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Abstract

The theory of hyperidentities generalizes the equational theory
of universal algebras and is applicable in several fields of science,
especially in computers sciences (see e.g., [2, 1]). The main tool to
study hyperidentities is the concept of a hypersubstitution. Hypersub-
stitutions of many-sorted algebras were studied in [3]. On the basis of
hypersubstitutions one defines a pair of closure operators which turns
out to be a conjugate pair. The theory of conjugate pairs of addi-
tive closure operators can be applied to characterize solid varieties,
i.e., varieties in which every identity is satisfied as a hyperidentity (see
[4]). The aim of this paper is to apply the theory of conjugate pairs of
additive closure operators to many-sorted algebras.
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1. Preliminaries

Hyperidentities in one-based algebras were considered by many authors
(for references see e.g., [4, 2]). An identity s ≈ t is satisfied as a hyper-
identity in the one-based algebra A = (A; (fA

i )i∈I) of type τ if after any
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replacements of the operation symbols occurring in s and t by terms of the

same arity the arising equation is satisfied in A. These replacements can be

described by hypersubstitutions, i.e., mappings from the set of operation

symbols into the set of all terms of type τ . Hypersubstitutions cannot

only be applied to terms or equations but also to algebras. This gives a

pair of additive closure operators which are related to each other by the so-

called conjugate property and which form a conjugate pair of additive closure

operators (see [4]). A variety of one-based algebras is called solid if every

identity is satisfied as a hyperidentity. Characterizations of solid varieties

are based on the theory of conjugate pairs of additive closure operators. For

more background see [4].

In this paper we want to apply the theory of conjugate pairs of additive

closure operators to many-sorted algebras and identities and want to define

hyperidentities and solid varieties of many-sorted algebras.

Many-sorted algebras occur in various branches of mathematics. They

have found their way into computer science through abstract data type

specifications. Many-sorted algebras, varieties and quasivarieties of many-

sorted algebras are the mathematical fundament of approaches to abstract

data types in programming and specification languages. For basic concepts

on many-sorted algebras we refer the reader to [5].

The concept of terms in many-sorted algebras was discussed in [5].

First we want to give a slightly different version of the definitions and results

from [3].

Let I be a non-empty set, let N
+ := N \ {0} , n ∈ N

+, let I∗ :=
⋃

n≥1 In

and Σ ⊆ I∗ × I. Then we define Σn := Σ ∩ In+1. For γ ∈ Σ let γ(l) denote

the l-th component of γ. Let Kγ be a set of indices with respect to γ. If

|Kγ | = 1, we will drop the index.

Definition 1.1. Let n ∈ N
+ and X(n) := (X

(n)
i )i∈I be an I-sorted set

of variables, also called an n-element I-sorted alphabet, with X
(n)
i :=

{xi1, . . . , xin}, i ∈ I and let ((fγ)k)k∈Kγ ,γ∈Σ be an indexed set of Σ-sorted

operation symbols. Then for each i ∈ I a set Wn(i) which is called the set

of all n-ary Σ-terms of sort i, is inductively defined as follows:

(i) W n
0 (i) := X

(n)
i , i ∈ I,
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(ii) W n
l+1(i) := W n

l (i) ∪ {fγ(tk1 , . . . , tkn
) | γ = (k1, . . . , kn; i) ∈ Σ, tkj

∈

W n
l (kj), 1 ≤ j ≤ n}, l ∈ N. (Here we inductively assume that the sets

W n
l (i) are already defined for all sorts i ∈ I).

Then Wn(i) :=
⋃∞

l=0 W n
l (i) and we set W (i) :=

⋃

n∈N+ Wn(i). Let Xi :=
⋃

n∈N+ X
(n)
i and X := (Xi)i∈I . Let WΣ(X) := (W (i))i∈I . The set WΣ(X)

is called I-sorted set of all Σ-terms and its elements are called I-sorted

Σ-terms.

For any n ∈ N
+, i ∈ I we set Λn(i) := {(w; i) ∈ In+1 | w ∈ In, ∃ m ∈

N
+, ∃ α ∈ Σm, ∃ j (1 ≤ j ≤ m)(α(j) = i)}. Let Λ(i) :=

⋃∞
n=1 Λn(i) and

we set Λ :=
⋃

i∈I Λ(i).

To define many-sorted hypersubstitutions we need the following super-

position operation for I-sorted Σ-terms.

Definition 1.2. Let t ∈ W (i), tj ∈ W (kj) where 1 ≤ j ≤ n, n ∈ N. Then

the superposition operation

Sβ : W (i) × W (k1) × · · · × W (kn) → W (i)

for β = (k1, . . . , kn; i) ∈ Λ, is defined inductively as follows:

1. If t = xij ∈ Xi, then

1.1 Sβ(xij , t1, . . . , tn) := xij for i 6= kj and

1.2 Sβ(xij , t1, . . . , tn) := tj for i = kj .

2. If t = fγ(s1, . . . , sm) ∈ W (i) for γ = (i1, . . . , im; i) ∈ Σ and sq ∈

Wn(iq), 1 ≤ q ≤ m,m ∈ N, and if we assume that Sβq
(sq, t1, . . . , tn)

with βq =(k1, . . . , kn; iq)∈ Λ are already defined, then Sβ(fγ(s1, . . . , sm),

t1, . . . , tn) := fγ(Sβ1(s1, t1, . . . , tn), . . . , Sβm
(sm, t1, . . . , tn)).
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Definition 1.3. Let i ∈ I and ((fγ)k)k∈Kγ ,γ∈Σ be an indexed set of Σ-

sorted operation symbols. Let Σm(i) := {γ ∈ Σm | γ(m + 1) = i},m ∈ N
+

and let

Σ(i) :=
⋃

m≥1

Σm(i).

