HYPERIDENTITIES IN MANY-SORTED ALGEBRAS

KLAUS DENECKE AND SOMSAK LEKKOKSUNG

Universität Potsdam, Institut of Mathematics Am Neuen Palais, 14415 Potsdam, Germany

 $\mathbf{e} ext{-}\mathbf{mail:}$ kdenecke@rz.uni-potsdam.de

Abstract

The theory of hyperidentities generalizes the equational theory of universal algebras and is applicable in several fields of science, especially in computers sciences (see e.g., [2, 1]). The main tool to study hyperidentities is the concept of a hypersubstitution. Hypersubstitutions of many-sorted algebras were studied in [3]. On the basis of hypersubstitutions one defines a pair of closure operators which turns out to be a conjugate pair. The theory of conjugate pairs of additive closure operators can be applied to characterize solid varieties, i.e., varieties in which every identity is satisfied as a hyperidentity (see [4]). The aim of this paper is to apply the theory of conjugate pairs of additive closure operators to many-sorted algebras.

Keywords: hypersubstitution; hyperidentity; heterogeneous algebra.

2000 Mathematics Subject Classification: 08A68, 08B15.

1. Preliminaries

Hyperidentities in one-based algebras were considered by many authors (for references see e.g., [4, 2]). An identity $s \approx t$ is satisfied as a hyperidentity in the one-based algebra $\mathcal{A} = (A; (f_i^{\mathcal{A}})_{i \in I})$ of type τ if after any

replacements of the operation symbols occurring in s and t by terms of the same arity the arising equation is satisfied in \mathcal{A} . These replacements can be described by hypersubstitutions, i.e., mappings from the set of operation symbols into the set of all terms of type τ . Hypersubstitutions cannot only be applied to terms or equations but also to algebras. This gives a pair of additive closure operators which are related to each other by the so-called conjugate property and which form a conjugate pair of additive closure operators (see [4]). A variety of one-based algebras is called solid if every identity is satisfied as a hyperidentity. Characterizations of solid varieties are based on the theory of conjugate pairs of additive closure operators. For more background see [4].

In this paper we want to apply the theory of conjugate pairs of additive closure operators to many-sorted algebras and identities and want to define hyperidentities and solid varieties of many-sorted algebras.

Many-sorted algebras occur in various branches of mathematics. They have found their way into computer science through abstract data type specifications. Many-sorted algebras, varieties and quasivarieties of many-sorted algebras are the mathematical fundament of approaches to abstract data types in programming and specification languages. For basic concepts on many-sorted algebras we refer the reader to [5].

The concept of terms in many-sorted algebras was discussed in [5]. First we want to give a slightly different version of the definitions and results from [3].

Let I be a non-empty set, let $\mathbb{N}^+ := \mathbb{N} \setminus \{0\}$, $n \in \mathbb{N}^+$, let $I^* := \bigcup_{n \geq 1} I^n$ and $\Sigma \subseteq I^* \times I$. Then we define $\Sigma_n := \Sigma \cap I^{n+1}$. For $\gamma \in \Sigma$ let $\gamma(l)$ denote the l-th component of γ . Let K_{γ} be a set of indices with respect to γ . If $|K_{\gamma}| = 1$, we will drop the index.

Definition 1.1. Let $n \in \mathbb{N}^+$ and $X^{(n)} := (X_i^{(n)})_{i \in I}$ be an I-sorted set of variables, also called an n-element I-sorted alphabet, with $X_i^{(n)} := \{x_{i1}, \ldots, x_{in}\}, i \in I$ and let $((f_{\gamma})_k)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ -sorted operation symbols. Then for each $i \in I$ a set $W_n(i)$ which is called the set of all n-ary Σ -terms of sort i, is inductively defined as follows:

(i)
$$W_0^n(i) := X_i^{(n)}, i \in I,$$

(ii) $W_{l+1}^n(i) := W_l^n(i) \cup \{f_{\gamma}(t_{k_1}, \dots, t_{k_n}) \mid \gamma = (k_1, \dots, k_n; i) \in \Sigma, t_{k_j} \in W_l^n(k_j), 1 \leq j \leq n\}, l \in \mathbb{N}.$ (Here we inductively assume that the sets $W_l^n(i)$ are already defined for all sorts $i \in I$).

Then $W_n(i) := \bigcup_{l=0}^{\infty} W_l^n(i)$ and we set $W(i) := \bigcup_{n \in \mathbb{N}^+} W_n(i)$. Let $X_i := \bigcup_{n \in \mathbb{N}^+} X_i^{(n)}$ and $X := (X_i)_{i \in I}$. Let $W_{\Sigma}(X) := (W(i))_{i \in I}$. The set $W_{\Sigma}(X)$ is called I-sorted set of all Σ -terms and its elements are called I-sorted Σ -terms.

For any $n \in \mathbb{N}^+$, $i \in I$ we set $\Lambda_n(i) := \{(w; i) \in I^{n+1} \mid w \in I^n, \exists m \in \mathbb{N}^+, \exists \alpha \in \Sigma_m, \exists j (1 \leq j \leq m)(\alpha(j) = i)\}$. Let $\Lambda(i) := \bigcup_{n=1}^{\infty} \Lambda_n(i)$ and we set $\Lambda := \bigcup_{i \in I} \Lambda(i)$.

To define many-sorted hypersubstitutions we need the following superposition operation for I-sorted Σ -terms.

Definition 1.2. Let $t \in W(i), t_j \in W(k_j)$ where $1 \leq j \leq n, n \in \mathbb{N}$. Then the superposition operation

$$S_{\beta}: W(i) \times W(k_1) \times \cdots \times W(k_n) \to W(i)$$

for $\beta = (k_1, \dots, k_n; i) \in \Lambda$, is defined inductively as follows:

- 1. If $t = x_{ij} \in X_i$, then
 - 1.1 $S_{\beta}(x_{ij}, t_1, \dots, t_n) := x_{ij}$ for $i \neq k_j$ and
 - 1.2 $S_{\beta}(x_{ij}, t_1, \dots, t_n) := t_j$ for $i = k_j$.
- 2. If $t = f_{\gamma}(s_1, \ldots, s_m) \in W(i)$ for $\gamma = (i_1, \ldots, i_m; i) \in \Sigma$ and $s_q \in W_n(i_q), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that $S_{\beta_q}(s_q, t_1, \ldots, t_n)$ with $\beta_q = (k_1, \ldots, k_n; i_q) \in \Lambda$ are already defined, then $S_{\beta}(f_{\gamma}(s_1, \ldots, s_m), t_1, \ldots, t_n) := f_{\gamma}(S_{\beta_1}(s_1, t_1, \ldots, t_n), \ldots, S_{\beta_m}(s_m, t_1, \ldots, t_n))$.

Definition 1.3. Let $i \in I$ and $((f_{\gamma})_k)_{k \in K_{\gamma}, \gamma \in \Sigma}$ be an indexed set of Σ -sorted operation symbols. Let $\Sigma_m(i) := \{ \gamma \in \Sigma_m \mid \gamma(m+1) = i \}, m \in \mathbb{N}^+$ and let

$$\Sigma(i) := \bigcup_{m > 1} \Sigma_m(i).$$

Any mapping

$$\sigma_i : \{(f_{\gamma})_k \mid k \in K_{\gamma}, \gamma \in \Sigma(i)\} \to W(i), i \in I,$$

which preserves arities, is said to be a Σ -hypersubstitution of sort i. Let $\Sigma(i)$ -Hyp be the set of all Σ -hypersubstitutions of sort i. The I-sorted mapping $\sigma := (\sigma_i)_{i \in I}$ is called an I-sorted Σ -hypersubstitution. Let Σ -Hyp be the set of all I-sorted Σ -hypersubstitutions. Any I-sorted Σ -hypersubstitution σ can inductively be extended to an I-sorted mapping $\hat{\sigma} := (\hat{\sigma}_i)_{i \in I}$. The I-sorted mapping

$$\hat{\sigma}: W_{\Sigma}(X) \to W_{\Sigma}(X)$$

is defined by the following steps: For each $i \in I$ we define

- (i) $\hat{\sigma}_i[x_{ij}] := x_{ij}$ for any variable $x_{ij} \in X_i$.
- (ii) $\hat{\sigma}_i[f_{\gamma}(t_1,\ldots,t_n)] := S_{\gamma}(\sigma_i(f_{\gamma}),\hat{\sigma}_{k_1}[t_1],\ldots,\hat{\sigma}_{k_n}[t_n])$, where $\gamma = (k_1,\ldots,k_n;i) \in \Sigma$ and $t_q \in W(k_q), 1 \leq q \leq n, n \in \mathbb{N}$, assumed that $\hat{\sigma}_{k_q}[t_q]$, are already defined.

