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Abstract

Pseudo MV-algebras (see e.g., [4, 6, 8]) are non-commutative ex-
tension of MV-algebras. We show that every pseudo MV-algebra is
isomorphic to the algebra of action functions where the binary opera-
tion is function composition, zero is x∧y and unit is x. Then we define
the so-called difference functions in pseudo MV-algebras and show how
a pseudo MV-algebra can be reconstructed by them.
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1. Introduction

In 1958, C.C. Chang introduced the notion of MV-algebra as an algebraic
counterpart of the  Lukasiewicz propositional calculus.

Non-commutative MV-algebras, named pseudo MV-algebras, were
introduced by G. Georgescu and A. Iorgulescu in [8].
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Independently, starting from intervals of (not necessarily commutative)
lattice-ordered groups, J. Rach̊unek established in [12] the concept of a
GMV-algebra (generalized MV-algebra).

Definition 1. A Pseudo MV-algebra is an algebra A = (A;⊕,¬,∼, 0, 1) of
type (2, 1, 1, 0, 0) satisfying the following axioms:

(A1) x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z;

(A2) x ⊕ 0 = x = 0 ⊕ x;

(A3) x ⊕ 1 = 1 = 1 ⊕ x;

(A4) ¬1 = 0 =∼ 1;

(A5) ¬(∼ x⊕ ∼ y) =∼ (¬x ⊕ ¬y);

(A6) x ⊕ (y� ∼ x) = y ⊕ (x� ∼ y) = (¬y � x) ⊕ y = (¬x � y) ⊕ x;

(A7) ∼ ¬x = x

where the additional operation � is defined via

x � y =∼ (¬x ⊕ ¬y).

Note that this structure can be defined also (in term equivalent way) as an
FLω-algebra that satisfies x/(y\x) = x ∨ y = (x/y)\x; see [10].

If ⊕ is commutative, then ∼ coincides with ¬ and (A;⊕,¬, 0, 1) be-
comes an MV-algebra. For basic properties of MV-algebras and pseudo
MV-algebras we refer to [5, 8, 12].

Remark 1. The definition of a pseudo MV-algebra usually contains the
following axiom (see e.g., [4, 8, 12]):

(A8) y � (x⊕ ∼ y) = (¬x ⊕ y) � x.

However, F. Švrček shows recently in an unpublished preprint [11] that (A8)
is redundant. More precisely, everyone can derive (A8) using the axioms of
Definition 1 as follows.
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We have

y � (x⊕ ∼ y) =∼ ¬y � (∼ ¬x⊕ ∼∼ ¬y)

=∼ ¬y� ∼ (¬x� ∼ ¬y) =∼ (¬y ⊕ (¬x� ∼ ¬y)).

Further, by (A6), we obtain

∼ (¬y ⊕ (¬x� ∼ ¬y)) =∼ ((¬¬x � ¬y) ⊕¬x

=∼ (¬¬x � ¬y)� ∼ ¬x = (∼ ¬¬x⊕ ∼ ¬y) ⊕ x = (¬x ⊕ y) � x.

Proposition 1 (see e.g., [8, 12]). Let A = (A;⊕,¬,∼, 0, 1) be a pseudo

MV-algebra, let

x � y =∼ (¬x ⊕ ¬y).

Then the following identities hold:

(a) ¬ ∼ x = x;

(b) (x � y) � z = x � (y � z);

(c) x� ∼ x = 0 = ¬x � x;

(d) x � 0 = 0 = 0 � x, x � 1 = x = 1 � x;

(e) ¬0 = 1 =∼ 0.

Proposition 2 (see [8]). Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra.

For term functions

x ∨ y = x⊕ ∼ (¬y ⊕ x) = ¬(x⊕ ∼ y) ⊕ y,

x ∧ y = x� ∼ (¬y � x) = ¬(x� ∼ y) � x,

the algebra L(A) = (A;∨,∧, 0, 1) is a bounded distributive lattice and

the mappings x 7→ ¬x and x 7→∼ x are mutually inverse antitone

bijections on A.
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The lattice order of L(A) is called the induced order of a given pseudo
MV-algebra A. Of course,

x ≤ y iff ¬x ⊕ y = 1 iff y⊕ ∼ x = 1.

Proposition 3 (see [4]). Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra.

For each a ∈ A, the mapping fa(x) = ¬x ⊕ a is an antitone bijection on

the interval [a, 1] and its inverse mapping is given by f−1
a (x) = a⊕ ∼ x.

Moreover, x ⊕ y = f−1
x (¬y ∨ x).

Note that the first part of proposition is obvious as fa(x) = x\a, f−1
a (x) =

a/x and a/(x\a) = a ∨ x = (a/x)\a.

