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Abstract

Bounded lattices with an antitone involution the complemented
elements of which do not form a sublattice must contain two com-
plemented elements such that not both their join and their meet are
complemented. We distinguish (up to symmetry) eight cases and in
each of these cases we present such a lattice of minimal cardinality.
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∗-lattices (these are bounded lattices with an involution, denoted by ∗, sat-
isfying De Morgan’s laws) often serve as models for logics. ∗-complemented
elements of such logics can be considered as sharp assertions corresponding
to classical logic. The natural question arises when these elements form a
sublogic. The problem of characterizing the structure of bounded lattices
with an antitone involution the complemented elements of which form a
sublattice seems to be very hard. A partial solution of this problem was
obtained in [2]. We consider bounded lattices which do not have this prop-
erty. The aim of this paper is to present a list of such lattices of minimal
cardinality. [1] and [3] are standard references concerning lattice theory.

We start with the definition of a bounded lattice with an antitone
involution and of a complemented element.

Definition 1. A bounded lattice with an antitone involution is an algebra
L = (L,∨,∧,∗ , 0, 1) of type (2, 2, 1, 0, 0) such that (L,∨,∧, 0, 1) is a bounded
lattice and

(x ∨ y)∗ = x∗ ∧ y∗,

(x ∧ y)∗ = x∗ ∨ y∗ and

(x∗)∗ = x

hold for all x, y ∈ L. An element a of L is called complemented if a∨a∗ = 1
and a ∧ a∗ = 0. Let CE(L) denote the set of all complemented elements of
L.

In the following let L = (L,∨,∧,∗ , 0, 1) denote an arbitrary but fixed
bounded lattice with an antitone involution.

It is evident that if L is, moreover, distributive, i.e., a De Morgan
algebra, then CE(L) is the set of its Boolean elements and hence a sublattice
of L. A more complex case was solved by the authors in [2]. Further, let us
mention that 0, 1 ∈ CE(L) in each case.

Lemma 2. Let a, b ∈ CE(L). If a ∨ b /∈ CE(L) or a ∧ b /∈ CE(L), then

a ∧ b 6≥ a∗ ∨ b∗ and a∗ ∧ b∗ 6≥ a ∨ b.

Proof. a ∨ b /∈ CE(L) and a ∧ b ≥ a∗ ∨ b∗ would imply a∗ ≤ a and hence
a = a ∨ a∗ = 1 whence 1 = a ∨ b /∈ CE(L) which is a contradiction. The
other cases follow in a similar way.
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Lemma 3. Let a, b ∈ CE(L).

(i) If a∨b /∈ CE(L) then 0, 1, a, a∗, b, b∗, a∨b, a∗∧b∗ are pairwise distinct.

(ii) If a∧b /∈ CE(L) then 0, 1, a, a∗, b, b∗, a∧b, a∗∨b∗ are pairwise distinct.

(iii) If a ∨ b, a ∧ b /∈ CE(L) then 0, 1, a, a∗, b, b∗, a ∨ b, a∗ ∧ b∗, a ∧ b, a∗ ∨ b∗

are pairwise distinct.

Proof.

(i): 0 = 1 would imply a ∨ b = 0 ∈ CE(L).

0 = a resp. 1 = a∗ would imply a ∨ b = 0 ∨ b = b ∈ CE(L).

0 = a∗ resp. 1 = a would imply a ∨ b = 1 ∨ b = 1 ∈ CE(L).

0 = a ∨ b resp. 1 = a∗ ∧ b∗ would imply a ∨ b = 0 ∈ CE(L).

0 = a∗ ∧ b∗ resp. 1 = a ∨ b would imply a ∨ b = 1 ∈ CE(L).

a = a∗ would imply 0 = a ∧ a∗ = a ∧ a = a = a ∨ a = a ∨ a∗ = 1.

a = b resp. a∗ = b∗ would imply a ∨ b = a ∨ a = a ∈ CE(L).

a = b∗ resp. a∗ = b would imply a ∨ b = b∗ ∨ b = 1 ∈ CE(L).

a = a ∨ b resp. a∗ = a∗ ∧ b∗ would imply a ∨ b = a ∈ CE(L).

a = a∗ ∧ b∗ resp. a∗ = a ∨ b would imply a ∨ b = a∗ ∈ CE(L).

a ∨ b = a∗ ∧ b∗ is impossible because of Lemma 2.