Using the extension $\hat{\sigma}_i$, we define $(\sigma_1)_i \circ_i (\sigma_2)_i := (\hat{\sigma}_1)_i \circ (\sigma_2)_i$. Then we have $((\sigma_1)_i \circ_i (\sigma_2)_i)^{\hat{}} = (\hat{\sigma}_1)_i \circ (\hat{\sigma}_2)_i$. Together with the identity mapping $(\sigma_{id})_i$ the set $\Sigma(i)$ -Hyp forms a monoid (see [3]).

Now we want to describe the connection between heterogeneous algebras and Σ -terms.

Let A be an I-sorted set. Then \mathcal{A} is said to be a Σ -algebra if it has the form

$$\mathcal{A} = \left(A; \left(\left(\left(f_{\gamma}\right)_{k}\right)^{\mathcal{A}}\right)_{k \in K_{\gamma}, \gamma \in \Sigma}\right)$$

where $((f_{\gamma})_k)^A: A_{k_1} \times \cdots \times A_{k_n} \to A_i \text{ if } \gamma = (k_1, \dots, k_n; i) \in \Sigma$. Let $Alg(\Sigma)$ be the collection of all Σ -algebras. To connect Σ -terms with Σ -algebras we need to consider operations on I-sorted sets. Let A be an I-sorted set, $n \in \mathbb{N}^+$, $(\omega; i) \in I^* \times I$. Then ω is called input sequence on A and i is called output sort.

Definition 1.4. Let A be an I-sorted set, let $\omega = (k_1, \ldots, k_n) \in I^n, n \in \mathbb{N}^+$ be an input sequence on A. Then we define the q-th n-ary projection operation

$$e_q^{\omega,A}: A_{k_1} \times \dots \times A_{k_n} \to A_{k_q}, 1 \le q \le n$$

of the input sequence ω on A by

$$e_q^{\omega,A}(a_1,\ldots,a_n):=a_q.$$

We denote by

$$O^{(\omega,i)}(A) := \{ f \mid f : A_{k_1} \times \dots \times A_{k_n} \to A_i \}$$

the set of all n-ary operations on A with input sequence ω and output sort i.

In particular we denote by

$$O^{\omega}(A) := (O^{(\omega,i)}(A))_{i \in I}$$

the I-sorted set of all n-ary operations on A with the same input sequence ω .

Finally we introduce

$$O(A) := \bigcup_{\omega \in I^*} O^{\omega}(A)$$

as the I-sorted set of all finitary operations on the I-sorted set A.

Definition 1.5. Let A be an I-sorted set and let $\omega = (s_1, \ldots, s_n), \omega' = (s'_1, \ldots, s'_m)$ be input sequences on A. Then the superposition operation

$$S_{\omega'}^{\omega,i}: O^{(\omega,i)}(A) \times O^{(\omega',s_1)}(A) \times \cdots \times O^{(\omega',s_n)}(A) \to O^{(\omega',i)}(A)$$

is defined by

$$S_{\omega'}^{\omega,i}(f,g_1,\ldots,g_n) := f[g_1,\ldots,g_n], \text{ with }$$

$$f[g_1,\ldots,g_n](a_1,\ldots,a_m) := f(g_1(a_1,\ldots,a_m),\ldots,g_n(a_1,\ldots,a_m))$$

for all
$$(a_1, \dots, a_m) \in A_{s'_1} \times \dots \times A_{s'_m}$$
.

Using these composition operations we may consider a many-sorted algebra, which satisfies similar identities as clones in the one-sorted case.

Theorem 1.6. Let A be an I-sorted set. Then the many-sorted algebra

$$\left((O^{\omega}(A))_{\omega \in I^*}; \left(S^{\omega,i}_{\omega'}\right)_{(\omega,i),(\omega',i) \in I^* \times I}, \left(e^{\omega,A}_j\right)_{\omega \in I^*, 1 \le j \le |\omega|}\right)$$

(where $|\omega|$ is the length of the sequence ω) satisfies the following identities:

1)
$$S_{\omega''}^{\omega,i} \left(f, S_{\omega''}^{\omega',s_1}(g_1, h_1, \dots, h_m), \dots, S_{\omega''}^{\omega',s_n}(g_n, h_1, \dots, h_m) \right)$$

$$= S_{\omega''}^{\omega',i} \left(S_{\omega'}^{\omega,i}(f, g_1, \dots, g_n), h_1, \dots, h_m \right) \text{ where}$$

$$\omega = (s_1, \dots, s_n) \in I^n, \ \omega' = (s_1', \dots, s_m') \in I^m, \ \omega'' = (s_1'', \dots, s_n'') \in I^p,$$

and

$$f \in O^{(\omega,i)}(A), \quad g_j \in O^{(\omega',s_j)}(A), \quad h_k \in O^{(\omega'',s_k')}(A) \quad for \quad 1 \le j \le n,$$
 $1 \le k \le m, \ m, n \in \mathbb{N}.$

2)
$$S_{\omega'}^{\omega,s_j}\left(e_j^{\omega,A},g_1,\ldots,g_n\right)=g_j$$
 where $\omega=(s_1,\ldots,s_n)\in I^n,\omega'\in I^m,$ and
$$g_j\in O^{(\omega',s_j)}(A),\ 1\leq j\leq n,m,n\in\mathbb{N}^+.$$

3)
$$S_{\omega}^{\omega,i}\left(f,e_1^{\omega,A},\ldots,e_n^{\omega,A}\right) = f \text{ where } f \in O^{(\omega,i)}(A), \ \omega \in I^n, n \in \mathbb{N}^+.$$

The proofs are similar to the proofs of the corresponding propositions for Σ -terms (see [3]).

2. I-SORTED IDENTITIES AND MODEL CLASSES

Definition 2.1. Let $n \in \mathbb{N}^+$ and $X^{(n)}$ be an n-element I-sorted alphabet and let A be an I-sorted set. Let $\mathcal{A} \in Alg(\Sigma)$ be a Σ -algebra, and $t \in W_n(i), i \in I$. Let $f := (f_i)_{i \in I}$, where $f_i : X_i^{(n)} \to A_i$ is an I-sorted evaluation mapping of variables from $X^{(n)}$ by elements in A. Each mapping f_i can be extended in a canonical way to a mapping $\bar{f}_i : W_n(i) \to A_i$. Then $t^A : A^{X^{(n)}} \to A_i$ is defined by

$$t^{\mathcal{A}}(f) := \bar{f}_i(t) \text{ for all } f \in A^{X^{(n)}},$$

where $\bar{f_i}$ is the extension of the evaluation mapping $f_i: X_i^{(n)} \to A_i$. The operation $t^{\mathcal{A}}$ is called the *n*-ary Σ -term operation on \mathcal{A} induced by the *n*-ary Σ -term t of sort i. We have $x_{k_q q}^{\mathcal{A}} = e_q^{\omega, A}, 1 \leq q \leq n$, where $\omega = (k_1, \ldots, k_n)$, since for $f \in A^{X^{(n)}}$ we have

$$x_{k_q q}^{\mathcal{A}}(f) = \bar{f}_{k_q}(x_{k_q q})$$

= $f_{k_q}(x_{k_q q})$
= $e_q^{\omega, \mathcal{A}}(a_1, \dots, a_{q-1}, f_{k_q}(x_{k_q q}), a_{q+1}, \dots, a_n)$

for all $a_j \in A_{k_j}$ such that $j \in \{1, \dots, q-1, q+1, \dots, n\}$.

Let $W^A(i)$ be the set of all Σ -term operations on \mathcal{A} induced by the Σ -terms of sort i. We set $W^A_{\Sigma}(X) := (W^A(i))_{i \in I}$ and call it the I-sorted set of Σ -term operations on \mathcal{A} induced by the Σ -terms.

