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Abstract

The variety of basic algebras is closed under formation of horizontal
sums. We characterize when a given basic algebra is a horizontal sum
of chains, MV-algebras or Boolean algebras.
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It is important in mathematics to construct relative complicated objects
from simple ones or, conversely, to decompose complicated things into sim-
ple ones. For bounded lattices, there is known a construction of forming
horizontal sums. This is just pasting distinct lattices at 0 and 1. Since ev-
ery basic algebra has its alter ego as a bounded lattice with section antitone
involutions (see e.g., [1, 2]), we can extend this construction also for these
algebras. When decomposing a given basic algebra into a horizontal sum
of more simple basic algebras, we can ask that these more simple objects
would be of a special sort. In our paper we will treat the cases when the
components are either chains or MV-algebras (or, in particular, Boolean
algebras).
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Let us recall (see e.g., [2]) that by a basic algebra is meant an algebra A =
(A;⊕,¬, 0) of type (2,1,0) satisfying the identities

(BA1) x ⊕ 0 = x;

(BA2) ¬¬x = x;

(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x;

(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = 1.

Having a basic algebra, we can introduce an order ≤ on A by the rule

x ≤ y if and only if ¬x ⊕ y = 1.

It is easy to prove (see e.g., [2]) that (A;≤) is a bounded lattice where 0 is
the least and 1 the greatest element and

(1) x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

The lattice L(A) = (A;∨,∧, 0, 1) will be called the assigned lattice of A.

If A is a basic algebra and its assigned lattice L(A) is a chain, A will
be called a chain basic algebra.

For our study, the following result is important (see Theorem 8.5.7
in [2]):

Correspondence Theorem. Let A = (A;⊕,¬, 0) be a basic algebra.
Define the operations ∨ and ∧ by (1). Then L(A) = (A;∨,∧, 0, 1) is a
bounded lattice where for each a ∈ A the mapping

x 7→ xa = ¬x ⊕ a

is an antitone involution on the interval [a, 1] (i.e. xaa = x and x ≤ y ⇒
ya ≤ xa for each x, y ∈ [a, 1]).

Conversely, let L = (L;∨,∧, 0, 1) be a bounded lattice where for each
a ∈ A there exists an antitone involution x 7→ xa on the interval [a, 1].
Define x⊕y = (¬x∨y)y and ¬x = x0. Then the algebra A(L) = (L;⊕,¬, 0)
is a basic algebra.

Moreover, A(L(A)) = A and L(A(L)) = L.



Horizontal sums of basic algebras 23

Due to the Correspondence Theorem, basic algebras can be identified with
bounded lattices having antitone involutions on the upper intervals. This
enable us to introduce the horizontal sum of basic algebras.

Let Lγ = (Lγ ;∨,∧, 0, 1) for γ ∈ Γ be bounded lattices such that the
sets Lγ \ {0, 1} are mutually disjoint for distinct indices γ ∈ Γ.

Recall that a horizontal sum of bounded lattices Lγ = (Lγ ;∨,∧, 0, 1) is
a lattice L = (

⋃

{Lγ ; γ ∈ Γ};∨,∧, 0, 1) where we identify all 0’s and all 1’s
and for x, y ∈ L we have

x ∨ y =







x ∨ y in Lγ if x, y ∈ Lγ

1 otherwise

x ∧ y =







x ∧ y in Lγ if x, y ∈ Lγ

0 otherwise.

Due to the Correspondence Theorem and the fact, that every upper interval
[a, 1] in L is an upper interval of Lγ for a ∈ Lγ we can define:

Definition. Let Aγ = (Aγ ;⊕,¬, 0) be basic algebras for γ ∈ Γ. Then A(L)
is a horizontal sum of Aγ if L is a horizontal sum of the assigned lattices
L(Aγ) for γ ∈ Γ.

An immediate reflexion of the definition of basic algebra reveals that the
class of all basic algebras is a variety. An immediate consequence of the
Correspondence Theorem is the following fact:

• The variety of basic algebras is closed under formation of horizontal
sums.