2. A representation of pseudo MV-algebras by means of

binary functions

Cayley’s Theorem provides a well-known representation of groups by means
of certain unary functions (i.e. permutations) with composition as its bi-
nary operation. It was shown by W.C. Holland [9] that also `-groups can
be represented by monotonous permutations. A representation of Boolean
algebras by binary functions, the so-called “guard functions” was presented
in [1]. Also MV-algebras were represented by binary functions which are
an extended version of action functions (see [3]). The aim of this section is
to give a representation of pseudo MV-algebras by certain binary functions
which can be considered as action functions.

At first we define an action function on pseudo MV-algebra.
By an action we mean any process which starts whenever certain con-

ditions are satisfied. Formally, if a is a condition and x a process, by an
action we mean the proposition

IF a = 1 DO x, IF a = 0 DO NOTHING.

Consider a binary function

ha(x, y) = x ∧ (a ⊕ y)
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defined on a pseudo MV-algebra A = (A;⊕,¬,∼, 0, 1). One can easily see
that

h1(x, 0) = x ∧ (1 ⊕ 0) = x

and

h0(x, 0) = x ∧ (0 ⊕ 0) = 0.

Hence, ha(x, 0) describes the aforementioned concept of action and hence
ha(x, y) will be called an action function (cf. [3]).

For two action functions on A we define the following composition

(ha ◦ hb)(x, y) = ha(x, hb(x, y)).

Of course, ha(x, x) = x for each a ∈ A, thus this composition can be read
as (ha ◦ hb)(x, y) = ha(hb(x, x), hb(x, y)).

The following result can be found in [6]. Note that it actually holds for all
involutive residuated lattices (for details see [7]).

Lemma 1. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra, let a, b, c ∈ A.
Then

a ⊕ (b ∧ c) = (a ⊕ b) ∧ (a ⊕ c).

Lemma 2. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra and ha, hb be

action functions on A. Then ha ◦ hb = ha⊕b.

Proof. By Theorem 3 in [12], 0 ≤ a implies x = 0 ⊕ x ≤ a ⊕ x. According
to this fact and the previous definitions and Lemma 1, we have:

(ha ◦ hb)(x, y) = ha(x, hb(x, y)) = x ∧ (a ⊕ (x ∧ (b ⊕ y)))

= x ∧ (a ⊕ x) ∧ (a ⊕ b ⊕ y) = x ∧ (a ⊕ b ⊕ y) = ha⊕b(x, y).
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Theorem 1. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra and H(A) =
{ha(x, y); a ∈ A} the set of all action functions on A. Define

¬ha(x, y) = h¬a(x, y), ∼ ha(x, y) = h∼a(x, y).

Then H = (H(A); ◦,¬,∼, x∧ y, x) is a pseudo MV-algebra which is isomor-

phic to A via ha(x, y) 7→ a.

Proof. We compute h0(x, y) = x∧(0⊕y) = x∧y and h1(x, y) = x∧(1⊕y) =
x. By the previous results the map a 7→ ha is clearly a homomorphism of
a pseudo MV-algebra A onto H(A) and, therefore, H is also a psedo MV-
algebra. Moreover, if ha = hb then x ∧ (a ⊕ y) = x ∧ (b ⊕ y) for all x, y of
A. In particular, for x = 1 and y = 0 we obtain a = b, i.e. this mapping is
one-to-one and hence H is isomorphic to A.

Similarly as for Boolean algebras [1], for q-algebras [2] and for MV-algebras
[3], we can define guard functions ga(x, y) on a pseudo MV-algebra by

ga(x, y) = (a ⊕ x) ∧ (¬a ⊕ y).

The meaning of this is as follows. The element a is considered as a ”condi-
tion” similarly as for action functions. Hence, if a = 0 then

g0(x, y) = (0 ⊕ x) ∧ (1 ⊕ y) = x ∧ 1 = x

and if a = 1 then

g1(x, y) = (1 ⊕ x) ∧ (0 ⊕ y) = 1 ∧ y = y.

Thus ga(x, y) makes decisions on the action x or y in dependency of the
value of a. Of course, in many-valued logic we have also another values of a
distinct from 0 and 1 and hence this guard function is much more complex.
However, guard functions can be constructed by means of action functions
as follows

ga(x, y) = h0(ha(1, x), h¬a(1, y)).
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On the contrary, action functions are not expressible in guard functions.
Nevertheless, we can use a guard function to express an action function and
its negations ¬, ∼ in the function algebra H as follows

ha(x, y) = h0(x, ga(y, 1))

and

¬ha(x, y) = h0(x, ga(1, y)), ∼ ha(x, y) = h0(x, g∼∼a(1, y)).