Definition 2.2. Let $t \in W(i)$, $t_j \in W(k_j)$ where $1 \leq j \leq n, n \in \mathbb{N}$. Then the superposition operation

$$S^A_{\alpha}: W^A(i) \times W^A(k_1) \times \cdots \times W^A(k_n) \to W^A(i)$$

where $\alpha = (k_1, \dots, k_n; i) \in \Lambda$, is inductively defined in the following way:

1) If $t = x_{ij} \in X_i$, then

1.1)
$$S_{\alpha}^{A}\left(x_{ij}^{A}, t_{1}^{A}, \dots, t_{n}^{A}\right) := x_{ij}^{A} \text{ for } i \neq k_{j} \text{ and }$$

1.2)
$$S_{\alpha}^{A}\left(x_{ij}^{\mathcal{A}}, t_{1}^{\mathcal{A}}, \dots, t_{n}^{\mathcal{A}}\right) := t_{j}^{\mathcal{A}} \text{ for } i = k_{j}.$$

2) If $t = f_{\gamma}(s_1, \ldots, s_m) \in W(i)$ where $\gamma = (i_1, \ldots, i_m; i) \in \Sigma$, $s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$ and assume that $S_{\alpha_q}^A(s_q^A, t_1^A, \ldots, t_n^A)$, where $\alpha_q = (k_1, \ldots, k_n; i_q) \in \Lambda$, are already defined, then

$$S_{\alpha}^{A}\Big((f_{\gamma}(s_{1},\ldots,s_{m}))^{\mathcal{A}},t_{1}^{\mathcal{A}},\ldots,t_{n}^{\mathcal{A}}\Big)$$

$$:=f_{\gamma}^{A}\Big(S_{\alpha_{1}}^{A}(s_{1}^{\mathcal{A}},t_{1}^{\mathcal{A}},\ldots,t_{n}^{\mathcal{A}}),\ldots,S_{\alpha_{m}}^{A}(s_{m}^{\mathcal{A}},t_{1}^{\mathcal{A}},\ldots,t_{n}^{\mathcal{A}})\Big).$$

Example 2.3. Let $I = \{1,2\}$, $X^{(2)} = (X_i^{(2)})_{i \in I}$, $\Sigma = \{(1,2;1),(2,1;2)\}$. Let \mathcal{A} be a Σ -algebra and let $t = f_{(1,2;1)}(f_{(1,2;1)}(x_{11},x_{21}),f_{(2,1;2)}(x_{22},x_{11})) \in W(1)$, $t_1 \in W(2)$, and $t_2 \in W(1)$. Then

$$\begin{split} S_{(2,1;1)}^{A}\Big(t^{\mathcal{A}}\!t_{1}^{\mathcal{A}}\!t_{2}^{\mathcal{A}}\Big) &= S_{(2,1;1)}^{A}\Big((f_{(1,2;1)}(f_{(1,2;1)}(x_{11},x_{21}),f_{(2,1;2)}(x_{22},x_{11})))^{\mathcal{A}}\!t_{1}^{\mathcal{A}}\!t_{2}^{\mathcal{A}}\Big) \\ &= f_{(1,2;1)}^{A}\Big(S_{(2,1;1)}^{A}((f_{(1,2;1)}(x_{11},x_{21}))^{\mathcal{A}}\!t_{1}^{\mathcal{A}}\!t_{2}^{\mathcal{A}}\Big), \\ &S_{(1,2;2)}^{A}\Big((f_{(2,1;2)}(x_{22},x_{11}))^{\mathcal{A}},t_{1}^{\mathcal{A}},t_{2}^{\mathcal{A}}\Big)\Big) \\ &= f_{(1,2;1)}^{A}\Big(f_{(1,2;1)}^{A}\Big(S_{(2,1;1)}^{A}\Big(x_{11}^{\mathcal{A}},t_{1}^{\mathcal{A}},t_{2}^{\mathcal{A}}\Big),S_{(2,1;2)}^{A}\Big(x_{21}^{\mathcal{A}},t_{1}^{\mathcal{A}},t_{2}^{\mathcal{A}}\Big)\Big), \\ &f_{(2,1;2)}^{A}\Big(S_{(2,1;2)}^{A}\Big(x_{22}^{\mathcal{A}},t_{1}^{\mathcal{A}},t_{2}^{\mathcal{A}}\Big),S_{(2,1;1)}^{A}\Big(x_{11}^{\mathcal{A}},t_{1}^{\mathcal{A}},t_{2}^{\mathcal{A}}\Big)\Big)\Big) \\ &= f_{(1,2;1)}^{A}\Big(f_{(1,2;1)}^{A}\Big(x_{11}^{\mathcal{A}},t_{1}^{\mathcal{A}}\Big),f_{(2,1;2)}^{A}\Big(x_{22}^{\mathcal{A}},x_{11}^{\mathcal{A}}\Big)\Big). \end{split}$$

Proposition 2.4. Let \mathcal{A} be a Σ -algebra and $f_{\gamma}(t_1,\ldots,t_n) \in W_n(i)$ where $\gamma = (i_1,\ldots,i_n,i) \in \Sigma, \ t_q \in W_n(i_q), 1 \leq q \leq n, n \in \mathbb{N}$. Then

$$(f_{\gamma}(t_1,\ldots,t_n))^{\mathcal{A}}=f_{\gamma}^{\mathcal{A}}(t_1^{\mathcal{A}},\ldots,t_n^{\mathcal{A}}).$$

Proof. Let $f \in A^{X^{(n)}}$, then

$$(f_{\gamma}(t_{1}, \dots, t_{n}))^{\mathcal{A}}(f) = \bar{f}_{i}(f_{\gamma}(t_{1}, \dots, t_{n}))$$

$$= f_{\gamma}^{\mathcal{A}}(\bar{f}_{i_{1}}(t_{1}), \dots, \bar{f}_{i_{n}}(t_{n}))$$

$$= f_{\gamma}^{\mathcal{A}}(t_{1}^{\mathcal{A}}(f), \dots, t_{n}^{\mathcal{A}}(f))$$

$$= f_{\gamma}^{\mathcal{A}}(t_{1}^{\mathcal{A}}, \dots, t_{n}^{\mathcal{A}})(f).$$

Lemma 2.5. Let \mathcal{A} be a Σ -algebra. For $t \in W(i), t_j \in W(k_j), 1 \leq j \leq n, n \in \mathbb{N}$ we have:

$$S_{\alpha}^{A}(t^{A}, t_{1}^{A}, \dots, t_{n}^{A}) = (S_{\alpha}(t, t_{1}, \dots, t_{n}))^{A}$$

where $\alpha = (k_1, \ldots, k_n; i) \in \Lambda$.

Proof. We will give a proof by induction on the complexity of the Σ -term t.

- 1) If $t = x_{ij} \in X_i$, then
 - 1.1) for $i \neq k_j$, $S_{\alpha}^{A} \left(t^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}} \right) = S_{\alpha}^{A} \left(x_{ij}^{\mathcal{A}}, t_1^{\mathcal{A}}, \dots, t_n^{\mathcal{A}} \right)$ $= x_{ij}^{\mathcal{A}}$ $= \left(S_{\alpha}(x_{ij}, t_1, \dots, t_n) \right)^{\mathcal{A}}$ $= \left(S_{\alpha}(t, t_1, \dots, t_n) \right)^{\mathcal{A}},$
 - 1.2) and for $i = k_j$,

$$S_{\alpha}^{A}\left(t^{\mathcal{A}}, t_{1}^{\mathcal{A}}, \dots, t_{n}^{\mathcal{A}}\right) = S_{\alpha}^{A}\left(x_{ij}^{\mathcal{A}}, t_{1}^{\mathcal{A}}, \dots, t_{n}^{\mathcal{A}}\right)$$

$$= t_{j}^{\mathcal{A}}$$

$$= \left(S_{\alpha}(x_{ij}, t_{1}, \dots, t_{n})\right)^{\mathcal{A}}$$

$$= \left(S_{\alpha}(t, t_{1}, \dots, t_{n})\right)^{\mathcal{A}}.$$

2) If $t = f_{\gamma}(s_1, \ldots, s_m) \in W(i)$, where $\gamma = (i_1, \ldots, i_m; i) \in \Sigma$ and $s_q \in W(i_q), 1 \leq q \leq m, m \in \mathbb{N}$, and if we assume that the equations

$$S_{\alpha_q}^A \left(s_q^A, t_1^A, \dots, t_n^A \right) = \left(S_{\alpha_q}(s_q, t_1, \dots, t_n) \right)^A,$$

where $\alpha_q = (k_1, \dots, k_n; i_q) \in \Lambda$, are satisfied, then for $f \in A^{X^{(n)}}$ we have