Any mapping

σi : {(fγ)k | k ∈ Kγ , γ ∈ Σ(i)} → W (i), i ∈ I,

which preserves arities, is said to be a Σ-hypersubstitution of sort i. Let Σ(i)-

Hyp be the set of all Σ-hypersubstitutions of sort i. The I-sorted mapping

σ := (σi)i∈I is called an I-sorted Σ-hypersubstitution. Let Σ-Hyp be the

set of all I-sorted Σ-hypersubstitutions. Any I-sorted Σ-hypersubstitution

σ can inductively be extended to an I-sorted mapping σ̂ := (σ̂i)i∈I . The

I-sorted mapping

σ̂ : WΣ(X) → WΣ(X)

is defined by the following steps: For each i ∈ I we define

(i) σ̂i[xij ] := xij for any variable xij ∈ Xi.

(ii) σ̂i[fγ(t1, . . . , tn)] := Sγ(σi(fγ), σ̂k1 [t1], . . . , σ̂kn
[tn]), where γ = (k1, . . . ,

kn; i) ∈ Σ and tq ∈ W (kq), 1 ≤ q ≤ n, n ∈ N, assumed that σ̂kq
[tq], are

already defined.

Using the extension σ̂i, we define (σ1)i ◦i (σ2)i := (σ̂1)i ◦(σ2)i. Then we have

((σ1)i ◦i (σ2)i)̂ = (σ̂1)i ◦ (σ̂2)i. Together with the identity mapping (σid)i
the set Σ(i)-Hyp forms a monoid (see [3]).

Now we want to describe the connection between heterogeneous algebras

and Σ-terms.

Let A be an I-sorted set. Then A is said to be a Σ-algebra if it has the

form

A =
(

A;
(((

fγ

)

k

)A)

k∈Kγ ,γ∈Σ

)
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where ((fγ)k)
A : Ak1 ×· · ·×Akn

→ Ai if γ = (k1, . . . , kn; i) ∈ Σ. Let Alg(Σ)

be the collection of all Σ-algebras. To connect Σ-terms with Σ-algebras

we need to consider operations on I-sorted sets. Let A be an I-sorted set,

n ∈ N
+, (ω; i) ∈ I∗× I. Then ω is called input sequence on A and i is called

output sort.

Definition 1.4. Let A be an I-sorted set, let ω = (k1, . . . , kn) ∈ In, n ∈

N
+ be an input sequence on A. Then we define the q-th n-ary projection

operation

eω,A
q : Ak1 × · · · × Akn

→ Akq
, 1 ≤ q ≤ n

of the input sequence ω on A by

eω,A
q (a1, . . . , an) := aq.

We denote by

O(ω,i)(A) := {f | f : Ak1 × · · · × Akn
→ Ai}

the set of all n-ary operations on A with input sequence ω and output

sort i.

In particular we denote by

Oω(A) := (O(ω,i)(A))i∈I

the I-sorted set of all n-ary operations on A with the same input

sequence ω.

Finally we introduce

O(A) :=
⋃

ω∈I∗

Oω(A)

as the I-sorted set of all finitary operations on the I-sorted set A.

Definition 1.5. Let A be an I-sorted set and let ω = (s1, . . . , sn), ω
′

=

(s
′

1, . . . , s
′

m) be input sequences on A. Then the superposition operation
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S
ω,i

ω
′ : O(ω,i)(A) × O(ω

′

,s1)(A) × · · · × O(ω
′

,sn)(A) → O(ω
′

,i)(A)

is defined by

S
ω,i

ω
′ (f, g1, . . . , gn) := f [g1, . . . , gn], with

f [g1, . . . , gn](a1, . . . , am) := f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))

for all (a1, . . . , am) ∈ A
s
′

1
× · · · × As

′

m
.

Using these composition operations we may consider a many-sorted algebra,

which satisfies similar identities as clones in the one-sorted case.

Theorem 1.6. Let A be an I-sorted set. Then the many-sorted algebra

(

(Oω(A))ω∈I∗ ;
(

S
ω,i

ω
′

)

(ω,i),(ω′
,i)∈I∗×I

,
(

e
ω,A
j

)

ω∈I∗,1≤j≤|ω|

)

(where |ω| is the length of the sequence ω) satisfies the following identities:

1) S
ω,i

ω
′′

(

f, S
ω
′

,s1

ω
′′ (g1, h1, . . . , hm), . . . , Sω

′

,sn

ω
′′ (gn, h1, . . . , hm)

)

= S
ω
′

,i

ω
′′

(

S
ω,i

ω
′ (f, g1, . . . gn), h1, . . . , hm

)

where

ω = (s1, . . . , sn) ∈ In, ω
′

= (s
′

1, . . . , s
′

m) ∈ Im, ω
′′

= (s
′′

1 , . . . , s
′′

p) ∈ Ip,
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and

f ∈ O(ω,i)(A), gj ∈ O(ω
′

,sj)(A), hk ∈ O(ω
′′

,s
′

k
)(A) for 1 ≤ j ≤ n,

1 ≤ k ≤ m, m,n ∈ N.

2) S
ω,sj

ω
′

(

e
ω,A
j , g1, . . . , gn

)

= gj where ω = (s1, . . . , sn) ∈ In, ω
′

∈ Im,

and

gj ∈ O(ω
′

,sj)(A), 1 ≤ j ≤ n,m, n ∈ N
+.

3) S
ω,i
ω

(

f, e
ω,A
1 , . . . , e

ω,A
n

)

= f where f ∈ O(ω,i)(A), ω ∈ In, n ∈ N
+.

The proofs are similar to the proofs of the corresponding propositions for

Σ-terms (see [3]).

