
Discussiones Mathematicae 237
General Algebra and Applications 28 (2008 ) 237–249

NORMALIZATION OF BASIC ALGEBRAS

Miroslav Kolař́ık
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1. Preliminaries, normalization, q-lattices

1.1. Normal identities, normally presentable varieties

Let τ be a similarity type and p, q be n-ary terms of type τ . If either none
of them is a variable or both p, q are the same variable, we say that the
identity p(x1, . . . , xn) = q(x1, . . . , xn) is normal.

Let V be a variety of type τ . Let Id(V) and IdN (V) denote the sets of all
identities and of all normal identities, respectively, valid in V. The variety
V is called normally presentable if Id(V) = IdN (V), cf. [2–4].

If Id(V) 6= IdN (V) then V is called non-normally presentable. If this is
the case then there is a unary term v such that the identity v(x) = x belongs
to Id(V)\ IdN (V), see e.g. [3] for details. As usual, for any set Σ of identities
of type τ, Mod(Σ) stands for the class of all algebras of type τ that satisfy
all identities from Σ. The following lemma was proved in [3, 7, 9].
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Lemma 1. If a non-normally presentable variety V is given by a system
Σ of identities, i.e., V = Mod(Σ), and v(x) = x belongs to Σ, then there
exists a system of normal identities valid in V, ΣN ⊂ IdN (V), such that
ΣN ∪ {v(x) = x} is equivalent to Σ, i.e., V = Mod(ΣN ∪ {v(x) = x}).

Consequently, w(x) = x is satisfied in V for another unary term w if and only
if the identity v(x) = w(x) belongs to IdN (V). So v is determined uniquely
up to a normal identity valid in V, and it will be called the assigned term of
V, [2].

1.2. Normalization

The normalization of V (called a nilpotent shift of the variety in [2, 4, 9]) is
the variety N(V) = Mod(IdN (V)). That is, N(V) consists of all τ -algebras
which satisfy all normal identities of V. Hence V is a subvariety of N(V),
and V = N(V) holds if and only if the variety V is normally presentable.

The next result is taken from [7].

Proposition 1. Let V be a non-normally presentable variety with an as-
signed term v. Let N = Mod(ΞN ) be a normally presentable variety with
the system of defining identities ΞN ⊂ IdN (V). Then N = N(V) if and only
if all defining identities of V can be proved from the system ΞN ∪{v(x) = x}.

The following proposition was proved by I. Mel’nik in [9].

Proposition 2. If V = Mod(ΣN ∪ {v(x) = x}) is a variety of type τ with
the set of operation symbols F where ΣN ⊂ IdN (V) then the normalization
N(V) is characterized by the identities ΣN ∪ Σv where the set of additional
identities is

Σv = {f(x1, . . . , xn) = v(f(x1, . . . , xn)),

f(x1, . . . , xj , . . . , xn) = f(x1, . . . , v(xj), . . . , xn); f ∈ F, j = 1, . . . , n}.

1.3. Skeleton

Given a non-normally presentable variety V (of type τ) with the assigned
term v, let A ∈ N(V). By a skeleton of A is meant a set SkA = {a ∈
A; vA(a) = a}, and its elements are called skeletal. Skeletal elements are
exactly the results of term operations. In particular, SkA = {vA(a); a ∈ A}.
The skeleton SkA is clearly a subalgebra of a given algebra A. An algebra
A is decomposed into classes Ca = {d ∈ A; v(d) = v(a)}, a ∈ SkA, called
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cells of A in [2]. The decomposition is formed exactly by congruence classes
of the congruence relation Φ = {〈a, b〉; tA(a, a2, . . . , an) = tA(b, a2, . . . , an),
t ∈ Tτ , a2, . . . , an ∈ A}. Moreover, the map [a]Φ 7→ vA(a) is an isomorphism
A/Φ → SkA.

The following lemma was proved in [2].

Lemma 2. If A ∈ V then SkA is the maximal subalgebra of A belonging to
N(V).

1.4. q-lattices as a normalization of lattices

A quasiorder on a set A is a reflexive and transitive binary relation � on A,
and (A;�) is called a quasiordered set.

It is well-known, that lattices have two faces, i.e., they can be viewed as
algebras and simultaneously as ordered sets. An analogous situation occurs
also for algebras resulting from the normalization of lattices, the so-called q-
lattices. A q-lattice can be introduced by identities, but can be characterized
as well as a lattice-quasiordered set (with suprema and infima for skeletal
elements) endowed with a choice function, [1].

By a q-lattice (see [1]) we mean an algebra A = (A;∨,∧) with two binary
operations satisfying the following identities:

commutativity:

(C)∨ : x ∨ y = y ∨ x, (C)∧ : x ∧ y = y ∧ x;

associativity:

(AS)∨ : (x ∨ y) ∨ z = x ∨ (y ∨ z), (AS)∧ : (x ∧ y) ∧ z = x ∧ (y ∧ z);

weak absorption:

(WAB)∨ : x ∨ (x ∧ y) = x ∨ x, (WAB)∧ : x ∧ (x ∨ y) = x ∧ x;

weak idempotence:

(WI)∨ : x ∨ y = x ∨ (y ∨ y), (WI)∧ : x ∧ y = x ∧ (y ∧ y);

equalization:

(EQ) : x ∧ x = x ∨ x.