$$S_{\alpha}^{A}\left(t^{A}, t_{1}^{A}, \dots, t_{n}^{A}\right)(f)$$

$$= S_{\alpha}^{A}\left(\left(f_{\gamma}(s_{1}, \dots, s_{m})\right)^{A}, t_{1}^{A}, \dots, t_{n}^{A}\right)(f)$$

$$= f_{\gamma}^{A}\left(S_{\alpha_{1}}^{A}\left((s_{1}^{A}, t_{1}^{A}, \dots, t_{n}^{A}\right)(f), \dots, S_{\alpha_{m}}^{A}\left(s_{m}^{A}, t_{1}^{A}, \dots, t_{n}^{A}\right)(f)\right)$$

$$= f_{\gamma}^{A}\left(\left(S_{\alpha_{1}}(s_{1}, t_{1}, \dots, t_{n})\right)^{A}(f), \dots, \left(S_{\alpha_{m}}(s_{m}, t_{1}, \dots, t_{n})\right)^{A}(f)\right)$$

$$= f_{\gamma}^{A}\left(\bar{f}_{i_{i}}\left(S_{\alpha_{1}}(s_{1}, t_{1}, \dots, t_{n})\right), \dots, \bar{f}_{i_{m}}\left(S_{\alpha_{m}}(s_{m}, t_{1}, \dots, t_{n})\right)\right)$$

$$= \bar{f}_i \Big(f_\gamma \Big(S_{\alpha_1}(s_1, t_1, \dots, t_n), \dots, S_{\alpha_m}(s_m, t_1, \dots, t_n) \Big) \Big)$$

$$= \Big(f_\gamma \Big(S_{\alpha_1}(s_1, t_1, \dots, t_n), \dots, S_{\alpha_m}(s_m, t_1, \dots, t_n) \Big) \Big)^{\mathcal{A}} (f)$$

$$= \Big(S_\alpha \Big(f_\gamma(s_1, \dots, s_m), t_1, \dots, t_n \Big) \Big)^{\mathcal{A}} (f)$$

$$= \Big(S_\alpha \Big(t, t_1, \dots, t_n \Big) \Big)^{\mathcal{A}} (f).$$

Now we can define equations and identities.

Definition 2.6. A Σ -equation of sort i in X is a pair (s_i, t_i) of elements from $W(i), i \in I$. Such pairs are more commonly written as $s_i \approx_i t_i$. The Σ -equation $s_i \approx_i t_i$ is said to be a Σ -identity of sort i in the Σ -algebra \mathcal{A} if $s_i^{\mathcal{A}} = t_i^{\mathcal{A}}$, that is, if the Σ -term operations induced by s_i and t_i , respectively, on the Σ -algebra \mathcal{A} are equal.

In this case we also say that the Σ -equation $s_i \approx_i t_i$ is satisfied or modelled by the Σ -algebra \mathcal{A} , and write $\mathcal{A} \models_i s_i \approx_i t_i$. If the Σ -equation $s_i \approx_i t_i$ is satisfied by every Σ -algebra \mathcal{A} of a class K_0 of Σ -algebras, we write $K_0 \models_i s_i \approx_i t_i$. For a set F(i) of equations of sort i we write $\mathcal{A} \models_i F(i)$ if $\mathcal{A} \models_i s_i \approx_i t_i$ for all $(s_i, t_i) \in F(i)$.

Example 2.7. Let $I = \{1,2\}$, $X^{(2)} := (X_i^{(2)})_{i \in I}$ be a 2-element I-sorted alphabet, and $\Sigma = \{(1,1;1),(2,1;1)\}$. Let $\mathcal{V} = (A;f_{(2,1;1)}^{\mathcal{V}},f_{(1,1;1)}^{\mathcal{V}})$ where $f_{(2,1;1)}^{\mathcal{V}},f_{(1,1;1)}^{\mathcal{V}}$ correspond to \circ , +, respectively, and $A := (V,\mathbb{R})$ is the universe of a real vector space. Then the Σ -equation

$$f_{(2,1;1)}\Big(x_{21}, f_{(1,1;1)}(x_{11}, x_{12})\Big)$$

$$\approx_1 f_{(1,1;1)}\Big(f_{(2,1;1)}(x_{21}, x_{11}), f_{(2,1;1)}(x_{21}, x_{12})\Big) \in W(1)^2$$

is a Σ -identity of sort 1 in \mathcal{V} , that is,

$$\mathcal{V} \models_{1} f_{(2,1;1)} \Big(x_{21}, f_{(1,1;1)}(x_{11}, x_{12}) \Big)$$

$$\approx_{1} f_{(1,1;1)} \Big(f_{(2,1;1)}(x_{21}, x_{11}), f_{(2,1;1)}(x_{21}, x_{12}) \Big)$$

since for $f \in A^{X^{(2)}}$ we have

$$f_{(2,1;1)}\left(x_{21}, f_{(1,1;1)}(x_{11}, x_{12})\right)^{\mathcal{V}}(f) = \bar{f}_1\left(f_{(2,1;1)}(x_{21}, f_{(1,1;1)}(x_{11}, x_{12}))\right)$$

$$= f_{(2,1;1)}^{\mathcal{V}}\left(\bar{f}_2(x_{21}), \bar{f}_1\left(f_{(1,1;1)}(x_{11}, x_{12})\right)\right)$$

$$= f_{(2,1;1)}^{\mathcal{V}}\left(\bar{f}_2(x_{21}), f_{(1,1;1)}^{\mathcal{V}}\left(\bar{f}_1(x_{11}), \bar{f}_1(x_{12})\right)\right)$$

$$= f_{(2,1;1)}^{\mathcal{V}}\left(f_2(x_{21}), f_{(1,1;1)}^{\mathcal{V}}\left(f_1(x_{11}), f_1(x_{12})\right)\right)$$

and

$$\begin{split} f_{(1,1;1)}\Big(f_{2,1;1}(x_{21},x_{11}),f_{(2,1;1)}(x_{21},x_{12})\Big)^{\mathcal{V}}(f) \\ &= \bar{f}_1\Big(f_{(1,1;1)}\Big(f_{(2,1;1)}(x_{21},x_{11}),\ f_{(2,1;1)}(x_{21},x_{12})\Big)\Big) \\ &= f_{(1,1;1)}^{\mathcal{V}}\Big(\bar{f}_1\Big(f_{(2,1;1)}(x_{21},x_{11})\Big),\ \bar{f}_1\Big(f_{(2,1;1)}(x_{21},x_{12})\Big)\Big) \\ &= f_{(1,1;1)}^{\mathcal{V}}\Big(f_{(2,1;1)}^{\mathcal{V}}\Big(\bar{f}_2(x_{21}),\bar{f}_1(x_{11})\Big),\ f_{(2,1;1)}^{\mathcal{V}}\Big(\bar{f}_2(x_{21}),\bar{f}_1(x_{12})\Big)\Big) \\ &= f_{(1,1;1)}^{\mathcal{V}}\Big(f_{(2,1;1)}^{\mathcal{V}}\Big(f_2(x_{21}),f_1(x_{11})\Big),\ f_{(2,1;1)}^{\mathcal{V}}\Big(f_2(x_{21}),f_1(x_{12}))\Big)\Big). \end{split}$$

Therefore,

$$\left(f_{(2,1;1)}\left(x_{21}, f_{(1,1;1)}(x_{11}, x_{12})\right)\right)^{\mathcal{V}}$$

$$= \left(f_{(1,1;1)}\left(f_{2,1;1}(x_{21}, x_{11}), f_{(2,1;1)}(x_{21}, x_{12})\right)\right)^{\mathcal{V}}.$$

Now we extend the usual Galois-connection between identities and algebras to the many-sorted case.

Let $K_0 \subseteq Alg(\Sigma)$ and $L(i) \subseteq W(i)^2$. Then a mapping

$$\Sigma(i)$$
- $Id: P(Alg(\Sigma)) \to P(W(i)^2)$

is defined by

$$\Sigma(i)\text{-}IdK_0 := \left\{ (s_i, t_i) \in W(i)^2 \mid (\forall \mathcal{A} \in K_0)(\mathcal{A} \models_i s_i \approx_i t_i) \right\}$$

and a mapping $\Sigma(i)$ - $Mod: P(W(i)^2) \to P(Alg(\Sigma))$ is defined by

$$\Sigma(i)\text{-}ModL(i) := \{ \mathcal{A} \in Alg(\Sigma) \mid (\forall (s_i, t_i) \in L(i))(\mathcal{A} \models_i s_i \approx_i t_i) \}.$$

In the next propositions, we will show that these two mappings satisfy the Galois-connection properties.