2. I-Sorted Identities and Model Classes

Definition 2.1. Let n ∈ N
+ and X(n) be an n-element I-sorted alphabet

and let A be an I-sorted set. Let A ∈ Alg(Σ) be a Σ-algebra, and t ∈

Wn(i), i ∈ I. Let f := (fi)i∈I , where fi : X
(n)
i → Ai is an I-sorted evaluation

mapping of variables from X (n) by elements in A. Each mapping fi can

be extended in a canonical way to a mapping f̄i : Wn(i) → Ai. Then

tA : AX(n)
→ Ai is defined by

tA(f) := f̄i(t) for all f ∈ AX(n)
,

where f̄i is the extension of the evaluation mapping fi : X
(n)
i → Ai. The

operation tA is called the n-ary Σ-term operation on A induced by the n-ary

Σ-term t of sort i. We have xA
kqq = e

ω,A
q , 1 ≤ q ≤ n, where ω = (k1, . . . , kn),

since for f ∈ AX(n)
we have
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xA
kqq(f) = f̄kq

(xkqq)

= fkq
(xkqq)

= e
ω,A
q (a1, . . . , aq−1, fkq

(xkqq), aq+1, . . . , an)

for all aj ∈ Akj
such that j ∈ {1, . . . , q − 1, q + 1, . . . , n}.

Let W A(i) be the set of all Σ-term operations on A induced by the Σ-terms

of sort i. We set W A
Σ (X) := (W A(i))i∈I and call it the I-sorted set of Σ-term

operations on A induced by the Σ-terms.

Definition 2.2. Let t ∈ W (i), tj ∈ W (kj) where 1 ≤ j ≤ n, n ∈ N. Then

the superposition operation

SA
α : W A(i) × W A(k1) × · · · × W A(kn) → W A(i)

where α = (k1, . . . , kn; i) ∈ Λ, is inductively defined in the following way:

1) If t = xij ∈ Xi, then

1.1) SA
α

(

xA
ij , t

A
1 , . . . , tAn

)

:= xA
ij for i 6= kj and

1.2) SA
α

(

xA
ij , t

A
1 , . . . , tAn

)

:= tAj for i = kj .

2) If t = fγ(s1, . . . , sm) ∈ W (i) where γ = (i1, . . . , im; i) ∈ Σ, sq ∈

W (iq), 1 ≤ q ≤ m,m ∈ N and assume that SA
αq

(sAq , tA1 , . . . , tAn ),

where αq = (k1, . . . , kn; iq) ∈ Λ, are already defined, then
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SA
α

(

(fγ(s1, . . . , sm))A, tA1 , . . . , tAn

)

:= fA
γ

(

SA
α1

(sA1 , tA1 , . . . , tAn ), . . . , SA
αm

(sAm, tA1 , . . . , tAn )
)

.

Example 2.3. Let I = {1, 2}, X (2) = (X
(2)
i )i∈I , Σ = {(1, 2; 1), (2, 1; 2)}.

Let A be a Σ-algebra and let t = f(1,2;1)(f(1,2;1)(x11, x21), f(2,1;2)(x22, x11)) ∈

W (1), t1 ∈ W (2), and t2 ∈ W (1). Then

SA
(2,1;1)

(

tAtA1 tA2

)

= SA
(2,1;1)

(

(f(1,2;1)(f(1,2;1)(x11, x21), f(2,1;2)(x22, x11)))
AtA1 tA2

)

= fA
(1,2;1)

(

SA
(2,1;1)((f(1,2;1)(x11, x21))

AtA1 tA2

)

,

SA
(1,2;2)

(

(f(2,1;2)(x22, x11))
A, tA1 , tA2

))

= fA
(1,2;1)

(

fA
(1,2;1)

(

SA
(2,1;1)

(

xA
11, t

A
1 , tA2

)

, SA
(2,1;2)

(

xA
21, t

A
1 , tA2

))

,

fA
(2,1;2)

(

SA
(2,1;2)

(

xA
22, t

A
1 , tA2

)

, SA
(2,1;1)

(

xA
11, t

A
1 , tA2

)))

= fA
(1,2;1)

(

fA
(1,2;1)

(

xA
11, t

A
1

)

, fA
(2,1;2)

(

xA
22, x

A
11

))

.

Proposition 2.4. Let A be a Σ-algebra and fγ(t1, . . . , tn) ∈ Wn(i) where

γ = (i1, . . . , in, i) ∈ Σ, tq ∈ Wn(iq), 1 ≤ q ≤ n, n ∈ N. Then

(

fγ

(

t1, . . . , tn

))A
= fA

γ

(

tA1 , . . . , tAn

)

.

Proof. Let f ∈ AX(n)
, then
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(

fγ

(

t1, . . . , tn
)

)A
(f) = f̄i

(

fγ

(

t1, . . . , tn
)

)

= fA
γ

(

f̄i1(t1), . . . , f̄in(tn)
)

= fA
γ

(

tA1 (f), . . . , tAn (f)
)

= fA
γ

(

tA1 , . . . , tAn

)

(f).

Lemma 2.5. Let A be a Σ-algebra. For t ∈ W (i), tj ∈ W (kj), 1 ≤ j ≤

n, n ∈ N we have:

SA
α

(

tA, tA1 , . . . , tAn

)

=
(

Sα(t, t1, . . . , tn)
)A

where α = (k1, . . . , kn; i) ∈ Λ.

Proof. We will give a proof by induction on the complexity of the

Σ-term t.