1. Horizontal sums of chain basic algebras

Due to the previous fact, every horizontal sum of basic algebras is a basic
algebra. In what follows, we will study the structure of basic algebras which
are horizontal sums of chain basic algebras.
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Let A = (A;⊕,¬, 0) be a basic algebra. We say that A satisfies the condition
(P) if the following formula

(P) x ⊕ x = 1 or ¬x ⊕ ¬x = 1

holds for each x ∈ A. It is straightforward that (P) is equivalent to

(P′) ¬x ≤ x or x ≤ ¬x.

For y ∈ A we denote by C(y) the subset of A defined by C(y) = {z ∈ A; z ≤ y

or y ≤ z}. It is evident that C(y) is a 0–1 sublattice of the induced lattice
L(A).

Lemma 1. Let A = (A;⊕,¬, 0) be a basic algebra satisfying (P) and y ∈ A;
0 6= y 6= 1. If C(y) is a chain and z ∈ C(y) then also ¬z ∈ C(y).

Proof. By (P′), either ¬y ≤ y or y ≤ ¬y thus ¬y ∈ C(y). Assume that
C(y) is a chain and z ∈ C(y). Then either z ≤ ¬y or z ≥ ¬y, i.e. either
¬z ≥ y or ¬z ≤ y whence ¬z ∈ C(y).

We say that a basic algebra A = (A;⊕,¬, 0) satisfies the condition (Q) if
the following formula holds for each x, y ∈ A:

(Q) ¬x ⊕ y = 1 or ¬y ⊕ x = 1 or (x ∨ y = 1 and ¬x ∨ ¬y = 1).

It is evident that (Q) is equivalent to

(Q′) x ‖ y ⇒ x ∨ y = 1 and x ∧ y = 0

since ¬x⊕ y = 1 is equivalent to x ≤ y and ¬x∨¬y = 1 yields ¬(x∧ y) = 1,
i.e. x ∧ y = 0.

Lemma 2. Let A = (A;⊕,¬, 0) be a basic algebra satisfying (Q) and y ∈ A;
0 6= y 6= 1. Then C(y) is a chain.

Proof. Let a, b ∈ C(y) for 0 6= y 6= 1 and assume a ‖ b. Then either
y ≤ a, b or y ≥ a, b. In the first case we have a∧ b ≥ y 6= 0 which contradicts
to (Q′). In the second case we have a ∨ b ≤ y 6= 1, a contradiction again.

Corollary 1. Let A = (A;⊕,¬, 0) be a basic algebra satisfying (Q). Then
the assigned lattice L(A) is a horizontal sum of chains.
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Proof. Let y ∈ A, 0 6= y 6= 1. By Lemma 2, C(y) is a chain. Let z ∈ A, z ‖
y. Then clearly 0 6= z 6= 1 thus also C(z) is a chain. Since z ‖ y, we have
C(y) 6= C(z). Assume that there exists a ∈ C(y)∩C(z), 0 6= a 6= 1. If a ≤ y

and a ≤ z then 0 6= a ≤ y ∧ z, i.e. ¬y ∨ ¬z 6= 1, a contradiction with (Q).
If a ≥ y and a ≥ z then 1 6= a ≥ y ∨ z, a contradiction again. If a ≤ y

and a ≥ z then z ≤ y, a contradiction with y ‖ z. Hence, we have shown
C(y) ∩ C(z) = {0, 1} for any y, z 6∈ {0, 1} with y ‖ z. It yields immediately
that L(A) is a horizontal sum of C(y), y ∈ A, 0 6= y 6= 1.

Example 1. If a basic algebra A = (A;⊕,¬, 0) satisfies (Q) then it need
not be a horizontal sum of chain basic algebras. For example, let A =
(A; ,⊕,¬, 0) where A = {0, x,¬x, y,¬y, 1} and whose table is as follows:

⊕ 0 x ¬x y ¬y 1

0 0 x ¬x y ¬y 1

x x x 1 ¬x ¬y 1

¬x ¬x 1 1 y 1 1

y y ¬y ¬x y 1 1

¬y ¬y x 1 1 ¬y 1

1 1 1 1 1 1 1

Then the assigned lattice L(A) is as shown in Figure 1.

