ON THE MATRIX NEGATIVE PELL EQUATION*

ALEKSANDER GRYTCZUK AND IZABELA KURZYDŁO

Faculty of Mathematics, Computer Science and Econometrics University of Zielona Góra Prof. Z. Szafrana 4a, 65–516 Zielona Góra, Poland

e-mail: A.Grytczuk@wmie.uz.zgora.ple-mail: I.Kurzydlo@wmie.uz.zgora.pl

Abstract

Let N be a set of natural numbers and Z be a set of integers. Let $M_2(Z)$ denotes the set of all 2x2 matrices with integer entries.

We give necessary and suficient conditions for solvability of the matrix negative Pell equation

(P)
$$X^2 - dY^2 = -I \quad \text{with } d \in N$$

for nonsingular X, Y belonging to $M_2(Z)$ and his generalization

(Pn)
$$\sum_{i=1}^{n} X_{i}^{2} - d \sum_{i=1}^{n} Y_{i}^{2} = -I \text{ with } d \in N$$

for nonsingular $X_i, Y_i \in M_2(Z), i = 1, ..., n$.

^{*}This paper is partly supported by EFS (European Social Funds).

Keywords: the matrix negative Pell equation, powers matrices.

2000 Mathematics Subject Classification: 15A24, 15A42.

1. Introduction

Let N be a set of natural numbers and Z be a set of integers. Let $M_2(Z)$ denotes the set of all 2x2 matrices with integer entries.

We consider the matrix negative Pell equation $X^2-dY^2=-I$ with $d\in N$ for nonsingular X,Y belonging to $M_2(Z)$ as an analogue of the classical Diophantine equation

$$(\star) x^2 - dy^2 = -1$$

called negative Pell's equation. In 2000 A. Grytczuk, F. Luca and M. Wójtowicz [7] showed that the equation (\star) has a solution in integers x, y if and only if there exist a primitive Pythagorean triple (A, B, C) (ie. A, B, C are positive integers such that $A^2 + B^2 = C^2$ and gcd(A, B) = 1) and natural numbers a, b such that $d = a^2 + b^2$ and |aA - bB| = 1. In [9] we give an explicit form of the criterion for the solvability in integers x, y of the negative Pell equation (\star) , where $d \equiv 1 \pmod{4}$.

We also study the generalization of the matrix negative Pell equation

$$\sum_{i=1}^{n} X_i^2 - d \sum_{i=1}^{n} Y_i^2 = -I$$

with $d \in N$ for nonsingular $X_i, Y_i \in M_2(Z), i = 1, ..., n$.

Some generalizations of the classical Diophantine equations to matrix equations were studied by a number of autors; see [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14]. The results presented in this paper extend that list a little.

2. Basic Lemma

Lemma 1 ([6]). *Let*

$$A = A(x) = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix}$$

be the matrix with a = a(x), b = b(x), c = c(x), d = d(x) which are non-zero and real-valued functions defined on the interval $J = (x_1, x_2) \subset R$, where R is the set of real numbers, and let $det \ A(x) \neq 0$ on J. Let us define the numbers $r, s, u_n \ (n = 0, 1, ...)$ by formulas:

$$r = r(x) = a(x) + d(x) = TrA(x)$$

$$s = s(x) = -\det A(x)$$

$$u_0 = r, \ u_1 = ru_0 + s$$

$$u_n(x) = ru_{n-1}(x) + su_{n-2}(x)$$
 for $n \ge 2$.

Then for every natural number $n \geq 2$ we have

$$\left(\begin{array}{cc} a(x) & b(x) \\ c(x) & d(x) \end{array} \right)^n = \left(\begin{array}{cc} a(x)u_{n-2}(x) + v_{n-2}(x) & b(x)u_{n-2}(x) \\ \\ c(x)u_{n-2}(x) & d(x)u_{n-2}(x) + v_{n-2}(x) \end{array} \right)$$

where

$$v_{n-2}(x) = s(x)u_{n-3(x)}, \ u_{-1}(x) = 1 \text{ for } x \in J.$$

3. Result

Theorem 1. Let

$$X_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}, \quad Y_i = \begin{pmatrix} e_i & f_i \\ g_i & h_i \end{pmatrix}$$

be nonsingular integral matrices, i = 1, ..., n.

The equation

(Pn)
$$\sum_{i=1}^{n} X_{i}^{2} - d \sum_{i=1}^{n} Y_{i}^{2} = -I \text{ with } d \in N$$

is satisfied if and only if

(1)
$$\sum_{i=1}^{n} (TrX_i)^2 - d\sum_{i=1}^{n} (TrY_i)^2 = 2\left(\sum_{i=1}^{n} \det X_i - d\sum_{i=1}^{n} \det Y_i - 1\right),$$

and

(2)
$$\sum_{i=1}^{n} b_i Tr X_i - d \sum_{i=1}^{n} f_i Tr Y_i = 0$$
$$\sum_{i=1}^{n} c_i Tr_i - d \sum_{i=1}^{n} g_i Tr Y_i = 0.$$