1) If t = xij ∈ Xi, then

1.1) for i 6= kj ,

SA
α

(

tA, tA1 , . . . , tAn

)

= SA
α

(

xA
ij, t

A
1 , . . . , tAn

)

= xA
ij

=
(

Sα(xij , t1, . . . , tn)
)A

=
(

Sα(t, t1, . . . , tn)
)A

,

1.2) and for i = kj ,



Hyperidentities in many-sorted algebras 57

SA
α

(

tA, tA1 , . . . , tAn

)

= SA
α

(

xA
ij, t

A
1 , . . . , tAn

)

= tAj

=
(

Sα(xij , t1, . . . , tn)
)A

=
(

Sα(t, t1, . . . , tn)
)A

.

2) If t = fγ(s1, . . . , sm) ∈ W (i), where γ = (i1, . . . , im; i) ∈ Σ and sq ∈

W (iq), 1 ≤ q ≤ m,m ∈ N, and if we assume that the equations

SA
αq

(

sAq , tA1 , . . . , tAn

)

=
(

Sαq(sq, t1, . . . , tn)
)A

,

where αq = (k1, . . . , kn; iq) ∈ Λ, are satisfied, then for f ∈ AX(n)
we

have

SA
α

(

tA, tA1 , . . . , tAn

)

(f)

= SA
α

((

fγ(s1, . . . , sm)
)A

, tA1 , . . . , tAn

)

(f)

= fA
γ

(

SA
α1

(

(sA1 , tA1 , . . . , tAn

)

(f), . . . , SA
αm

(

sAm, tA1 , . . . , tAn

)

(f)
)

= fA
γ

((

Sα1(s1, t1, . . . , tn)
)A

(f), . . . ,
(

Sαm(sm, t1, . . . , tn)
)A

(f)
)

= fA
γ

(

f̄ii

(

Sα1(s1, t1, . . . , tn)
)

, . . . , f̄im

(

Sαm(sm, t1, . . . , tn)
))
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= f̄i

(

fγ

(

Sα1(s1, t1, . . . , tn), . . . , Sαm(sm, t1, . . . , tn)
))

=
(

fγ

(

Sα1(s1, t1, . . . , tn), . . . , Sαm(sm, t1, . . . , tn)
))A

(f)

=
(

Sα

(

fγ(s1, . . . , sm), t1, . . . , tn

))A
(f)

=
(

Sα

(

t, t1, . . . , tn

))A
(f).

Now we can define equations and identities.

Definition 2.6. A Σ-equation of sort i in X is a pair (si, ti) of elements

from W (i), i ∈ I. Such pairs are more commonly written as si ≈i ti. The

Σ-equation si ≈i ti is said to be a Σ-identity of sort i in the Σ-algebra A if

sAi = tAi , that is, if the Σ-term operations induced by si and ti, respectively,

on the Σ-algebra A are equal.

In this case we also say that the Σ-equation si ≈i ti is satisfied or

modelled by the Σ-algebra A, and write A |=i si ≈i ti. If the Σ-equation

si ≈i ti is satisfied by every Σ-algebra A of a class K0 of Σ-algebras, we write

K0 |=i si ≈i ti. For a set F (i) of equations of sort i we write A |=i F (i) if

A |=i si ≈i ti for all (si, ti) ∈ F (i).

Example 2.7. Let I = {1, 2}, X (2) := (X
(2)
i )i∈I be a 2-element I-sorted

alphabet, and Σ = {(1, 1; 1), (2, 1; 1)}. Let V = (A; f V
(2,1;1), f

V
(1,1;1)) where

fV
(2,1;1), f

V
(1,1;1) correspond to ◦, +, respectively, and A := (V, R) is the uni-

verse of a real vector space. Then the Σ-equation

f(2,1;1)

(

x21, f(1,1;1)(x11, x12)
)

≈1 f(1,1;1)

(

f(2,1;1)(x21, x11), f(2,1;1)(x21, x12)
)

∈ W (1)2
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is a Σ-identity of sort 1 in V, that is,

V |=1 f(2,1;1)

(

x21, f(1,1;1)(x11, x12)
)

≈1 f(1,1;1)

(

f(2,1;1)(x21, x11), f(2,1;1)(x21, x12)
)

since for f ∈ AX(2)
we have

f(2,1;1)

(

x21, f(1,1;1)(x11, x12)
)V

(f) = f̄1

(

f(2,1;1)(x21, f(1,1;1)(x11, x12))
)

= fV
(2,1;1)

(

f̄2(x21), f̄1

(

f(1,1;1)(x11, x12)
))

= fV
(2,1;1)

(

f̄2(x21), f
V
(1,1;1)

(

f̄1(x11), f̄1(x12)
))

= fV
(2,1;1)

(

f2(x21), f
V
(1,1;1)

(

f1(x11), f1(x12)
))

and

f(1,1;1)

(

f2,1;1(x21, x11), f(2,1;1)(x21, x12)
)V

(f)

= f̄1

(

f(1,1;1)

(

f(2,1;1)(x21, x11), f(2,1;1)(x21, x12)
))

= fV
(1,1;1)

(

f̄1

(

f(2,1;1)(x21, x11)
)

, f̄1

(

f(2,1;1)(x21, x12)
))

= fV
(1,1;1)

(

fV
(2,1;1)

(

f̄2(x21), f̄1(x11)
)

, fV
(2,1;1)

(

f̄2(x21), f̄1(x12)
))

= fV
(1,1;1)

(

fV
(2,1;1)

(

f2(x21), f1(x11)
)

, fV
(2,1;1)

(

f2(x21), f1(x12))
))

.
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Therefore,

(

f(2,1;1)

(

x21, f(1,1;1)(x11, x12)
))V

=
(

f(1,1;1)

(

f2,1;1(x21, x11), f(2,1;1)(x21, x12)
))V

.

Now we extend the usual Galois-connection between identities and algebras

to the many-sorted case.