Of course, we can define another sort of guard functions by

ka(x, y) = (a ⊕ x) ∧ (∼ a ⊕ y)

whose behavior is similar.

3. Difference functions in pseudo MV-algebras

The concept of difference function was already introduced for MV-algebras.
Due to the fact that the binary operation of pseudo MV-algebra is not
commutative and there are two unary operations ¬ and ∼, we should define
two difference functions as follows.

Definition 2. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra. Define
so-called difference functions +1, +2 as follows:

x +1 y = (x� ∼ y) ⊕ (y� ∼ x),

x +2 y = (¬y � x) ⊕ (¬x � y).

Of course, +1, +2 need not be commutative since ⊕ does not have this
property either. By (c) of Proposition 1 and (A2), the difference functions
satisfy the expected properties:

x +1 x = 0, x +2 x = 0.
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Now, we give some basic properties of difference functions.

Lemma 3. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra and +1, +2

difference functions. Then

(i) ¬x +1 ¬y = y +2 x;

(ii) ∼ x+2 ∼ y = y +1 x;

(iii) x +1 y = 0 ⇔ x = y;

(iv) x +2 y = 0 ⇔ x = y.

Proof.

(i): ¬x+1¬y = (¬x� ∼ ¬y)⊕(¬y� ∼ ¬x) = (¬x�y)⊕(¬y�x) = y+2x.

(ii): ∼ x+2 ∼ y = (¬ ∼ y� ∼ x) ⊕ ¬ ∼ x� ∼ y) = (y� ∼ x)⊕

(x� ∼ y) = y +1 x.

(iii): If x = y then x +1 x = 0. Conversely, let x +1 y = 0. Then

(x� ∼ y) ⊕ (y� ∼ x) = 0,

thus (according to Theorem 3 in [12])

(x� ∼ y) ∨ (y� ∼ x) ≤ (x� ∼ y) ⊕ (y� ∼ x) = 0,

whence x� ∼ y = 0 and y� ∼ x = 0. By Theorem 5 in [12], x ≤ y and

y ≤ x, i.e. x = y.

(iv): In the same way as (iii).



Remarks on pseudo MV-algebras 13

Moreover, we can express the operation ⊕ by means of +1, +2 and � as
follows.

Lemma 4. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra and +1, +2

difference functions. Then 1 +1 x =∼ x, x +2 1 = ¬x and

x ⊕ y = (1 +1 x) � (1 +1 y) +2 1.

Proof.

1 +1 x = (1� ∼ x) ⊕ (x� ∼ 1) =∼ x ⊕ 0 =∼ x,

x +2 1 = (¬1 � x) ⊕ (¬x � 1) = 0 ⊕ ¬x = ¬x.

Further,

(1 +1 x) � (1 +1 y) +2 1 = (∼ x� ∼ y) +2 1

= ¬(∼ x� ∼ y) = ¬ ∼ x ⊕ ¬ ∼ y = x ⊕ y.

Our next task is to set up axioms characterizing these difference
functions and, further, to show that also conversely, a pseudo MV-algebra
can be reconstructed by means of these difference functions and the binary
operation �.

Theorem 2. Let A = (A;⊕,¬,∼, 0, 1) be a pseudo MV-algebra and +1,
+2 be the difference functions. Then the following identities (D1)–(D5),
(M1)–(M3) are satisfied:

(D1) ((1 +1 x) � (1 +1 y) +2 1) +2 1 = (x +2 1) � (y +2 1),

1 +1 ((1 +1 x) � (1 +1 y) +2 1) = (1 +1 x) � (1 +1 y);

(D2) (1 +1 x) +2 1 = x, 1 +1 (x +2 1) = x;
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(D3) 1 +1 1 = 0, 1 +2 1 = 0;

(D4) 0 +1 x = x = x +1 0, x +2 0 = x = 0 +2 x;

(D5) (1+1x)�(1+1(y�(1+1x)))+21 = (1+1y)�(1+1(x�(1+1y)))+21

= (1 +1 ((y +2 1) � x) � (1 +1 y)) +2 1 = (1 +1 ((x +2 1) � y)

� (1 +1 x)) +2 1;

(M1) 1 � x = x = x � 1;

(M2) 0 � x = 0 = x � 0;

(M3) (x � y) � z = x � (y � z).

Proof.