Proposition 2.8. Let $i \in I$ and let $K_0, K_1, K_2 \subseteq Alg(\Sigma)$. Then

- (1) $K_1 \subseteq K_2 \Rightarrow \Sigma(i) IdK_2 \subseteq \Sigma(i) IdK_1$,
- (2) $K_0 \subseteq \Sigma(i)\text{-}Mod\Sigma(i)\text{-}IdK_0.$

Proof.

- (1) Assume that $K_1 \subseteq K_2$ and let $s_i \approx_i t_i \in \Sigma(i)\text{-}IdK_2$. Then for all $\mathcal{A} \in K_2$, we have $\mathcal{A} \models_i s_i \approx_i t_i$. Because of $K_1 \subseteq K_2$, we obtain $\mathcal{A} \models_i s_i \approx_i t_i$, for all $\mathcal{A} \in K_1$. This means that $s_i \approx_i t_i \in \Sigma(i)\text{-}IdK_1$, and then $\Sigma(i)\text{-}IdK_2 \subseteq \Sigma(i)\text{-}IdK_1$.
- (2) Let $A \in K_0$. Then $A \models_i \Sigma(i)-IdK_0$, means that $A \in \Sigma(i)-Mod\Sigma(i)-IdK_0$ and then $K_0 \subseteq \Sigma(i)-Mod\Sigma(i)-IdK_0$.

Proposition 2.9. Let $L(i), L_1(i), L_2(i) \subseteq W(i)^2$ be subsets of the set of all Σ -equations of sort $i \in I$. Then

- (1) $L_1(i) \subseteq L_2(i) \Rightarrow \Sigma(i) ModL_2(i) \subseteq \Sigma(i) ModL_1(i)$,
- (2) $L(i) \subseteq \Sigma(i) Id\Sigma(i) ModL(i)$.

Proof.

- (1) Assume that $L_1(i) \subseteq L_2(i)$ and let $\mathcal{A} \in \Sigma(i)\text{-}ModL_2(i)$. Then $\mathcal{A} \models_i s_i \approx_i t_i$ for all $s_i \approx_i t_i \in L_2(i)$, but we have $L_1(i) \subseteq L_2(i)$, so that $\mathcal{A} \models_i s_i \approx_i t_i$ for all $s_i \approx_i t_i \in L_1(i)$. It follows that $\mathcal{A} \in \Sigma(i)\text{-}ModL_1(i)$ and then $\Sigma(i)\text{-}ModL_2(i) \subseteq \Sigma(i)\text{-}ModL_1(i)$.
- (2) Let $s_i \approx_i t_i \in L(i)$. Then we have $\Sigma(i)$ - $ModL(i) \models_i s_i \approx_i t_i$, that is $s_i \approx_i t_i \in \Sigma(i)$ - $Id\Sigma(i)$ -ModL(i) and then $L(i) \subseteq \Sigma(i)$ - $Id\Sigma(i)$ -ModL(i).

From both propositions, we have that $(\Sigma(i)-Mod, \Sigma(i)-Id)$ is a Galois connection between $Alg(\Sigma)$ and $W(i)^2$ with respect to the relation

$$\models_{i} := \left\{ (\mathcal{A}, (s_{i}, t_{i})) \in Alg(\Sigma) \times W(i)^{2} \mid \mathcal{A} \models_{i} s_{i} \approx_{i} t_{i} \right\}.$$

The fixed points with respect to the closure operator $\Sigma(i)$ - $Mod\Sigma(i)$ -Id are called Σ -varieties of sort i and the fixed points with respect to the closure operator $\Sigma(i)$ - $Id\Sigma(i)$ -Mod are called Σ -equational theories of sort i.

3. Application of Σ -Hypersubstitutions

Now we apply Σ -hypersubstitutions to many-sorted algebras and to many-sorted equations.

Definition 3.1. Let A be an I-sorted set, let $\mathcal{A} := (A; (((f_{\gamma})_k)^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra and let $\sigma \in \Sigma$ -Hyp. Then we define the Σ -algebra

$$\sigma(\mathcal{A}) := \left(A; \left((\sigma_i((f_{\gamma})_k))^{\mathcal{A}} \right)_{k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I} \right).$$

This Σ -algebra is called the Σ -algebra derived from \mathcal{A} and σ , for short derived Σ -algebra.

For illustration we consider the following example.

Example 3.2. Let $I = \{1,2\}$, $\Sigma = \{(1,2,1),(2,1,2)\}$, $K_{(1,2,1)} = \{1,2\}$, $A = (A_1,A_2)$, $\mathcal{A} = ((A_1,A_2);((f_{(1,2,1)})_1)^{\mathcal{A}},((f_{(1,2,1)})_2)^{\mathcal{A}},f_{(2,1,2)}^{\mathcal{A}})$. Let $\sigma = (\sigma_1,\sigma_2) \in \Sigma$ -Hyp. Then we have

 $\sigma(\mathcal{A})$

$$= \left((A_1, A_2); \left(\sigma_1((f_{(1,2,1)}))_1 \right)^{\mathcal{A}}, \left(\sigma_1((f_{(1,2,1)}))_2 \right)^{\mathcal{A}}, \left(\sigma_2(f_{(2,1,2)}) \right)^{\mathcal{A}} \right).$$

Theorem 3.3. Let A be an I-sorted set and $\mathcal{A} := (A; (((f_{\gamma})_k)^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra. Let $\sigma \in \Sigma$ -Hyp and $t \in W(i), i \in I$. Then $t^{\sigma(\mathcal{A})} = (\hat{\sigma}_i[t])^{\mathcal{A}}$.

Proof. We will give a proof by induction on the complexity of the Σ -term t.

1) If $t=x_{ij}\in X_i$ where $1\leq j\leq n, n\in\mathbb{N},$ then for $f\in A^{X^{(n)}}$ we have

$$t^{\sigma(\mathcal{A})}(f) = x_{ij}^{\sigma(\mathcal{A})}(f)$$
$$= \bar{f}_i(x_{ij})$$
$$= x_{ij}^{\mathcal{A}}(f)$$
$$= (\hat{\sigma}_i[x_{ij}])^{\mathcal{A}}(f)$$
$$= (\hat{\sigma}_i[t])^{\mathcal{A}}(f).$$

2) If $t = f_{\gamma}(s_1, \ldots, s_m) \in W(i)$ where $\gamma = (i_i, \ldots, i_m; i) \in \Sigma, s_q \in W(i_q),$ $1 \leq q \leq m, m \in \mathbb{N}$ and assume that $s_q^{\sigma(\mathcal{A})} = \hat{\sigma}_{i_q}[s_q]^{\mathcal{A}}$ are satisfied, then for $f \in A^{X^{(n)}}$ we have

$$t^{\sigma(\mathcal{A})}(f) = (f_{\gamma}(s_{1}, \dots, s_{m}))^{\sigma(\mathcal{A})}(f)$$

$$= \bar{f}_{i}(f_{\gamma}(s_{1}, \dots, s_{m}))$$

$$= f_{\gamma}^{\sigma(\mathcal{A})}(\bar{f}_{i_{1}}(s_{1}), \dots, \bar{f}_{i_{m}}(s_{m}))$$

$$= f_{\gamma}^{\sigma(\mathcal{A})}(s_{1}^{\sigma(\mathcal{A})}(f), \dots, s_{m}^{\sigma(\mathcal{A})}(f))$$

$$= \sigma_{i}(f_{\gamma})^{\mathcal{A}}(\hat{\sigma}_{i_{1}}[s_{1}]^{\mathcal{A}}(f), \dots, \hat{\sigma}_{i_{m}}[s_{m}]^{\mathcal{A}}(f))$$

$$= \sigma_{i}(f_{\gamma})^{\mathcal{A}}(\hat{\sigma}_{i_{1}}[s_{1}]^{\mathcal{A}}, \dots, \hat{\sigma}_{i_{m}}[s_{m}]^{\mathcal{A}})(f)$$

$$= S_{\gamma}^{\mathcal{A}}(\sigma_{i}(f_{\gamma})^{\mathcal{A}}, \hat{\sigma}_{i_{1}}[s_{1}]^{\mathcal{A}}, \dots, \hat{\sigma}_{i_{m}}[s_{m}]^{\mathcal{A}})(f)$$

$$= (S_{\gamma}(\sigma_{i}(f_{\gamma}), \hat{\sigma}_{i_{1}}[s_{1}], \dots, \hat{\sigma}_{i_{m}}[s_{m}]))^{\mathcal{A}}(f) \text{ by Lemma 2.5}$$

$$= (\hat{\sigma}_{i}[f_{\gamma}(s_{1}, \dots, s_{m})])^{\mathcal{A}}(f)$$

$$= (\hat{\sigma}_{i}[t])^{\mathcal{A}}(f).$$

Lemma 3.4. Let $A \in Alg(\Sigma)$, $\sigma_1, \sigma_2 \in \Sigma$ -Hyp. Then we have

$$\Big((\sigma_1)_i(f_\gamma)\Big)^{\sigma_2(\mathcal{A})} = \Big(((\sigma_2)_i \circ_i (\sigma_1)_i)(f_\gamma)\Big)^{\mathcal{A}},$$

for $\gamma \in \Sigma(i), i \in I$.