Let K0 ⊆ Alg(Σ) and L(i) ⊆ W (i)2. Then a mapping

Σ(i)-Id : P (Alg(Σ)) → P
(

W (i)2
)

is defined by

Σ(i)-IdK0 :=
{

(si, ti) ∈ W (i)2 | (∀A ∈ K0)(A |=i si ≈i ti)
}

and a mapping Σ(i)-Mod : P (W (i)2) → P (Alg(Σ)) is defined by

Σ(i)-ModL(i) := {A ∈ Alg(Σ) | (∀(si, ti) ∈ L(i))(A |=i si ≈i ti)}.

In the next propositions, we will show that these two mappings satisfy the

Galois-connection properties.

Proposition 2.8. Let i ∈ I and let K0,K1,K2 ⊆ Alg(Σ). Then

(1) K1 ⊆ K2 ⇒ Σ(i)-IdK2 ⊆ Σ(i)-IdK1,

(2) K0 ⊆ Σ(i)-ModΣ(i)-IdK0.
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Proof.

(1) Assume that K1 ⊆ K2 and let si ≈i ti ∈ Σ(i)-IdK2. Then for all

A ∈ K2, we have A |=i si ≈i ti. Because of K1 ⊆ K2, we obtain

A |=i si ≈i ti, for all A ∈ K1. This means that si ≈i ti ∈ Σ(i)-IdK1,

and then Σ(i)-IdK2 ⊆ Σ(i)-IdK1.

(2) Let A ∈ K0. Then A |=i Σ(i)-IdK0, means that A ∈ Σ(i)-ModΣ(i)-

IdK0 and then K0 ⊆ Σ(i)-ModΣ(i)-IdK0.

Proposition 2.9. Let L(i), L1(i), L2(i) ⊆ W (i)2 be subsets of the set of all

Σ-equations of sort i ∈ I. Then

(1) L1(i) ⊆ L2(i) ⇒ Σ(i)-ModL2(i) ⊆ Σ(i)-ModL1(i),

(2) L(i) ⊆ Σ(i)-IdΣ(i)-ModL(i).

Proof.

(1) Assume that L1(i) ⊆ L2(i) and let A ∈ Σ(i)-ModL2(i). Then A |=i

si ≈i ti for all si ≈i ti ∈ L2(i), but we have L1(i) ⊆ L2(i), so that

A |=i si ≈i ti for all si ≈i ti ∈ L1(i). It follows that A ∈ Σ(i)-ModL1(i)

and then Σ(i)-ModL2(i) ⊆ Σ(i)-ModL1(i).

(2) Let si ≈i ti ∈ L(i). Then we have Σ(i)-ModL(i) |=i si ≈i ti, that is

si ≈i ti ∈ Σ(i)-IdΣ(i)-ModL(i) and then L(i) ⊆ Σ(i)-IdΣ(i)-ModL(i).

From both propositions, we have that (Σ(i)-Mod,Σ(i)-Id) is a Galois

connection between Alg(Σ) and W (i)2 with respect to the relation

|=i:=
{

(A, (si, ti)) ∈ Alg(Σ) × W (i)2 | A |=i si ≈i ti

}

.

The fixed points with respect to the closure operator Σ(i)-ModΣ(i)-Id are

called Σ-varieties of sort i and the fixed points with respect to the closure

operator Σ(i)-IdΣ(i)-Mod are called Σ-equational theories of sort i.
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3. Application of Σ-Hypersubstitutions

Now we apply Σ-hypersubstitutions to many-sorted algebras and to many-

sorted equations.

Definition 3.1. Let A be an I-sorted set, let A := (A; (((fγ)k)
A)k∈Kγ ,γ∈Σ)

be a Σ-algebra and let σ ∈ Σ-Hyp. Then we define the Σ-algebra

σ(A) :=

(

A;
(

(σi((fγ)k))
A

)

k∈Kγ ,γ∈Σ(i),i∈I

)

.

This Σ-algebra is called the Σ-algebra derived from A and σ, for short

derived Σ-algebra.

For illustration we consider the following example.

Example 3.2. Let I = {1, 2}, Σ = {(1, 2, 1), (2, 1, 2)}, K(1,2,1) = {1, 2},

A = (A1, A2), A = ((A1, A2); ((f(1,2,1))1)
A, ((f(1,2,1))2)

A, fA
(2,1,2)). Let σ =

(σ1, σ2) ∈ Σ-Hyp. Then we have

σ(A)

=
(

(A1, A2);
(

σ1((f(1,2,1)))1

)A
,

(

σ1((f(1,2,1)))2

)A
,

(

σ2(f(2,1,2))
)A)

.

Theorem 3.3. Let A be an I-sorted set and A := (A; (((fγ)k)
A)k∈Kγ ,γ∈Σ)

be a Σ-algebra. Let σ ∈ Σ-Hyp and t ∈ W (i), i ∈ I. Then tσ(A) =

(σ̂i[t])
A.

Proof. We will give a proof by induction on the complexity of the

Σ-term t.

1) If t = xij ∈ Xi where 1 ≤ j ≤ n, n ∈ N, then for f ∈ AX(n)

we have
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tσ(A)(f) = x
σ(A)
ij (f)

= f̄i(xij)

= xA
ij(f)

= (σ̂i[xij ])
A(f)

= (σ̂i[t])
A(f).