(D1): ((1 +1 x) � (1 +1 y) +2 1) +2 1 = ¬(¬(∼ x� ∼ y))

= ¬(¬(∼ (¬ ∼ x ⊕ ¬ ∼ y)))
(a)
= ¬(x ⊕ y)

(A7)
= ¬(∼ ¬x⊕ ∼ ¬y)

(A5)
= ∼ (¬¬x ⊕ ¬¬y) = ¬x � ¬y = (x +2 1) � (y +2 1),

1 +1 ((1 +1 x) � (1 +1 y) +2 1) =∼ (¬(∼ x� ∼ y))

(A7)
= ∼ x� ∼ y = (1 +1 x) � (1 +1 y);
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(D2): (1 +1 x) +2 1 = ¬ ∼ x
(a)
= x,

1 +1 (x +2 1) =∼ ¬x = x by (A7);

(D3): 1 +1 1 = (1� ∼ 1) ⊕ (1� ∼ 1)
(c)
= 0 ⊕ 0

(A2)
= 0,

1 +2 1 = (¬1 � 1) ⊕ (¬1 � 1)
(A4)
= (0 � 1) ⊕ (0 � 1)

(d)
= 0 ⊕ 0

(A2)
= 0;

(D4): 0 +1 x = (0� ∼ x) ⊕ (x� ∼ 0)
(d),(e)

= 0 ⊕ (x � 1)
(d)
= 0 ⊕ x

(A2)
= x,

analogously x +1 0 = x,

x +2 0 = (¬0 � x) ⊕ (¬x � x)
(d),(e)

= x ⊕ 0
(A2)
= x,

analogously x +2 0 = x;

(D5): Using Lemma 4 we have:

(1 +1 x) � (1 +1 (y � (1 +1 x))) +2 1 = x ⊕ (y� ∼ x),

(1 +1 y) � (1 +1 (x � (1 +1 y))) +2 1 = y ⊕ (x� ∼ y),

(1 +1 ((y +2 1) � x) � (1 +1 y)) +2 1 = (¬y � x) ⊕ y,

(1 +1 ((x +2 1) � y) � (1 +1 x)) +2 1 = (¬x � y) ⊕ x.

The rest of the proof of (D5) follows directly by (A6).

(M1), (M2) and (M3) follows immediately by (b) and (d) of

Proposition 1.
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Now, we can prove the converse.

Theorem 3. Let A be a non-void set, 1 ∈ A and +1, +2, � be binary

operations on A satisfying the identities (D1)–(D5) and (M1), (M2), (M3).
Then for

x ⊕ y = (1 +1 x) � (1 +1 y) +2 1,

∼ x = 1 +1 x,

¬x = x +2 1,

0 = 1 +1 1,

the algebra A = (A;⊕,¬,∼, 0, 1) is a pseudo MV-algebra.

Proof. We must verify the axioms (A1)–(A7).

(A1): (x ⊕ y) ⊕ z = (1 +1 (x ⊕ y)) � (1 +1 z) +2 1

= (1 +1 ((1 +1 x) � (1 +1 y) +2 1)) � (1 +1 z) +2 1

(D2)
= ((1 +1 x) � (1 +1 y)) � (1 +1 z) +2 1

(M3)
= (1 +1 x) � ((1 +1 y) � (1 +1 z)) +2 1

(D2)
= (1 +1 x) � (1 +1 ((1 +1 y) � (1 +1 z) +2 1)) +2 1

= (1 +1 x) � (1 +1 (y ⊕ z)) +2 1 = x ⊕ (y ⊕ z).
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(A2): x ⊕ 0 = (1 +1 x) � (1 +1 0) +2 1
(D4)
=

(D4)
= (1 +1 x) � 1 +2 1

(M1)
= (1 +1 x) +2 1

(D2)
= x,

analogously 0 ⊕ x = x.

(A3): x ⊕ 1 = (1 +1 x) � (1 +1 1) +2 1
(D3)
=

(D3)
= (1 +1 x) � 0 +2 1

(M2)
= 0 +2 1

(D4)
= 1,

analogously 1 ⊕ x = 1.

(A4): ¬1 = 1 +2 1
(D3)
= 0, ∼ 1 = 1 +1 1

(D3)
= 0.

(A5): ¬(∼ x⊕ ∼ y) = ((1 +1 x) ⊕ (1 +1 y)) +2 1

= ((1 +1 (1 +1 x)) � (1 +1 (1 +1 y)) +2 1) +2 1
(D1)
=

(D1)
= ((1 +1 x) +2 1) � ((1 +1 y) +2 1)

(D2)
= x � y

(D2)
=

(D2)
= (1 +1 (x +2 1)) � (1 +1 (y +2 1))

(D1)
=

(D1)
= 1 +1 ((1 +1 (x +2 1)) � (1 +1 (y +2 1)) +2 1)

= 1 +1 ((x +2 1) ⊕ (y +2 1)) =∼ (¬x ⊕ ¬y).
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(A6): Follows directly by (D5).

(A7): ∼ ¬x = 1 +1 (x +2 1)
(D2)
= x.
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