Proof. By Theorem 3.3, we have

$$\begin{aligned}
\left((\sigma_1)_i(f_\gamma)\right)^{\sigma_2(\mathcal{A})} &= \left((\hat{\sigma}_2)_i[(\sigma_1)_i(f_\gamma)]\right)^{\mathcal{A}} \\
&= \left(((\hat{\sigma}_2)_i \circ (\sigma_1)_i)(f_\gamma)\right)^{\mathcal{A}} \\
&= \left(((\sigma_2)_i \circ_i (\sigma_1)_i)(f_\gamma)\right)^{\mathcal{A}}.
\end{aligned}$$

Let σ_1, σ_2 be elements in Σ -Hyp. Then we set $\sigma_1 \diamond \sigma_2 := ((\sigma_1)_i \circ_i (\sigma_2)_i)_{i \in I}$.

Lemma 3.5. Let A be an I-sorted set, let $\mathcal{A} = (A; (((f_{\gamma})_k)^{\mathcal{A}})_{k \in K_{\gamma}, \gamma \in \Sigma})$ be a Σ -algebra, and $\sigma_1, \sigma_2 \in \Sigma$ -Hyp. Then we have

$$\sigma_1(\sigma_2(\mathcal{A})) = (\sigma_2 \diamond \sigma_1)(\mathcal{A}).$$

Proof. By Lemma 3.4, we have

$$\sigma_{1}(\sigma_{2}(\mathcal{A})) = \left(A; \left(((\sigma_{1})_{i}((f_{\gamma})_{k})^{\sigma_{2}(\mathcal{A})} \right)_{k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I} \right)$$

$$= \left(A; \left((((\sigma_{2})_{i} \circ_{i} (\sigma_{1})_{i})((f_{\gamma})_{k})^{\mathcal{A}} \right)_{k \in K_{\gamma}, \gamma \in \Sigma(i), i \in I} \right)$$

$$= (\sigma_{2} \diamond \sigma_{1})(\mathcal{A}).$$

Theorem 3.6. Let A be an I-sorted set, $\mathcal{A} := (A; (((f_{\alpha})_k)^{\mathcal{A}})_{k \in K_{\alpha}, \alpha \in \Sigma}),$ and $\sigma_{id} \in \Sigma$ -Hyp. Then we have

$$\sigma_{id}(\mathcal{A}) = \mathcal{A}.$$

Proof. We will show that $((\sigma_{id})_i(f_\alpha)_k)^{\mathcal{A}} = f_\alpha^{\mathcal{A}}$ for all $k \in K_\alpha, \alpha \in \Sigma$. Assume that $\alpha = (k_1, \ldots, k_n; i) \in \Sigma$ and $\omega = (k_1, \ldots, k_n) \in I^n$. Then

$$\left((\sigma_{id})_i (f_\alpha) \right)^{\mathcal{A}} = \left(f_\alpha(x_{k_1 1}, \dots, x_{k_n n}) \right)^{\mathcal{A}}$$

$$= f_\alpha^{\mathcal{A}} \left(x_{k_1 1}^{\mathcal{A}}, \dots, x_{k_n n}^{\mathcal{A}} \right)$$

$$= f_\alpha^{\mathcal{A}} \left(e_1^{\omega, \mathcal{A}}, \dots, e_n^{\omega, \mathcal{A}} \right)$$

$$= f_\alpha^{\mathcal{A}}.$$

Definition 3.7. A Σ -algebra \mathcal{A} is said to hypersatisfy the Σ -identity $s_i \approx_i t_i$ of sort $i \in I$, if for every Σ -hypersubstitution of sort i, i.e., $\sigma_i \in \Sigma(i)$ -Hyp, the Σ -identity $\hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i]$ holds in \mathcal{A} .

In this case we say that the Σ -identity $s_i \approx_i t_i$ of sort i is satisfied as a Σ -hyperidentity of sort i in \mathcal{A} and write $\mathcal{A} \models_i s_i \approx_i t_i$, that is $\sum_{i=1}^{n} s_i \approx_i t_i$

$$\mathcal{A} \underset{\Sigma - hyp}{\models_i} s_i \approx_i t_i : \Leftrightarrow \forall \sigma_i \in \Sigma(i) \text{-} Hyp \ (\mathcal{A} \models_i \hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i]).$$

Let us consider the following example.

Example 3.8. Let $I = \{1, 2\}$, $X^{(2)} := (X_i^{(2)})_{i \in I}$ and let $\Sigma = \{(1, 1; 1), (2, 2; 2)\}$. Let $\mathcal{B}_i := (B_i; \circ_i)$ be bands. Then $f_{(i,i,i)}(x_{ij}, x_{ij}) \approx_i x_{ij}$ are hyperidentities in $\mathcal{B}_i, i \in I$. Let $\mathcal{B} := (B; \circ)$ be a double band, where $B := (B_i)_{i \in I}, \circ := (\circ_i)_{i \in I}$. Then $f_{(i,i,i)}(x_{ij}, x_{ij}) \approx_i x_{ij}$ are Σ -hyperidentities of sort i in \mathcal{B} .

Let $K_0 \subseteq Alg(\Sigma)$ be a set of Σ -algebras, and let $L(i) \subseteq W(i)^2$ be a set of Σ -equations of sort i. Then we define a mapping

$$H\Sigma(i)$$
- $Id: P(Alg(\Sigma)) \to P(W(i)^2)$

by

$$H\Sigma(i)\text{-}IdK_0:=\Big\{(s_i,t_i)\in W(i)^2\Big|(\forall\mathcal{A}\in K_0)\Big(\mathcal{A}\underset{\Sigma\text{-}hyp}{\models_i}s_i\approx_i t_i\Big)\Big\}$$

and a mapping $H\Sigma(i)\text{-}Mod:P(W(i)^2)\to P(Alg(\Sigma))$ by

$$H\Sigma(i)\text{-}ModL(i) := \Big\{\mathcal{A} \in Alg(\Sigma) \Big| (\forall (s_i,t_i) \in L(i)) \Big(\mathcal{A} \underset{\Sigma\text{-}hyp}{\models_i} s_i \approx_i t_i\Big) \Big\}.$$

We get that $(H\Sigma(i)-Mod, H\Sigma(i)-Id)$ is also a Galois connection between $Alg(\Sigma)$ and $W(i)^2$ with respect to the relation

$$\models_{i} := \Big\{ (\mathcal{A}, (s_{i}, t_{i})) \in Alg(\Sigma) \times W(i)^{2} \Big| \mathcal{A} \models_{i} s_{i} \approx_{i} t_{i} \Big\}.$$

Definition 3.9. Let $K_0 \subseteq Alg(\Sigma)$ be a subclass of Σ -algebras and let $L(i) \subseteq W(i)^2$ be a set of Σ -equations of sort i. Then we set

$$\chi^{\Sigma\text{-}E(i)}[s_i \approx_i t_i] := \{\hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i] \mid \sigma_i \in \Sigma(i)\text{-}Hyp\}$$

and

$$\chi^{\Sigma - A}[\mathcal{A}] := \{ \sigma(\mathcal{A}) \mid \sigma \in \Sigma - Hyp \}.$$

We define two operators

$$\chi^{\Sigma - E(i)} : P(W(i)^2) \to P(W(i)^2)$$

by

$$\chi^{\Sigma - E(i)}[L(i)] := \bigcup_{s_i \approx_i t_i \in L(i)} \chi^{\Sigma - E(i)}[s_i \approx_i t_i]$$

and

$$\chi^{\Sigma\text{-}A}:P(Alg(\Sigma))\to P(Alg(\Sigma))$$

by

$$\chi^{\Sigma - A}[K_0] := \bigcup_{\mathcal{A} \in K_0} \chi^{\Sigma - A}[\mathcal{A}].$$

Proposition 3.10. Let $L(i), L_k(i) \subseteq W(i)^2$ be sets of Σ -equations of sort $i \in I$ with k = 1, 2. Then

- (i) $L(i) \subseteq \chi^{\Sigma E(i)}[L(i)],$
- (ii) $L_1(i) \subseteq L_2(i) \Rightarrow \chi^{\Sigma E(i)}[L_1(i)] \subseteq \chi^{\Sigma E(i)}[L_2(i)],$
- (iii) $\chi^{\Sigma-E(i)}[L(i)] = \chi^{\Sigma-E(i)}[\chi^{\Sigma-E(i)}[L(i)]].$

Proof.