2) If t = fγ(s1, . . . , sm) ∈ W (i) where γ = (ii, . . . , im; i) ∈ Σ, sq ∈ W (iq),

1 ≤ q ≤ m,m ∈ N and assume that s
σ(A)
q = σ̂iq [sq]

A are satisfied, then

for f ∈ AX(n)
we have

tσ(A)(f) = (fγ(s1, . . . , sm))σ(A)(f)

= f̄i(fγ(s1, . . . , sm))

= f
σ(A)
γ (f̄i1(s1), . . . , f̄im(sm))

= f
σ(A)
γ (s

σ(A)
1 (f), . . . , s

σ(A)
m (f))

= σi(fγ)A(σ̂i1 [s1]
A(f), . . . , σ̂im [sm]A(f))

= σi(fγ)A(σ̂i1 [s1]
A, . . . , σ̂im [sm]A)(f)

= SA
γ (σi(fγ)A, σ̂i1 [s1]

A, . . . , σ̂im [sm]A)(f)

= (Sγ(σi(fγ), σ̂i1 [s1], · · · , σ̂im [sm]))A(f) by Lemma 2.5

= (σ̂i[fγ(s1, . . . , sm)])A(f)

= (σ̂i[t])
A(f).
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Lemma 3.4. Let A ∈ Alg(Σ), σ1, σ2 ∈ Σ-Hyp. Then we have

(

(σ1)i(fγ)
)σ2(A)

=
(

((σ2)i ◦i (σ1)i)(fγ)
)A

,

for γ ∈ Σ(i), i ∈ I.

Proof. By Theorem 3.3, we have

(

(σ1)i(fγ)
)σ2(A)

=
(

(σ̂2)i[(σ1)i(fγ)]
)A

=
(

((σ̂2)i ◦ (σ1)i)(fγ)
)A

=
(

((σ2)i ◦i (σ1)i)(fγ)
)A

.

Let σ1, σ2 be elements in Σ-Hyp. Then we set σ1 � σ2 := ((σ1)i ◦i (σ2)i)i∈I .

Lemma 3.5. Let A be an I-sorted set, let A = (A; (((fγ)k)
A)k∈Kγ ,γ∈Σ) be

a Σ-algebra, and σ1, σ2 ∈ Σ-Hyp. Then we have

σ1(σ2(A)) = (σ2 � σ1)(A).

Proof. By Lemma 3.4, we have

σ1(σ2(A)) =

(

A;
(

((σ1)i((fγ)k)
σ2(A)

)

k∈Kγ ,γ∈Σ(i),i∈I

)

=

(

A;
(

(((σ2)i ◦i (σ1)i)((fγ)k)
A

)

k∈Kγ ,γ∈Σ(i),i∈I

)

= (σ2 � σ1)(A).
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Theorem 3.6. Let A be an I-sorted set, A := (A; (((fα)k)
A)k∈Kα,α∈Σ),

and σid ∈ Σ-Hyp. Then we have

σid(A) = A.

Proof. We will show that ((σid)i(fα)k)
A = fA

α for all k ∈ Kα, α ∈ Σ.

Assume that α = (k1, . . . , kn; i) ∈ Σ and ω = (k1, . . . , kn) ∈ In. Then

(

(σid)i(fα)
)A

=
(

fα(xk11, . . . , xknn)
)A

= fA
α

(

xA
k11

, . . . , xA
knn

)

= fA
α

(

e
ω,A
1 , . . . , e

ω,A
n

)

= fA
α .

Definition 3.7. A Σ-algebra A is said to hypersatisfy the Σ-identity si ≈i ti
of sort i ∈ I, if for every Σ-hypersubstitution of sort i, i.e., σi ∈ Σ(i)-Hyp,

the Σ-identity σ̂i[si] ≈i σ̂i[ti] holds in A.

In this case we say that the Σ-identity si ≈i ti of sort i is satisfied

as a Σ-hyperidentity of sort i in A and write A |=i
Σ−hyp

si ≈i ti, that is

A |=i
Σ−hyp

si ≈i ti :⇔ ∀σi ∈ Σ(i)-Hyp (A |=i σ̂i[si] ≈i σ̂i[ti]).

Let us consider the following example.

Example 3.8. Let I ={1, 2}, X (2) :=(X
(2)
i )i∈I and let Σ={(1, 1; 1), (2, 2; 2)}.

Let Bi := (Bi; ◦i) be bands. Then f(i,i,i)(xij , xij) ≈i xij are hyperidentities in

Bi, i ∈ I. Let B := (B; ◦) be a double band, where B := (Bi)i∈I , ◦ := (◦i)i∈I .

Then f(i,i,i)(xij, xij) ≈i xij are Σ-hyperidentities of sort i in B.
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Let K0 ⊆ Alg(Σ) be a set of Σ-algebras, and let L(i) ⊆ W (i)2 be a set of

Σ-equations of sort i. Then we define a mapping

HΣ(i)-Id : P (Alg(Σ)) → P
(

W (i)2
)

by

HΣ(i)-IdK0 :=
{

(si, ti) ∈ W (i)2
∣

∣

∣
(∀A ∈ K0)

(

A |=i
Σ-hyp

si ≈i ti

)}

and a mapping HΣ(i)-Mod : P (W (i)2) → P (Alg(Σ)) by

HΣ(i)-ModL(i) :=
{

A ∈ Alg(Σ)
∣

∣

∣
(∀(si, ti) ∈ L(i))

(

A |=i
Σ-hyp

si ≈i ti

)}

.

We get that (HΣ(i)-Mod,HΣ(i)-Id) is also a Galois connection between

Alg(Σ) and W (i)2 with respect to the relation

|=i
Σ−hyp

:=
{

(A, (si, ti)) ∈ Alg(Σ) × W (i)2
∣

∣

∣
A |=i

Σ−hyp

si ≈i ti

}

.