0

1

x

¬y ¬x

y

Figure 1
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Evidently, L(A) is a horizontal sum of the chains C(x) = {0, x,¬y, 1} and
C(y) = {0, y,¬x, 1} but none of them is a subalgebra of A. ♦

Theorem 1. A basic algebra A = (A;⊕,¬, 0) is a horizontal sum of chain
basic algebras if and only if it satisfies (P) and (Q).

Proof. It is easy to verify that if A is a horizontal sum of chain basic
algebras Ai (i ∈ I) then it satisfies both (P) and (Q).

Conversely, if A satisfies (Q) then, by Lemma 2 and Corollary 1, the
assigned lattice L(A) is a horizontal sum of the chains C(y) (for y ∈ A; 0 6=
y 6= 1). Clearly 0, 1 ∈ C(y) for each y ∈ A. Let z ∈ C(y). Since A satisfies
also (P), Lemma 1 yields ¬z ∈ C(y). Assume a, b ∈ C(y), a, b 6∈ {0, 1}.
Then, by Corollary 1, C(a) = C(b) = C(y). Since a ≤ b ⊕ a and b ≤ a ⊕ b,
also a⊕ b ∈ C(b) and b⊕a ∈ C(a) thus C(y) is closed with respect to ⊕ and
hence it is a subalgebra of A. Hence A is a horizontal sum of chain basic
algebras C(y) for y ∈ A, 0 6= y 6= 1.

2. Horizontal sums of MV-algebras and Boolean algebras

For the concept of an MV-algebra, the reader is referred to [5]. For us it is
enough to say that an MV-algebra is a basic algebra A = (A;⊕,¬, 0) whose
binary operation ⊕ is commutative and associative. Let us note that a
Boolean algebra is an MV-algebra where for any element a ∈ A its negation
¬a is a complement of a in the assigned lattice L(A).

The concept of an effect algebra was introduced by D.J. Foulis and M.K.
Bennett [6]. In fact, we will not deal with this original concept since this
is only a partial algebra. However, it was shown in [3] that every lattice
effect algebra can be organized into a total algebra which is a basic algebra
(satisfying the condition (H1), see bellow). For the reader convenience, we
get a list of necessary results taken from [3]. The following is taken from
Lemma 4.9 and Propositions 4.8 and 4.10 of [3].

Proposition 1. A basic algebra A = (A;⊕,¬, 0) is a lattice effect algebra
if and only if it satisfies the quasi-identity

(H1) x ≤ ¬y and x ⊕ y ≤ ¬z ⇒ x ⊕ (z ⊕ y) = (x ⊕ y) ⊕ z
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which is equivalent to the identity

(H1′) (x ∧ ¬y) ⊕ [(¬(x ⊕ y) ∧ z) ⊕ y] = (x ⊕ y) ⊕ (¬(x ⊕ y) ∧ z).

Due to Proposition 1, we will identify lattice effect algebra with a basic
algebra satisfying (H1) and hence we can apply known concepts and results
on effect algebras (see [5, 6, 7]) for basic algebras. The first useful concept is
the compatibility which was introduced in [6]. We will adopt the equivalent
condition from [5] which is more suitable for lattice effect algebras:

Elements a, b of A = (A;⊕,¬, 0) are compatible if (a∧b)⊕(a∨b) = b⊕a.

The following result is Theorem 4.5 in [3].

Proposition 2. Elements a, b of a lattice effect algebra A = (A;⊕,¬, 0) are
compatible if and only if a ⊕ b = b ⊕ a.

By a block of a basic algebra is meant a maximal subset of mutually
compatible elements. The following result is a combination of that of
Z. Riečanová [7] and Theorem 4.7 in [3].