- (i) Let $s_i \approx_i t_i \in L(i)$. Then since $s_i = (\hat{\sigma}_{id})_i[s_i]$ and $t_i = (\hat{\sigma}_{id})_i[t_i]$, we have $(\hat{\sigma}_{id})_i[s_i] = s_i \approx_i t_i = (\hat{\sigma}_{id})_i[t_i] \in \chi^{\Sigma E(i)}[L(i)]$ and then $L(i) \subseteq \chi^{\Sigma E(i)}[L(i)]$.
- (ii) Assume that $L_1(i) \subseteq L_2(i)$ and let $\hat{\sigma}[s_i] \approx_i \hat{\sigma}[t_i] \in \chi^{\Sigma E(i)}[L_1(i)]$. Then $s_i \approx_i t_i \in L_1(i)$ but $L_1(i) \subseteq L_2(i)$, so that $s_i \approx_i t_i \in L_2(i)$ and $\hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i] \in \chi^{\Sigma - E(i)}[L_2(i)]$. We have $\chi^{\Sigma - E(i)}[L_1(i)] \subseteq \chi^{\Sigma - E(i)}[L_2(i)]$.

(iii) By (i) we have $\chi^{\Sigma-E(i)}[L(i)] \subseteq \chi^{\Sigma-E(i)}[\chi^{\Sigma-E(i)}[L(i)]]$. Let $\hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i] \in \chi^{\Sigma-E(i)}[\chi^{\Sigma-E(i)}[L(i)]]$. Then $s_i \approx_i t_i \in \chi^{\Sigma-E(i)}[L(i)]$, and there exists $\rho_i \in \Sigma(i)$ -Hyp and $u_i \approx_i v_i \in L(i)$ such that $s_i = \hat{\rho}_i[u_i]$ and $t_i = \hat{\rho}_i[v_i]$, and we have

$$\begin{split} \hat{\sigma}_i[s_i] &= \hat{\sigma}_i[\hat{\rho}_i[u_i]] \\ &= (\hat{\sigma}_i \circ \hat{\rho}_i) \ [u_i] \\ &= (\sigma_i \circ_i \rho_i) \hat{\ } [u_i] \\ &= \hat{\lambda}_i[u_i], \text{ where } \lambda_i = \sigma_i \circ_i \rho_i \in \Sigma(i)\text{-}Hyp, \end{split}$$

and

$$\hat{\sigma}_i[t_i] = \hat{\sigma}_i[\hat{\rho}_i[v_i]]$$

$$= (\hat{\sigma}_i \circ \hat{\rho}_i) [v_i]$$

$$= (\sigma_i \circ_i \rho_i)^{\hat{}}[v_i]$$

$$= \hat{\lambda}_i[v_i].$$

Then we set

$$\hat{\lambda}_i[u_i] = \hat{\sigma}_i[s_i] \approx_i \hat{\sigma}_i[t_i] = \hat{\lambda}_i[v_i] \in \chi^{\Sigma - E(i)}[L(i)],$$

and then

$$\chi^{\Sigma-E(i)}[\chi^{\Sigma-E(i)}[L(i)]] \subseteq \chi^{\Sigma-E(i)}[L(i)].$$

Proposition 3.11. Let $K_0, K_1, K_2 \subseteq Alg(\Sigma)$ be classes of Σ -algebras. Then

- (i) $K_0 \subseteq \chi^{\Sigma A}[K_0]$,
- (ii) $K_1 \subseteq K_2 \Rightarrow \chi^{\Sigma A}[K_1] \subseteq \chi^{\Sigma A}[K_2],$
- (iii) $\chi^{\Sigma A}[K_0] = \chi^{\Sigma A}[\chi^{\Sigma A}[K_0]].$

Proof.

- (i) Let $A \in K_0$. Then since $A = \sigma_{id}(A) \in \chi^{\Sigma A}[K_0]$, we have $K_0 \subseteq \chi^{\Sigma A}[K_0]$.
- (ii) Assume that $K_1 \subseteq K_2$ and let $\sigma(\mathcal{A}) \in \chi^{\Sigma A}[K_1]$. Then $\mathcal{A} \in K_1$ by our assumption that $\mathcal{A} \in K_2$, with $\sigma(\mathcal{A}) \in \chi^{\Sigma A}[K_2]$, and then $\chi^{\Sigma A}[K_1] \subseteq \chi^{\Sigma A}[K_2]$.
- (iii) By (i), we have $\chi^{\Sigma-A}[K_0] \subseteq \chi^{\Sigma-A}[\chi^{\Sigma-A}[K_0]]$. We will show that $\chi^{\Sigma-A}[\chi^{\Sigma-A}[K_0]] \subseteq \chi^{\Sigma-A}[K_0]$. Let $\sigma(\mathcal{A}) \in \chi^{\Sigma-A}[\chi^{\Sigma-A}[K_0]]$. Then $\mathcal{A} \in \chi^{\Sigma-A}[K_0]$, and there exists $\rho \in \Sigma$ -Hyp and $\mathcal{B} \in K_0$ such that $\mathcal{A} = \rho(\mathcal{B})$. We have

$$\begin{split} \sigma(\mathcal{A}) &= \sigma(\rho(\mathcal{B})) \\ &= (\rho \diamond \sigma)(\mathcal{B}) \\ &= \lambda(\mathcal{B}), \text{ where } \lambda = \rho \diamond \sigma \in \Sigma\text{-}Hyp. \end{split}$$

Thus we have $\sigma(\mathcal{A}) = \lambda(\mathcal{B}) \in \chi^{\Sigma - A}[K_0]$ and then $\chi^{\Sigma - A}[\chi^{\Sigma - A}[K_0]] \subseteq \chi^{\Sigma - A}[K_0]$.

Lemma 3.12. Let $A \in Alg(\Sigma)$ be a Σ -algebra, let $s_i \approx_i t_i \in W(i)^2$ be a Σ -equation of sort $i \in I$, and $\sigma \in \Sigma$ -Hyp. Then

$$\sigma(\mathcal{A}) \models_i s_i \approx_i t_i \iff \mathcal{A} \models_i \hat{\sigma_i}[s_i] \approx_i \hat{\sigma_i}[t_i].$$

Proof. We obtain

$$\sigma(\mathcal{A}) \models_{i} s_{i} \approx_{i} t_{i} \Longleftrightarrow s_{i}^{\sigma(\mathcal{A})} = t_{i}^{\sigma(\mathcal{A})}$$

$$\iff \hat{\sigma}_{i}[s_{i}]^{\mathcal{A}} = \hat{\sigma}_{i}[t_{i}]^{\mathcal{A}}$$

$$\iff \mathcal{A} \models_{i} \hat{\sigma}_{i}[s_{i}] \approx_{i} \hat{\sigma}_{i}[t_{i}].$$

The next theorem needs the concept of a conjugate pair of additive closure operators (see [4]).

Theorem 3.13. The pair $(\chi^{\Sigma-A}, \chi^{\Sigma-E(i)})$ is a conjugate pair of completely additive closure operators of sort i with respect to the relation \models_i .

Proof. By Definition 3.9, Propositions 3.10–3.11, and Lemma 3.12.