Definition 3.9. Let K0 ⊆ Alg(Σ) be a subclass of Σ-algebras and let

L(i) ⊆ W (i)2 be a set of Σ-equations of sort i. Then we set

χΣ-E(i)[si ≈i ti] := {σ̂i[si] ≈i σ̂i[ti] | σi ∈ Σ(i)-Hyp}

and

χΣ-A[A] := {σ(A) | σ ∈ Σ-Hyp}.
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We define two operators

χΣ-E(i) : P
(

W (i)2
)

→ P
(

W (i)2
)

by

χΣ-E(i)[L(i)] :=
⋃

si≈iti∈L(i)

χΣ-E(i)[si ≈i ti]

and

χΣ-A : P (Alg(Σ)) → P (Alg(Σ))

by

χΣ-A[K0] :=
⋃

A∈K0

χΣ-A[A].

Proposition 3.10. Let L(i), Lk(i) ⊆ W (i)2 be sets of Σ-equations of sort

i ∈ I with k = 1, 2. Then

(i) L(i) ⊆ χΣ−E(i)[L(i)],

(ii) L1(i) ⊆ L2(i) ⇒ χΣ−E(i)[L1(i)] ⊆ χΣ−E(i)[L2(i)],

(iii) χΣ−E(i)[L(i)] = χΣ−E(i)[χΣ−E(i)[L(i)]].

Proof.

(i) Let si ≈i ti ∈ L(i). Then since si = (σ̂id)i[si] and ti = (σ̂id)i[ti],

we have (σ̂id)i[si] = si ≈i ti = (σ̂id)i[ti] ∈ χΣ−E(i)[L(i)] and then

L(i) ⊆ χΣ−E(i)[L(i)].

(ii) Assume that L1(i) ⊆ L2(i) and let σ̂[si] ≈i σ̂[ti] ∈ χΣ−E(i)[L1(i)].

Then si ≈i ti ∈ L1(i) but L1(i) ⊆ L2(i), so that si ≈i ti ∈ L2(i)

and σ̂i[si] ≈i σ̂i[ti] ∈ χΣ−E(i)[L2(i)]. We have χΣ−E(i)[L1(i)] ⊆ χΣ−E(i)

[L2(i)].
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(iii) By (i) we have χΣ−E(i)[L(i)] ⊆ χΣ−E(i)[χΣ−E(i)[L(i)]]. Let σ̂i[si] ≈i

σ̂i[ti] ∈ χΣ−E(i)[χΣ−E(i)[L(i)]]. Then si ≈i ti ∈ χΣ−E(i)[L(i)], and there

exists ρi ∈ Σ(i)-Hyp and ui ≈i vi ∈ L(i) such that si = ρ̂i[ui] and

ti = ρ̂i[vi], and we have

σ̂i[si] = σ̂i[ρ̂i[ui]]

= (σ̂i ◦ ρ̂i) [ui]

= (σi ◦i ρi)̂ [ui]

= λ̂i[ui], where λi = σi ◦i ρi ∈ Σ(i)-Hyp,

and

σ̂i[ti] = σ̂i[ρ̂i[vi]]

= (σ̂i ◦ ρ̂i) [vi]

= (σi ◦i ρi)̂ [vi]

= λ̂i[vi].

Then we set

λ̂i[ui] = σ̂i[si] ≈i σ̂i[ti] = λ̂i[vi] ∈ χΣ−E(i)[L(i)],

and then

χΣ−E(i)[χΣ−E(i)[L(i)]] ⊆ χΣ−E(i)[L(i)].



Hyperidentities in many-sorted algebras 69

Proposition 3.11. Let K0,K1,K2 ⊆ Alg(Σ) be classes of Σ-algebras.

Then

(i) K0 ⊆ χΣ−A[K0],

(ii) K1 ⊆ K2 ⇒ χΣ−A[K1] ⊆ χΣ−A[K2],

(iii) χΣ−A[K0] = χΣ−A[χΣ−A[K0]].

Proof.

(i) Let A ∈ K0. Then since A = σid(A) ∈ χΣ−A[K0], we have K0 ⊆

χΣ−A[K0].

(ii) Assume that K1 ⊆ K2 and let σ(A) ∈ χΣ−A[K1]. Then A ∈ K1

by our assumption that A ∈ K2, with σ(A) ∈ χΣ−A[K2], and then

χΣ−A[K1] ⊆ χΣ−A[K2].

(iii) By (i), we have χΣ−A[K0] ⊆ χΣ−A[χΣ−A[K0]]. We will show that

χΣ−A[χΣ−A[K0]] ⊆ χΣ−A[K0]. Let σ(A) ∈ χΣ−A[χΣ−A[K0]]. Then

A ∈ χΣ−A[K0], and there exists ρ ∈ Σ-Hyp and B ∈ K0 such that

A = ρ(B). We have

σ(A) = σ(ρ(B))

= (ρ � σ)(B)

= λ(B), where λ = ρ � σ ∈ Σ-Hyp.

Thus we have σ(A) = λ(B) ∈ χΣ−A[K0] and then χΣ−A[χΣ−A[K0]] ⊆

χΣ−A[K0].
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Lemma 3.12. Let A ∈ Alg(Σ) be a Σ-algebra, let si ≈i ti ∈ W (i)2 be a

Σ-equation of sort i ∈ I, and σ ∈ Σ-Hyp. Then

σ(A) |=i si ≈i ti ⇐⇒ A |=i σ̂i[si] ≈i σ̂i[ti].

Proof. We obtain

σ(A) |=i si ≈i ti ⇐⇒ s
σ(A)
i = t

σ(A)
i

⇐⇒ σ̂i[si]
A = σ̂i[ti]

A

⇐⇒ A |=i σ̂i[si] ≈i σ̂i[ti].

The next theorem needs the concept of a conjugate pair of additive closure

operators (see [4]).

Theorem 3.13. The pair (χΣ−A, χΣ−E(i)) is a conjugate pair of completely

additive closure operators of sort i with respect to the relation |=i.

Proof. By Definition 3.9, Propositions 3.10–3.11, and Lemma 3.12.