The rest follows by symmetry of a and b.

(ii): Follows by duality.

(iii): a ∨ b = a ∧ b resp. a∗ ∧ b∗ = a∗ ∨ b∗ would imply a ∨ b = a ∨ (a ∨ b) =
a ∨ (a ∧ b) = a ∈ CE(L).

a ∨ b = a∗ ∨ b∗ resp. a∗ ∧ b∗ = a ∧ b would imply a ∨ b = a ∨ (a ∨ b) =
a ∨ (a∗ ∨ b∗) = 1 ∈ CE(L).

The rest follows from (i) and (ii).

Lemma 4. If a, b ∈ CE(L), a ∨ b, a ∧ b /∈ CE(L), a ∧ b < a∗ ∨ b∗ and

a∗ ∧ b∗ < a ∨ b then (i)–(iii) hold:
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(i) 0, 1, a, a∗, b, b∗, a∨ b, a∗ ∧ b∗, a∧ b, a∗ ∨ b∗, (a∧ b)∨ (a∗ ∧ b∗) are pairwise

distinct.

(ii) 0, 1, a, a∗, b, b∗, a∨ b, a∗ ∧ b∗, a∧ b, a∗ ∨ b∗, (a∨ b)∧ (a∗ ∨ b∗) are pairwise

distinct.

(iii) (a ∧ b) ∨ (a∗ ∧ b∗) ≤ (a ∨ b) ∧ (a∗ ∨ b∗)

Proof.

(i): (a ∧ b) ∨ (a∗ ∧ b∗) = 0 would imply a ∧ b = 0.

(a∧b)∨(a∗∧b∗) = 1 would imply a∨b=(a∧b)∨(a∨b) ≥ (a∧b)∨(a∗∧b∗)=1.

(a∧b)∨(a∗∧b∗) = a would imply 1 = a∨a∗ = (a∧b)∨(a∗∧b∗)∨a∗ ≤ a∗∨b∗.

(a∧b)∨(a∗∧b∗) = a∗ would imply 1 = a∨a∗ = a∨(a∧b)∨(a∗∧b∗) ≤ a∨b.

(a ∧ b) ∨ (a∗ ∧ b∗) = a ∨ b would imply a ∨ b = (a ∧ b) ∨ (a∗ ∧ b∗) ≤
(a ∨ b) ∧ (a∗ ∨ b∗) = a∗ ∧ b∗ < a ∨ b.

(a∧b)∨(a∗∧b∗) = a∗∧b∗ would imply a∧b = a∧(a∧b) ≤ a∧(a∗∧b∗) = 0.

(a∧b)∨(a∗∧b∗) = a∧b would imply a∗∧b∗ = a∗∧(a∗∧b∗) ≤ a∗∧(a∧b) = 0.

(a ∧ b) ∨ (a∗ ∧ b∗) = a∗ ∨ b∗ would imply a∗ ∨ b∗ = (a ∧ b) ∨ (a∗ ∧ b∗) ≤
(a ∨ b) ∧ (a∗ ∨ b∗) = a ∧ b < a∗ ∨ b∗.

The rest follows by symmetry of a and b.

(ii): Follows by duality.

(iii): Follows from the assumptions.

In the following, if two elements a, b of L are incomparable, we write a ‖ b.

Theorem 5. Let L = (L,∨,∧,∗ , 0, 1) be a bounded lattice with an antitone

involution the set CE(L) of all complemented elements of which does not

form a sublattice. Then there exist a, b ∈ CE(L) such that either a ∨ b /∈
CE(L) or a ∧ b /∈ CE(L) or both and, up to symmetry, the following cases

are possible:

(i) a ∨ b, a ∧ b /∈ CE(L), a ∧ b < a∗ ∨ b∗ and a∗ ∧ b∗ < a ∨ b

(ii) a ∨ b, a ∧ b /∈ CE(L), a ∧ b < a∗ ∨ b∗ and a∗ ∧ b∗ ‖ a ∨ b

(iii) a ∨ b, a ∧ b /∈ CE(L), a ∧ b ‖ a∗ ∨ b∗ and a∗ ∧ b∗ < a ∨ b
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(iv) a ∨ b, a ∧ b /∈ CE(L), a ∧ b ‖ a∗ ∨ b∗ and a∗ ∧ b∗ ‖ a ∨ b

