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Abstract

Let N be a set of natural numbers and Z be a set of integers. Let
M>5(Z) denotes the set of all 222 matrices with integer entries.

We give necessary and suficient conditions for solvability of the
matrix negative Pell equation

(P) X?—-dy?=-I withde N
for nonsingular X, Y belonging to M3(Z) and his generalization

(Pn) Y X7-dY YP=-I withdeN
i=1 i=1

for nonsingular X;,Y; € Ma(Z),i =1,...,n.

*This paper is partly supported by EFS (European Social Funds).
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1. INTRODUCTION

Let N be a set of natural numbers and Z be a set of integers. Let My(Z)
denotes the set of all 222 matrices with integer entries.

We consider the matrix negative Pell equation X? — dY? = —I with
d € N for nonsingular X,Y belonging to Ms(Z) as an analogue of the
classical Diophantine equation

(%) 22 —dy? = -1

called negative Pell’s equation. In 2000 A. Grytczuk, F. Luca and M.
Wéjtowicz [7] showed that the equation (%) has a solution in integers x,
y if and only if there exist a primitive Pythagorean triple (A, B,C) (e.
A, B, C are positive integers such that A% + B2 = C? and ged(A, B) = 1)
and natural numbers a,b such that d = a? + b* and |aA — bB| = 1. In [9]
we give an explicit form of the criterion for the solvability in integers x,y of
the negative Pell equation (x ), where d = 1(mod 4).

We also study the generalization of the matrix negative Pell equation

Zn:Xf — dznjyf =1
=1 =1

with d € N for nonsingular X;,Y; € My(Z),i=1,...,n.

Some generalizations of the classical Diophantine equations to matrix
equations were studied by a number of autors; see [1, 2, 3, 4, 5, 8, 10, 11,
12, 13, 14]. The results presented in this paper extend that list a little.
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2. BASIC LEMMA

Lemma 1 ([6]). Let

be the matriz with a = a(x),b = b(z),c = ¢(x),d = d(x) which are non-zero
and real-valued functions defined on the interval J = (x1,z2) C R, where
R s the set of real numbers, and let det A(x) # 0 on J. Let us define the
numbers r, s, u, (n=0,1,...) by formulas:

r=r(z) = a(x) + d(z) = TrA(z)
s =s(x) = —det A(x)

Uy =1, Uy =TU9+ S

Up () = TUp—1(x) + sSup—o(x)  forn > 2.

Then for every natural number n > 2 we have

( a(z) b(x) )n ( a(z)up—2(x) + vp—2(x) b(x)up—_o(x) >
c(x)up—o(z) d(x)up—2(x) + vp—o(x)

'Un—2($) = 5($)un—3(m)a u—l(m) =1 forx e J
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3. REsuULT

Theorem 1. Let

be nonsingular integral matrices, i =1,...,n.

The equation
n n

(Pn) > XP—dY Y =-I with deN
i=1 i=1

1s satisfied if and only if

n

1 > (Trxy)’ - dzn:(TrY,-)2 =2 (zn: det X; — dzn:dety,- - 1) ,
=1 =1 =1

i=1

and

i=1 i=1

n n
Z cr; — ngiTrY,- =0.
i=1 i=1

Proof. Suppose that the equation (Pn) holds. Set

T = TT‘XZ', 7“7/: — TrYZ-, S; = —det Xi7 S/'

(2

=—detY;, i=1,...,n,
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and

B= i:XZ? — di Y2,
=1 =1

Then from Lemma 1 we obtain

“fairi+ i bir " (e +s; fir
5-3( Say (T

i ciri  diri + s; =1 gir;  hiry +s;

n

Z(ain + Si) — dzn:(eﬂ‘g + S;) Zn: bﬂ’i — dzn: fﬂ’;
i=1 i=1 i=1 i=1

n n n
Zcm—ng,-rg Zdr,+s, dz (hirt + s%)
i—1 i—1 i—1

_ <—01 _01>

Therefore

En:dn—l—sZ thr+s
i=1

En:bz’r’l—dzn:fz’r’; =0

i=1 i=1

n n
Zcm - ngirg =0
i=1 i=1

39
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Now we have

TrB = Z[(aﬂ‘i + ;) + (diri + si)] — dZ[(eﬂ‘; + S;) + (hﬂ"g + 82)]
1=1 1=1

= zn:TrXE — dzn:TrYf
i=1 i=1

S () 4 (2 2>_ ) < MY, (@ 2>,
;<<)\ )+ (A?) d; (M) + (3@

where )\51), )\52) are the characteristic roots of X, )\/(1) )\;(2) are the char-

acteristic roots of Y;, ¢ = 1,...,n. On the other hand TrB = —2 and
consequently we have

(rrxi)? = (AP + A§2>)2, (ryp? = (3 + )\;(2)>2, i=1,..n,

and

f: TrX;)? dz (TrY;)? <§n: AN dZ)\ pU )
i=1 =1

and this impies that (1).
Conversely, assume that (1) and (2) are true. Then it is easy to see that
the equation (Pn) is satisfied, and the proof of Theorem 2 is finished. [ |

4. COROLLARIES

Now consider the equation
nX? —ndY? = -1,

where X,Y are nonsingular integral matrices, and di,n € N.
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()00

Then from (1) we obtain

Let

(3) n(TrX)* —din(TrY)* =2 (ndet X —dindetY —1).
From (2) we have
(4) bI'rX —di fTrY =0, cI'rX —diglrY =0.

Hence, from Theorem 1 we get the following corollary:

Corollary 1. Let

a b e f
X - s Y =
c d g h
be nonsingular integral matrices.
The equation
nX?—ndY?=—I withd,ne N
has a solution if and only if

n(TrX)* —din (TrY)* =2 (ndet X —dindetY — 1)

and

bI'rX —difTrY =0, cIrX —digTrY =0.

From Corollary 1 when n =1 we get
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Corollary 2. Let be satisfied the assumptions of Corollary 1. The equation
(5) X% —dyY? = —1I, where dy € N
has a solution if and only if

(TrX)? —dy(TrY)? = 2(det X —dy detY — 1) .

and
bIrX —difTrY =0, IrX —diglry =0.

()= (0 )

be integral nonsingular matrices.

Let

Then from (4) we have
ab—dief =0,
and for n=1 from (3) we get
4a® — 4dye* = 2(det X — dy detY — 1).

Hence we obtain the following corollary:

=(0a) =)

be integral nonsingular matrices. The equation (5) holds if and only if

Corollary 3. Let

det X —dydetY — 1 =2(a® — dy€?)

and
ab—dief =0.
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Example 1. Let b,a = db — 1 be non-zero integers and d € N.
Let
01 0 1
X = , Y = .
a 0 b 0

It easy to see that the conditions (1) and (2) are satisfied.
We have

X2 dy?

I
A~
o e
e o
~—
|
=W
A/~
o o
Sl
~—

db—1 0 J b 0 -1 0
L0 -1 ob) o -1)
Example 2. Let x,y be non-zero integers and d € N.

We consider the following matrices:

(©) X 0 1 v 0 1
\z220) 0 20/
We have
22 0 2.0
X2 —-dy? = —d Y
0 a2 0 vy

z? — dy? 0
B 0 z? — dy? ‘

It is easy to see that from the result given in the paper [7] we can generate
infinitely many matrices of the form (6) satisfying the matrix negative Pell
equation (P).
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