Proof. Suppose that the equation (Pn) holds. Set

$$r_i = TrX_i, \ r'_i = TrY_i, \ s_i = -\det X_i, \ s'_i = -\det Y_i, \ i = 1, ..., n,$$

and

$$B = \sum_{i=1}^{n} X_i^2 - d \sum_{i=1}^{n} Y_i^2.$$

Then from Lemma 1 we obtain

$$B = \sum_{i=1}^{n} \binom{a_{i}r_{i} + s_{i} \quad b_{i}r_{i}}{c_{i}r_{i} \quad d_{i}r_{i} + s_{i}} - d\sum_{i=1}^{n} \binom{e_{i}r'_{i} + s'_{i} \quad f_{i}r'_{i}}{g_{i}r'_{i} \quad h_{i}r'_{i} + s'_{i}}$$

$$= \binom{\sum_{i=1}^{n} (a_{i}r_{i} + s_{i}) - d\sum_{i=1}^{n} (e_{i}r'_{i} + s'_{i})}{\sum_{i=1}^{n} b_{i}r_{i} - d\sum_{i=1}^{n} f_{i}r'_{i}}$$

$$= \binom{\sum_{i=1}^{n} (a_{i}r_{i} + s_{i}) - d\sum_{i=1}^{n} g_{i}r'_{i}}{\sum_{i=1}^{n} (d_{i}r_{i} + s_{i}) - d\sum_{i=1}^{n} (h_{i}r'_{i} + s'_{i})}$$

$$= \binom{-1}{0} \binom{0}{0} - 1$$

Therefore

$$\sum_{i=1}^{n} (a_i r_i + s_i) - d \sum_{i=1}^{n} (e_i r_i' + s_i') = -1$$

$$\sum_{i=1}^{n} (d_i r_i + s_i) - d \sum_{i=1}^{n} (h_i r_i' + s_i') = -1$$

$$\sum_{i=1}^{n} b_i r_i - d \sum_{i=1}^{n} f_i r_i' = 0$$

$$\sum_{i=1}^{n} c_i r_i - d \sum_{i=1}^{n} g_i r_i' = 0.$$

Now we have

$$TrB = \sum_{i=1}^{n} [(a_i r_i + s_i) + (d_i r_i + s_i)] - d \sum_{i=1}^{n} [(e_i r_i' + s_i') + (h_i r_i' + s_i')]$$

$$= \sum_{i=1}^{n} Tr X_i^2 - d \sum_{i=1}^{n} Tr Y_i^2$$

$$= \sum_{i=1}^{n} \left(\left(\lambda_i^{(1)} \right)^2 + \left(\lambda_i^{(2)} \right)^2 \right) - d \sum_{i=1}^{n} \left(\left(\lambda_i'^{(1)} \right)^2 + \left(\lambda_i'^{(2)} \right)^2 \right),$$

where $\lambda_i^{(1)}$, $\lambda_i^{(2)}$ are the characteristic roots of X_i , $\lambda_i^{\prime(1)}$, $\lambda_i^{\prime(2)}$ are the characteristic roots of Y_i , i=1,...,n. On the other hand TrB=-2 and consequently we have

$$(TrX_i)^2 = \left(\lambda_i^{(1)} + \lambda_i^{(2)}\right)^2, (TrY_i)^2 = \left(\lambda_i^{'(1)} + \lambda_i^{'(2)}\right)^2, i = 1, ..., n,$$

and

$$\sum_{i=1}^{n} (TrX_i)^2 - d\sum_{i=1}^{n} (TrY_i)^2 = 2\left(\sum_{i=1}^{n} \lambda_i^{(1)} \lambda_i^{(2)} - d\sum_{i=1}^{n} \lambda_i'^{(1)} \lambda_i'^{(2)} - 1\right),$$

and this impies that (1).

Conversely, assume that (1) and (2) are true. Then it is easy to see that the equation (Pn) is satisfied, and the proof of Theorem 2 is finished.

4. Corollaries

Now consider the equation

$$nX^2 - nd_1Y^2 = -I,$$

where X, Y are nonsingular integral matrices, and $d_1, n \in N$.

Let

$$X = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right), \quad Y = \left(\begin{array}{cc} e & f \\ g & h \end{array}\right).$$

Then from (1) we obtain

(3)
$$n (TrX)^2 - d_1 n (TrY)^2 = 2 (n \det X - d_1 n \det Y - 1).$$

From (2) we have

(4)
$$bTrX - d_1fTrY = 0, \quad cTrX - d_1gTrY = 0.$$

Hence, from Theorem 1 we get the following corollary:

Corollary 1. Let

$$X = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right), \quad Y = \left(\begin{array}{cc} e & f \\ g & h \end{array}\right)$$

be nonsingular integral matrices.

The equation

$$nX^2 - nd_1Y^2 = -I$$
 with $d_1, n \in N$

has a solution if and only if

$$n(TrX)^{2} - d_{1}n(TrY)^{2} = 2(n \det X - d_{1}n \det Y - 1)$$

and

$$bTrX - d_1fTrY = 0$$
, $cTrX - d_1gTrY = 0$.

