈
E(σ̂12[td]) and thus (x, x) ∈ E(td). By the same way, we can prove the
converse.

To prove (iii), for any x, y ∈ V (s), x 6= y, suppose that (x, y) ∈ E(sd)
or (y, x) ∈ E(sd). By Lemma 4.2, we have (x, y) ∈ E(σ̂6[sd]) or (y, x) ∈
E(σ̂6[sd]). Since σ̂7[s] ≈ σ̂7[t] ∈ IdK27 and σ̂6[t′d] = σ̂7[t′] for all t′ ∈ T (X),
we get σ̂6[sd] ≈ σ̂6[td] ∈ IdK27. We see that (x, y) ∈ E(td) or (y, x) ∈ E(td).
By the same way, we can prove the converse.

To prove (iv), for any x ∈ V (s) suppose that there exists y ∈ V (s)
such that (x, y) ∈ E(s). By Lemma 4.2, we have (x, x) ∈ E(σ̂6[s]).
Since σ̂6[s] ≈ σ̂6[t] ∈ IdK27, we get that (x, x) ∈ E(σ̂6[t]). Then, there
exists z ∈ V (s) such that (x, z) ∈ E(t). In the same way, we can prove the
converse. Similarly, since σ̂8[s] ≈ σ̂8[t] ∈ IdK27, we prove (v).

To prove (vi), for any x ∈ V (s) suppose that there exists y ∈ V (s)
such that (x, y) ∈ E(sd). By Lemma 4.2, we have (x, x) ∈ E(σ̂6[sd]). Since
σ̂6[sd] ≈ σ̂6[td] ∈ IdK27, we get that (x, x) ∈ E(σ̂6[td]). Hence there exists
z ∈ V (s) such that (x, z) ∈ E(td). In the same way, we can prove the
converse. Similarly, since σ̂8[s] ≈ σ̂8[t] ∈ IdK27, we can prove (vii).

Conversely, assume that s ≈ t is an identity in K27 and that (i), (ii),
(iii), (iv), (v), (vi) and (vii) are satisfied. We have to prove that s ≈ t is
closed under all graph hypersubstitutions from MRight.

If σ ∈ {σ0, σ10, σ12}, then σ is proper and we get that σ̂[s] ≈ σ̂[t] ∈
IdK27.

For σ2 and σ4, we have σ̂2[s] = L(sd) = L(td) = σ̂2[t] and σ̂4[s] =
L(sd)L(sd) = L(td)L(td) = σ̂4[t]. We have σ̂2[s] ≈ σ̂2[t] ∈ IdK27 and
σ̂4[s] ≈ σ̂4[t] ∈ IdK27.

For σ6, for any x ∈ V (s) suppose that (x, x) ∈ E(σ̂6[s]). By Lemma
4.2, we see that there exists y ∈ V (s) such that (x, y) ∈ E(s). Then by (iv),
there exists z ∈ V (s) such that (x, z) ∈ E(t). Hence (x, x) ∈ E(σ̂6[t]). In
the same way, we can prove the converse. For any x, y ∈ V (s) with x 6= y
suppose that (x, y) ∈ E(σ̂6[s]) or (y, x), (x, x) ∈ E(σ̂6[s]) or (y, x), (y, y) ∈
E(σ̂6[s]). If (x, y) ∈ E(σ̂6[s]), then (x, y) ∈ E(s). We have (x, y) ∈ E(t)
or (y, x), (x, x) ∈ E(t) or (y, x), (y, y) ∈ E(t). Hence (x, y) ∈ E(σ̂6[t]) or
(y, x), (x, x) ∈ E(σ̂6[t]) or (y, x), (y, y) ∈ E(σ̂6[t]). If (y, x), (x, x) ∈ E(σ̂6[s]),
then (y, x) ∈ E(s) and there exists z ∈ V (s) such that (x, z) ∈ E(s).
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By (iv) and s ≈ t ∈ IdK27, we get that (y, x), (x, z ′) ∈ E(t) or (x, y), (x, x),
(x, z′) ∈ E(t) or (x, y), (y, y), (x, z ′) ∈ E(t). We have (x, y) ∈ E(σ̂6[t]) or
(y, x), (x, x) ∈ E(σ̂6[t]). Hence (x, y) ∈ E(σ̂6[t]) or (y, x), (x, x) ∈ E(σ̂6[t])
or (y, x), (y, y) ∈ E(σ̂6[t]). If (y, x), (y, y) ∈ E(σ̂6[s]), then (y, x) ∈ E(s).
We have (y, x) ∈ E(t) or (x, y), (x, x) ∈ E(t) or (x, y), (y, y) ∈ E(t). Hence
(y, x), (y, y) ∈ E(σ̂6[t]) or (x, y) ∈ E(σ̂6[t]). Therefore (x, y) ∈ E(σ̂6[t]) or
(y, x), (x, x) ∈ E(σ̂6[t]) or (y, x), (y, y) ∈ E(σ̂6[t]). In the same way, we can
prove the converse. We get σ̂6[s] ≈ σ̂6[t] ∈ IdK27.