Now we may apply the theory of conjugate pairs of additive closure operators (see e.g., [4]) and obtain the following propositions:

Lemma 3.14 ([4]). For all $K_0 \subseteq Alg(\Sigma)$ and for all $L(i) \subseteq W(i)^2$ the following properties hold:

$$\text{(i)} \ \ H\Sigma(i)\text{-}ModL(i) = \Sigma(i)\text{-}Mod\chi^{\Sigma-E(i)}[L(i)],$$

(ii)
$$H\Sigma(i)$$
- $ModL(i) \subseteq \Sigma(i)$ - $ModL(i)$,

$$(\mathrm{iii}) \ \chi^{\Sigma-A}[H\Sigma(i)\text{-}ModL(i)] = H\Sigma(i)\text{-}ModL(i),$$

(iv)
$$\chi^{\Sigma - E(i)}[\Sigma(i) - IdH\Sigma(i) - ModL(i)] = \Sigma(i) - IdH\Sigma(i) - ModL(i)$$
,

(v)
$$H\Sigma(i)$$
- $ModH\Sigma(i)$ - $IdK_0 = \Sigma(i)$ - $Mod\Sigma(i)$ - $Id\chi^{\Sigma-A}[K_0]$, and

(i)
$$H\Sigma(i)-IdK_0 = \Sigma(i)-Id\chi^{\Sigma-A}[K_0],$$

(ii)
$$H\Sigma(i)$$
- $IdK_0 \subseteq \Sigma(i)$ - IdK_0 ,

$$(iii)'$$
 $\chi^{\Sigma - E(i)}[H\Sigma(i) - IdK_0] = H\Sigma(i) - IdK_0,$

$$(\mathrm{iv})^{'} \ \chi^{\Sigma-A}[\Sigma(i)\text{-}ModH\Sigma(i)\text{-}IdK_0] = \Sigma(i)\text{-}ModH\Sigma(i)\text{-}IdK_0,$$

$$(\mathbf{v})^{'} \ H\Sigma(i)\text{-}IdH\Sigma(i)\text{-}ModL(i) = \Sigma(i)\text{-}Id\Sigma(i)\text{-}Mod\chi^{\Sigma-E(i)}[L(i)].$$

4. I-SORTED SOLID Σ -VARIETIES

Definition 4.1. Let $K_0 \subseteq Alg(\Sigma)$ be a subclass of Σ -algebras. Then K_0 is called a solid model class of sort i or a solid Σ -variety of sort i if every Σ -identity of sort i is satisfied as a Σ -hyperidentity of sort i:

$$K_0 \models_i \sum_{\Sigma-hyp} \Sigma(i) - IdK_0.$$

 K_0 is called an *I*-sorted solid model class if every Σ -identity of sort i is satisfied as a Σ -hyperidentity of sort i for all $i \in I$, that is,

$$K_0 \models_i \sum_{\Sigma-hyp} \Sigma(i) - IdK_0 \text{ for all } i \in I.$$

L(i) is said to be a Σ -equational theory of sort i if there exists a class of Σ -algebras K_0 such that $L(i) = \Sigma(i)$ - IdK_0 . Then we set $L := (L(i))_{i \in I}$. This I-sorted set is called I-sorted Σ -equational theory.

Using the propositions of Lemma 3.14 one obtains the following characterization of solid Σ -varieties of sort i and solid Σ -equational theories of sort i (see e.g., [4]).

Theorem 4.2 ([4]). Let K_0 be a Σ -variety of sort i. Then the following properties are equivalent:

- (i) $K_0 = H\Sigma(i) ModH\Sigma(i) IdK_0$,
- (ii) $\chi^{\Sigma A}[K_0] = K_0$,
- (iii) $\Sigma(i)$ - $IdK_0 = H\Sigma(i)$ - IdK_0 ,
- (iv) $\chi^{\Sigma E(i)}[\Sigma(i) IdK_0] = \Sigma(i) IdK_0$.

Theorem 4.3 ([4]). Let L(i) be a Σ -equational theory of sort i. Then the following properties are equivalent:

- (i) $L(i) = H\Sigma(i) IdH\Sigma(i) ModL(i)$,
- (ii) $\chi^{\Sigma E(i)}[L(i)] = L(i)$,
- (iii) $\Sigma(i)$ - $ModL(i) = H\Sigma(i)$ -ModL(i),
- (iv) $\chi^{\Sigma-A}[\Sigma(i)-ModL(i)] = \Sigma(i)-ModL(i)$.

5. I-SORTED COMPLETE LATTICES

Let $\mathcal{H}(i)$ be the class of all fixed points with respect to the closure operator $\Sigma(i)$ - $Mod\Sigma(i)$ -Id:

$$\mathcal{H}(i) := \{ K_0 \subseteq Alg(\Sigma) \mid K_0 = \Sigma(i) - Mod\Sigma(i) - IdK_0 \},$$

that is, $\mathcal{H}(i)$ is the class of all Σ -varieties of sort i. Then $\mathcal{H}(i)$ forms a complete lattice of Σ -varieties of sort i. Let $\mathcal{H}y(i)$ be the class of all fixed points with respect to the closure operator $H\Sigma(i)$ - $ModH\Sigma(i)$ -Id:

$$\mathcal{H}y(i) := \{ K_0 \subseteq Alg(\Sigma) \mid K_0 = H\Sigma(i) - ModH\Sigma(i) - IdK_0 \},\$$

that is, $\mathcal{H}y(i)$ is the class of all solid Σ -varieties of sort i. Then $\mathcal{H}y(i)$ forms a complete lattice of solid Σ -varieties of sort i and $\mathcal{H}y(i)$ is a complete sublattice of $\mathcal{H}(i)$. We set $\mathcal{H} := (\mathcal{H}(i))_{i \in I}$ and $\mathcal{H}y := (\mathcal{H}y(i))_{i \in I}$. \mathcal{H} is called an I-sorted complete lattice. $\mathcal{H}y$ is called an I-sorted complete sublattice of \mathcal{H} , since for every $i \in I$, $\mathcal{H}y(i)$ is a complete sublattice of $\mathcal{H}(i)$. Dually

Let $\mathcal{L}(i)$ be the class of all fixed points with respect to the closure operator $\Sigma(i)$ - $Id\Sigma(i)$ -Mod:

$$\mathcal{L}(i) := \{ L(i) \subseteq W(i)^2 \mid L(i) = \Sigma(i) - Id\Sigma(i) - ModL(i) \},$$

that is, $\mathcal{L}(i)$ is the class of all Σ -equational theories of sort i. Then $\mathcal{L}(i)$ forms a complete lattice of Σ -equational theories of sort i. Let $\mathcal{L}y(i)$ be the class of all fixed points with respect to the closure operator $H\Sigma(i)$ - $IdH\Sigma(i)$ -Mod:

$$\mathcal{L}y(i) := \{ L(i) \subseteq W(i)^2 \mid L(i) = H\Sigma(i) - IdH\Sigma(i) - ModL(i) \},$$

that is, $\mathcal{L}y(i)$ is the class of all solid Σ -equational theories of sort i. Then $\mathcal{L}y(i)$ forms a complete lattice of solid Σ -equational theories of sort i and $\mathcal{L}y(i)$ is a complete sublattice of $\mathcal{L}(i)$. We set $\mathcal{L} := (\mathcal{L}(i))_{i \in I}$ and $\mathcal{L}y := (\mathcal{L}y(i))_{i \in I}$. \mathcal{L} is called an I-sorted complete lattice. $\mathcal{L}y$ is called an I-sorted complete sublattice of \mathcal{L} , since for every $i \in I$, $\mathcal{L}y(i)$ is a complete sublattice of $\mathcal{L}(i)$.

References

- [1] P. Baltazar, M-Solid Varieties of Languages, Acta Cybernetica 18 (2008) 719–731.
- $[2]\,$ K. Denecke and S.L. Wismath, Hyperidenties and Clones, Gordon and Breach 2000.
- [3] K. Denecke and S. Lekkoksung, *Hypersubstitutions of Many-Sorted Algebras*, Asian-European J. Math. Vol. I (3) (2008) 337–346.

- [4] J. Koppitz and K. Denecke, M-solid Varieties of Algebras, Springer 2005.
- [5] H. Lugowski, Grundzüge der Universellen Algebra, Teubner-Verlag, Leipzig 1976.

 $\begin{array}{c} {\rm Received~20~May~2009} \\ {\rm Revised~10~September~2009} \end{array}$