Proposition 3. Every lattice effect algebra is a set-theoretical union of its
blocks, which are MV-algebras.

Finally, we quote from Theorem 7.8 of [3].

Proposition 4. For a basic algebra A, the following are equivalent:

(i) every block of A is a subalgebra which is an MV-algebra;

(ii) A is a lattice effect algebra.

Now, we are able to prove

Lemma 3. Let a basic algebra A = (A;⊕,¬, 0) be a horizontal sum of MV-
algebras Aγ = (Aγ ;⊕,¬, 0) for γ ∈ Γ. Then A is a lattice effect algebra and
Aγ are blocks of A.

Proof. By Proposition 1, we need only to verify the quasi-identity (H1).
Let x, y, z ∈ A. If z = 0 or y = 0 then (H1) holds trivially.
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Assume y 6= 0 6= z. If x ≤ ¬y then x,¬y belong to the same Aγ . It is
evident that every Aγ is a subalgebra of A and also x, y belong to Aγ thus
x ⊕ y ∈ Aγ . If x⊕ y ≤ ¬z then, analogously, also x⊕ y and z belong to the
same Aγ , i.e. x, y, z ∈ Aγ . Since every Aγ is an MV-algebra, the operation
⊕ on Aγ is associative and commutative thus (H1) holds. By Proposition
1, A is a lattice effect algebra. It is almost evident that Aγ are blocks of A.

Lemma 4. Let a basic algebra A = (A;⊕,¬, 0) be a horizontal sum of
MV-algebras. Then A satisfies the condition

(H2) x ⊕ y 6= y ⊕ x, x ⊕ z = z ⊕ x, y ⊕ z = z ⊕ y ⇒ z = 0 or z = 1.

Proof. Assume that A is a horizontal sum of MV-algebras Aγ , γ ∈ Γ. By
Lemma 3, A is a lattice effect algebra and Aγ are its blocks. Let x, y, z ∈ A

and x⊕ y 6= y ⊕x. Then clearly x ∈ Aγ1
, y ∈ Aγ2

for γ1 6= γ2 (and, trivially,
x, y 6∈ {0, 1}). Assume x⊕z = z⊕x and y⊕z = z⊕y. Then z is compatible
both with x as well as with y thus x, z must be in the same block of A
and y, z must be in the same block of A. Since A is a horizontal sum of
its blocks, the only possibility is z ∈ Aγ1

and z ∈ Aγ2
, i.e. z ∈ Aγ1

∩ Aγ2

whence z = 0 or z = 1.

Now, we are able to prove our second main result

Theorem 2. For a basic algebra A = (A;⊕,¬, 0), the following are equiv-
alent

(a) A is a horizontal sum of MV-algebras;

(b) A satisfies (H1) and (H2);

(c) A satisfies (H1) and

(H3) x ⊕ y = y ⊕ x, y ⊕ z = z ⊕ y for 0 6= y 6= 1 ⇒ x ⊕ z = z ⊕ x.

Proof. Let A be a horizontal sum of MV-algebras Aγ , γ ∈ Γ. By Lemma
3, Lemma 4 and Proposition 1, it satisfies (H1) and (H2) proving (a) ⇒ (b).
Using of the propositional calculus we have that (H2) is equivalent to (H3).
Hence, the equivalence (a) ⇔ (c) is evident.
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Assume now that a basic algebra A satisfies (H1). By Proposition 1, A is a
lattice effect algebra and, by Proposition 3, A is a set-theoretical union of
MV-algebras Aγ , γ ∈ Γ, which are blocks of A. Let γ, δ ∈ Γ, γ 6= δ. Then
Aγ 6= Aδ, i.e. there exist x ∈ Aγ \Aδ and z ∈ Aδ \Aγ . Clearly x, z 6∈ {0, 1}.
Assume y ∈ Aγ ∩Aδ for 0 6= y 6= 1. By Proposition 2, we have x⊕ y = y⊕x

and y ⊕ z = z ⊕ y.