Now we may apply the theory of conjugate pairs of additive closure operators

(see e.g., [4]) and obtain the following propositions:

Lemma 3.14 ([4]). For all K0 ⊆ Alg(Σ) and for all L(i) ⊆ W (i)2 the

following properties hold:

(i) HΣ(i)-ModL(i) = Σ(i)-ModχΣ−E(i)[L(i)],

(ii) HΣ(i)-ModL(i) ⊆ Σ(i)-ModL(i),

(iii) χΣ−A[HΣ(i)-ModL(i)] = HΣ(i)-ModL(i),
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(iv) χΣ−E(i)[Σ(i)-IdHΣ(i)-ModL(i)] = Σ(i)-IdHΣ(i)-ModL(i),

(v) HΣ(i)-ModHΣ(i)-IdK0 = Σ(i)-ModΣ(i)-IdχΣ−A[K0], and

(i)
′

HΣ(i)-IdK0 = Σ(i)-IdχΣ−A[K0],

(ii)
′

HΣ(i)-IdK0 ⊆ Σ(i)-IdK0,

(iii)
′

χΣ−E(i)[HΣ(i)-IdK0] = HΣ(i)-IdK0,

(iv)
′

χΣ−A[Σ(i)-ModHΣ(i)-IdK0] = Σ(i)-ModHΣ(i)-IdK0,

(v)
′

HΣ(i)-IdHΣ(i)-ModL(i) = Σ(i)-IdΣ(i)-ModχΣ−E(i)[L(i)].

4. I-Sorted Solid Σ-Varieties

Definition 4.1. Let K0 ⊆ Alg(Σ) be a subclass of Σ-algebras. Then K0

is called a solid model class of sort i or a solid Σ-variety of sort i if every

Σ-identity of sort i is satisfied as a Σ-hyperidentity of sort i:

K0 |=i
Σ−hyp

Σ(i)-IdK0.

K0 is called an I-sorted solid model class if every Σ-identity of sort i is

satisfied as a Σ-hyperidentity of sort i for all i ∈ I, that is,

K0 |=i
Σ−hyp

Σ(i)-IdK0 for all i ∈ I.

L(i) is said to be a Σ-equational theory of sort i if there exists a class of

Σ-algebras K0 such that L(i) = Σ(i)-IdK0. Then we set L := (L(i))i∈I .

This I-sorted set is called I-sorted Σ-equational theory.
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Using the propositions of Lemma 3.14 one obtains the following characteri-

zation of solid Σ-varieties of sort i and solid Σ-equational theories of sort i

(see e.g., [4]).

Theorem 4.2 ([4]). Let K0 be a Σ-variety of sort i. Then the following

properties are equivalent:

(i) K0 = HΣ(i)-ModHΣ(i)-IdK0,

(ii) χΣ−A[K0] = K0,

(iii) Σ(i)-IdK0 = HΣ(i)-IdK0,

(iv) χΣ−E(i)[Σ(i)-IdK0] = Σ(i)-IdK0.

Theorem 4.3 ([4]). Let L(i) be a Σ-equational theory of sort i. Then the

following properties are equivalent:

(i) L(i) = HΣ(i)-IdHΣ(i)-ModL(i),

(ii) χΣ−E(i)[L(i)] = L(i),

(iii) Σ(i)-ModL(i) = HΣ(i)-ModL(i),

(iv) χΣ−A[Σ(i)-ModL(i)] = Σ(i)-ModL(i).

5. I-sorted Complete Lattices

Let H(i) be the class of all fixed points with respect to the closure operator

Σ(i)-ModΣ(i)-Id:

H(i) := {K0 ⊆ Alg(Σ) | K0 = Σ(i)-ModΣ(i)-IdK0},



Hyperidentities in many-sorted algebras 73

that is, H(i) is the class of all Σ-varieties of sort i. Then H(i) forms a

complete lattice of Σ-varieties of sort i. Let Hy(i) be the class of all fixed

points with respect to the closure operator HΣ(i)-ModHΣ(i)-Id:

Hy(i) := {K0 ⊆ Alg(Σ) | K0 = HΣ(i)-ModHΣ(i)-IdK0},

that is, Hy(i) is the class of all solid Σ-varieties of sort i. Then Hy(i) forms

a complete lattice of solid Σ-varieties of sort i and Hy(i) is a complete sub-

lattice of H(i). We set H := (H(i))i∈I and Hy := (Hy(i))i∈I . H is called

an I-sorted complete lattice. Hy is called an I-sorted complete sublattice

of H, since for every i ∈ I,Hy(i) is a complete sublattice of H(i). Dually

Let L(i) be the class of all fixed points with respect to the closure

operator Σ(i)-IdΣ(i)-Mod:

L(i) := {L(i) ⊆ W (i)2 | L(i) = Σ(i)-IdΣ(i)-ModL(i)},

that is, L(i) is the class of all Σ-equational theories of sort i. Then L(i) forms

a complete lattice of Σ-equational theories of sort i. Let Ly(i) be the class

of all fixed points with respect to the closure operator HΣ(i)-IdHΣ(i)-Mod:

Ly(i) := {L(i) ⊆ W (i)2 | L(i) = HΣ(i)-IdHΣ(i)-ModL(i)},

that is, Ly(i) is the class of all solid Σ-equational theories of sort i. Then

Ly(i) forms a complete lattice of solid Σ-equational theories of sort i and

Ly(i) is a complete sublattice of L(i). We set L := (L(i))i∈I and Ly :=

(Ly(i))i∈I . L is called an I-sorted complete lattice. Ly is called an I-sorted

complete sublattice of L, since for every i ∈ I,Ly(i) is a complete sublattice

of L(i).
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