From Corollary 1 when n = 1 we get

Corollary 2. Let be satisfied the assumptions of Corollary 1. The equation

(5)
$$X^2 - d_1 Y^2 = -I$$
, where $d_1 \in N$

has a solution if and only if

$$(TrX)^2 - d_1(TrY)^2 = 2(\det X - d_1 \det Y - 1)$$
.

and

$$bTrX - d_1fTrY = 0$$
, $cTrX - d_1gTrY = 0$.

Let

$$X = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right), \ Y = \left(\begin{array}{cc} e & f \\ f & e \end{array}\right)$$

be integral nonsingular matrices.

Then from (4) we have

$$ab - d_1 ef = 0$$
,

and for n=1 from (3) we get

$$4a^2 - 4d_1e^2 = 2(\det X - d_1 \det Y - 1).$$

Hence we obtain the following corollary:

Corollary 3. Let

$$X = \left(\begin{array}{cc} a & b \\ b & a \end{array}\right), \ Y = \left(\begin{array}{cc} e & f \\ f & e \end{array}\right)$$

be integral nonsingular matrices. The equation (5) holds if and only if

$$\det X - d_1 \det Y - 1 = 2(a^2 - d_1 e^2)$$

and

$$ab - d_1 ef = 0.$$

Example 1. Let b, a = db - 1 be non-zero integers and $d \in N$.

Let

$$X = \left(\begin{array}{cc} 0 & 1 \\ a & 0 \end{array}\right), \quad Y = \left(\begin{array}{cc} 0 & 1 \\ b & 0 \end{array}\right).$$

It easy to see that the conditions (1) and (2) are satisfied.

We have

$$X^{2} - dY^{2} = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} - d \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix}$$
$$= \begin{pmatrix} db - 1 & 0 \\ 0 & db - 1 \end{pmatrix} - d \begin{pmatrix} b & 0 \\ 0 & b \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Example 2. Let x, y be non-zero integers and $d \in N$.

We consider the following matrices:

(6)
$$X = \begin{pmatrix} 0 & 1 \\ x^2 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 \\ y^2 & 0 \end{pmatrix}.$$

We have

$$X^{2} - dY^{2} = \begin{pmatrix} x^{2} & 0 \\ 0 & x^{2} \end{pmatrix} - d \begin{pmatrix} y^{2} & 0 \\ 0 & y^{2} \end{pmatrix}$$
$$= \begin{pmatrix} x^{2} - dy^{2} & 0 \\ 0 & x^{2} - dy^{2} \end{pmatrix}.$$

It is easy to see that from the result given in the paper [7] we can generate infinitely many matrices of the form (6) satisfying the matrix negative Pell equation (P).

Acknowledgments

We would like to thank the Referee for his valuable remarks and commends for the improvement of our paper.

References

- [1] Z. Cao and A. Grytczuk, Fermat's type equations in the set of 2x2 integral matrices, Tsukuba J. Math. 22 (1998), 637–643.
- [2] R.Z. Domiaty, Solutions of $x^4 + y^4 = z^4$ in 2x2 integral matrices, Amer. Math. Monthly (1966) 73, 631.
- [3] A. Grytczuk, Fermat's equation in the set of matrices and special functions, Studia Univ. Babes-Bolyai, Mathematica 4 (1997), 49–55.
- [4] A. Grytczuk, On a conjecture about the equation $A^{mx} + A^{my} = A^{mz}$, Acta Acad. Paed. Agriensis, Sectio Math. **25** (1998), 61–70.
- [5] A. Grytczuk and J. Grytczuk, Ljunggren's trinomials and matrix equation $A^x + A^y = A^z$, Tsukuba J. Math. 2 (2002), 229–235.
- [6] A. Grytczuk and K. Grytczuk, *Functional recurences*, 115–121 in: Applications of Fibonacci Numbers, Ed. E. Bergum et als, by Kluwer Academic Publishers 1990.
- [7] A. Grytczuk, F. Luca and M. Wójtowicz, *The negative Pell equation and Pythagorean triples*, Proc. Japan Acad. **76** (2000), 91–94.
- [8] A. Khazanov, Fermat's equation in matrices, Serdica Math. J. 21 (1995), 19–40.
- [9] I. Kurzydło, Explicit form on a GLW criterion for solvability of the negative Pell equation - Submitted.
- [10] M. Le and C. Li, On Fermat's equation in integral 2x2 matrices, Period. Math. Hung. 31 (1995), 219–222.
- [11] Z. Patay and A. Szakacs, On Fermat's problem in matrix rings and groups, Publ. Math. Debrecen **61** (3-4) (2002), 487–494.
- [12] H. Qin, Fermat's problem and Goldbach problem over $M_n(Z)$, Linear Algebra App. **236** (1996), 131–135.

- [13] P. Ribenboim, 13 Lectures on Fermat's Last Theorem (New York: Springer-Verlag) 1979.
- $[14]\,$ N. Vaserstein, Non-commutative Number Theory, Contemp. Math. 83 (1989), 445-449.

Received 5 February 2009 Revised 10 March 2009