Assume that A satisfies (H2). Then we conclude y = 0 or y = 1,
a contradiction. Thus Aγ ∩ Aδ = {0, 1} for all γ 6= δ and hence A is a
horizontal sum of Aγ , γ ∈ Γ. We have shown (b) ⇒ (a).

We are going to get example of a basic algebra which is not commutative
and hence not an MV-algebra but which is a horizontal sum of MV-algebras.

Example 2. Let A = {0, x,¬x, y,¬y, a,¬a, b,¬b, 1} and consider a basic
algebra A = (A;⊕,¬, 0) whose operation table for ⊕ is as follows:

⊕ 0 x ¬x y ¬y a ¬a b ¬b 1

0 0 x ¬x y ¬y a ¬a b ¬b 1

x x x 1 y ¬y a a b ¬b 1

¬x ¬x 1 ¬x y ¬y 1 ¬x b ¬b 1

y y x ¬x y 1 a ¬a b b 1

¬y ¬y x ¬x 1 ¬y a ¬a 1 ¬y 1

a a a 1 y ¬y 1 1 b ¬b 1

¬a ¬a a ¬x y ¬y 1 ¬x b ¬b 1

b b x ¬x b 1 a ¬a 1 1 1

¬b ¬b x ¬x b ¬y a ¬a 1 ¬y 1

1 1 1 1 1 1 1 1 1 1 1

It is easy to check that the assigned lattice L(A) is that of Figure 2.
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0

1

x ¬y

b

¬b

a

¬a

y ¬x

Figure 2

One can verify that A satisfies the conditions (H1) and (H2) and it is a
horizontal sum of two copies of an MV-algebra whose (lattice) diagram is
visualized in Figure 3.

p

0

z ¬p

1

¬z

Figure 3
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Of course, we have x = z, a = p for A1 = {0, x,¬x, a,¬a, 1} and y = z, b = p

for A2 = {0, y,¬y, b,¬b, 1}. ♦

Example 3. We can show that the conditions (H1) and (H2) are indepen-
dent. For this, one can mention that the basic algebra of Example 1 satisfies
(H2) but not (H1): for y = x and z = ¬y we have x ≤ x, x ⊕ x = x ≤ ¬y

but

x ⊕ (¬y ⊕ x) = x ⊕ x = x 6= ¬y = x ⊕ ¬y = (x ⊕ x) ⊕ ¬y.

Conversely, consider the basic algebra A = (A;⊕,¬, 0) with A = {0, a, b, c,¬a,

¬b,¬c, 1} whose table is as follows

⊕ 0 a b c ¬a ¬b ¬c 1

0 0 a b c ¬a ¬b ¬c 1

a a ¬b ¬a c 1 ¬b ¬c 1

b b ¬a b ¬c ¬a 1 ¬c 1

c c a ¬c ¬b ¬a ¬b 1 1

¬a ¬a 1 ¬a ¬c 1 1 ¬c 1

¬b ¬b ¬b 1 ¬b 1 ¬b 1 1

¬c ¬c ¬a ¬c 1 ¬a 1 1 1

1 1 1 1 1 1 1 1 1

Then A satisfies (H1) but not (H2) since e.g., a⊕ c = c 6= a = c⊕ a, a⊕ b =
¬a = b ⊕ a, c ⊕ b = ¬c = b ⊕ c but b 6∈ {0, 1}. The assigned lattice L(A) is
depicted in Figure 4.
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1

b

¬a ¬c¬b

0

a c

Figure 4

♦

Our last task is when a basic algebra is a horizontal sum of Boolean algebras.
As already mentioned, a Boolean algebra is an MV-algebra where for every
its element x the negation ¬x is a complement of x. It is well-known (see
e.g., [2] or [5]) that ¬x is a complement of x if and only if x⊕x = x. Hence,
we obtain an immediate consequence of Theorem 2.

Corollary 2. A basic algebra A = (A;⊕,¬, 0) is a horizontal sum of
Boolean algebras if and only if it satisfies (H1), (H2) and the identity
x ⊕ x = x.
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