Similarly, by (v), we can prove σ̂8[s] ≈ σ̂8[t] ∈ IdK27.
Next we will show that σ̂6[sd] ≈ σ̂6[td] ∈ IdK27. For any x ∈ V (s)

suppose that (x, x) ∈ E(σ̂6[sd]). By Lemma 4.2, we see that there exists y ∈
V (s) such that (x, y) ∈ E(sd). Then by (vi), there exists z ∈ V (s) such that
(x, z) ∈ E(td). Hence (x, x) ∈ E(σ̂6[td]). In the same way, we can prove the
converse. For any x, y ∈ V (s) with x 6= y suppose that (x, y) ∈ E(σ̂6[sd]) or
(y, x), (x, x) ∈ E(σ̂6[sd]) or (y, x), (y, y) ∈ E(σ̂6[sd]). We have (x, y) ∈ E(sd)
or (y, x) ∈ E(sd). By (iii), we get (x, y) ∈ E(td) or (y, x) ∈ E(td). By
Lemma 4.2, we get that (x, y) ∈ E(σ̂6[td]) or (y, x), (y, y) ∈ E(σ̂6[td]). That
is (x, y) ∈ E(σ̂6[td]) or (y, x), (x, x) ∈ E(σ̂6[td]) or (y, x), (y, y) ∈ E(σ̂6[td]).
In the same way, we can prove the converse. Hence σ̂6[sd] ≈ σ̂6[td] ∈ IdK27

and thus σ̂7[s] ≈ σ̂7[t] ∈ IdK27.
Similarly, we can prove σ̂8[sd] ≈ σ̂8[td] ∈ IdK27 and thus σ̂9[s] ≈ σ̂9[t] ∈

IdK27.
For σ10, since s ≈ t is a non-trivial equation with G(s) 6= G(t), we see

that (x, x) ∈ E(σ̂10[sd]) and (x, x) ∈ E(σ̂10[td]) for all x ∈ V (s). Then by
(iii), we can prove that σ̂10[sd] ≈ σ̂10[td] ∈ IdK27 and thus σ̂11[s] ≈ σ̂11[t] ∈
IdK27.

For σ12, since s ≈ t is a non-trivial equation with G(s) 6= G(t), by
(iii), we see that the graph G(σ̂12[sd]) with deleted loops and the graph
G(σ̂12[td]) with deleted loops are the same graphs and for any x, y ∈ V (s)
with x 6= y, (x, y) ∈ E(σ̂12[sd]) if and only if (y, x) ∈ E(σ̂12[sd]). We get
that σ̂12[sd] ≈ σ̂12[td] ∈ IdK27 and thus σ̂13[s] ≈ σ̂13[t] ∈ IdK27.

Since σ7∼K27σ15, σ8∼K27σ16, σ9∼K27σ17, σ10∼K27σ18 and σ11∼K27σ19,
we get that σ̂[s] ≈ σ̂[t] ∈ IdK27 for all σ ∈ {σ15, σ16, σ17, σ18, σ19}.
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