(v) a ∨ b ∈ CE(L), a ∧ b /∈ CE(L), a ∨ b = 1 and a ∧ b < a∗ ∨ b∗

(vi) a ∨ b ∈ CE(L), a ∧ b /∈ CE(L), a ∨ b = 1 and a ∧ b ‖ a∗ ∨ b∗

(vii) a ∨ b ∈ CE(L), a ∧ b /∈ CE(L), a ∨ b 6= 1 and a ∧ b < a∗ ∨ b∗

(viii) a ∨ b ∈ CE(L), a ∧ b /∈ CE(L), a ∨ b 6= 1 and a ∧ b ‖ a∗ ∨ b∗

In the listed cases the following minimal (with respect to the cardinality) lat-

tices exist:
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Here c := (a ∧ b) ∨ (a∗ ∧ b∗) = (a ∨ b) ∧ (a∗ ∨ b∗).
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(vi):
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(viii):
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Remark 6. The remaining case a ∨ b /∈ CE(L), a ∧ b ∈ CE(L) need not be
considered since in this case a∗, b∗ satisfy one of the conditions (v)–(viii).

Proof of Theorem 5.

(i): According to Lemma 4 (i) or (ii) the elements 0, 1, a, a∗, b, b∗, a∨ b, a∗∧
b∗, a ∧ b, a∗ ∨ b∗, c are pairwise distinct.

(ii): According to Lemma 3 (iii) the elements 0, 1, a, a∗, b, b∗, a∨b, a∗∧b∗, a∧
b, a∗ ∨ b∗ are pairwise distinct.

a ∨ b ∨ (a∗ ∧ b∗) = 0 would imply a = 0.

a ∨ b ∨ (a∗ ∧ b∗) = 1 would imply a ∨ b ∈ CE(L).

a ∨ b ∨ (a∗ ∧ b∗) = a would imply a ∨ b = a.

a∨b∨(a∗∧b∗) = a∗ would imply a∗ = a∗∨a∗ = a∨b∨(a∗∧b∗)∨a∗ = 1.

a ∨ b ∨ (a∗ ∧ b∗) = a ∨ b would imply a∗ ∧ b∗ ≤ a ∨ b.

a ∨ b ∨ (a∗ ∧ b∗) = a∗ ∧ b∗ would imply a ∨ b ≤ a∗ ∧ b∗.

a ∨ b ∨ (a∗ ∧ b∗) = a ∧ b would imply b = a ∧ b.

a ∨ b ∨ (a∗ ∧ b∗) = a∗ ∨ b∗ would imply a∗ ∨ b∗ = a∗ ∨ b∗ ∨ a∗ ∨ b∗ =
a ∨ b ∨ (a∗ ∧ b∗) ∨ a∗ ∨ b∗ = 1.

a ∨ b ∨ (a∗ ∧ b∗) = a∗ ∧ b∗ ∧ (a ∨ b) would imply a ∨ b ≤ a∗ ∧ b∗.

a∗ ∧ b∗ ∧ (a ∨ b) = 0 would imply a ∨ b ∈ CE(L).

a∗ ∧ b∗ ∧ (a ∨ b) = 1 would imply a∗ = 1.

a∗ ∧ b∗ ∧ (a ∨ b) = a would imply a = a ∧ a = a ∧ a∗ ∧ b∗ ∧ (a ∨ b) = 0.

a∗ ∧ b∗ ∧ (a ∨ b) = a∗ would imply a∗ ∧ b∗ = a∗.

a∗ ∧ b∗ ∧ (a ∨ b) = a ∨ b would imply a ∨ b ≤ a∗ ∧ b∗.

a∗ ∧ b∗ ∧ (a ∨ b) = a∗ ∧ b∗ would imply a∗ ∧ b∗ ≤ a ∨ b.

a∗∧b∗∧(a∨b)=a∧b would imply a∧b=a∧b∧a∧b=a∧b∧a∗∧b∗∧(a∨b)=
0.

a∗ ∧ b∗ ∧ (a ∨ b) = a∗ ∨ b∗ would imply a∗ = a∗ ∨ b∗.

Hence, the elements 0, 1, a, a∗, b, b∗, a ∨ b, a∗ ∧ b∗, a ∧ b, a∗ ∨ b∗, a ∨ b ∨
(a∗∧b∗), a∗∧b∗∧(a∨b) are pairwise distinct. (Some cases follow by symmetry
of a and b.)
(iii)–(viii): These cases can be proved in an analogous way.
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