Of course, all these identities are normal identities of lattices.
A q-lattice A is bounded if there exist elements 0 and 1 of A such that

a ∧ 0 = 0 and a ∨ 1 = 1 for each a ∈ A.
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Evidently, a q-lattice is a lattice if and only if it satisfies the idempotency
x ∨ x = x, i.e., if A is equal to its skeleton.

The proof of the following proposition can be found in [1].

Proposition 3. Let A = (A;∨,∧) be a q-lattice. Define

x � y iff x ∨ y = y ∨ y (iff x ∧ y = x ∧ x).

Then � is a quasioreder on A such that

(α) for all x, y ∈ A there exists z ∈ A such that

(i) x, y � z;

(ii) if w ∈ A such that x, y � w then z � w,

the element z will be called a q-supremum of x, y.

(β) for all x, y ∈ A there exists t ∈ A such that

(i)′ t � x, y;

(ii)′ if u ∈ A such that u � x, y then u � t,

the element t will be called a q-infimum of x, y.

Conversely, let (A;�) be a quasiordered set satisfying the conditions (α) and
(β). Define x ∨ y = z where z is a q-supremum of x, y and x ∧ y = t where
t is a q-infimum of x, y. Then (A;∨,∧) is a q-lattice.

A quasiordered set (A;�) satisfying (α) where x ∨ y denote q-supremum of
x, y is called a join-q-semilattice.

2. Normalization of basic algebras

A basic algebra (see [6]) is an algebra A = (A;⊕,¬, 0) of type (2, 1, 0) satis-
fying the identities
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(BA1) x ⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x ( Lukasiewicz axiom);

(BA4) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = ¬0;

(BA5) ¬0 ⊕ x = ¬0 = x ⊕ ¬0.

Clearly, also the (normal) identities ¬¬x = x ⊕ 0 and ¬¬¬x = ¬x hold in
every basic algebra.

Remark 1. The axiom (BA5) can be derived from the remaining axioms
(BA1)–(BA4), see [8]. On the other hand, for our purposes, it will be more
convenient to compute with the axiom (BA5) also.

Let us note that basic algebras serve as a tool for some investigations of
nonclassical logics (including MV-algebras, orthomodular lattices and their
generalizations).

The basic algebras form a variety BA which is not normally presentable,
with v(x) = x ⊕ 0 as the assigned term (or equivalently, v(x) = ¬¬x).
According to Proposition 1, the normalization N(BA) has a basis consisting
of the following normal identities:

(N1) ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x;

(N2) ¬(¬(¬(x ⊕ y) ⊕ y) ⊕ z) ⊕ (x ⊕ z) = ¬0;

(N3) 0 ⊕ 0 = 0;

(N4) ¬¬x = x ⊕ 0;

(N5) x ⊕ y = (x ⊕ 0) ⊕ y;

(N6) x ⊕ y = x ⊕ (y ⊕ 0);

(N7) x ⊕ ¬0 = ¬0;

(N8) ¬0 ⊕ x = ¬0;

(N9) (x ⊕ y) ⊕ 0 = x ⊕ y;

(N10) ¬¬¬x = ¬x;

(N11) ¬(x ⊕ 0) = ¬x;

(N12) ¬x ⊕ 0 = ¬x;
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Thus N(BA) = Mod(IdN (BA)) = Mod({(N1) − (N12)}). We are going to
show that this axiom system can be reduced.

Lemma 3. The following identities holds in N(BA):

(1) ¬¬x = 0 ⊕ x;

(2) ¬x ⊕ x = ¬0.

Proof. (1):

¬¬x = ¬(¬¬¬x) = ¬(¬x ⊕ 0) = ¬¬¬(¬x ⊕ 0)

= ¬(¬x ⊕ 0) ⊕ 0 = ¬(¬0 ⊕ x) ⊕ x = ¬¬0 ⊕ x = 0 ⊕ x.

(2):

¬x ⊕ x = ¬¬¬x ⊕ x = ¬(0 ⊕ x) ⊕ x

= ¬(¬¬0 ⊕ x) ⊕ x = ¬(¬x ⊕ ¬0) ⊕ ¬0 = ¬0.

Lemma 4. The following implications hold:

(i) (N4) and (N3) imply ¬¬0 = 0;

(ii) (N11) and (N12) imply ¬x ⊕ 0 = ¬(x ⊕ 0);

(iii) (N4) and (N11) imply (N10);

(iv) (N10) and (N4) imply (N11), (N12).

Proof. The first two cases are obvious. Prove (iii): (N4) and (N11) yield
¬¬¬x = ¬(x ⊕ 0) = ¬x. To prove (iv), suppose (N10) and (N4) then ¬x =
¬(¬¬x) = ¬(x ⊕ 0), and similarly, ¬x = ¬¬(¬x) = ¬x ⊕ 0.

So N(BA) = Mod({(N1) − (N10)}). Since v(x) = x ⊕ 0, the skeleton of a
basic algebra M = (M ;⊕,¬, 0) is SkM = {a ⊕ 0; a ∈ M}.

It is known (see e.g. [6]) that basic algebras form bounded lattices with
respect to the natural order defined by x ≤ y if and only if ¬x ⊕ y = ¬0
where x∨y = ¬(¬x⊕y)⊕y and x∧y = ¬(¬x∨¬y). An analogous statement
can be proved for their normalizations:
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Theorem 1. Let A = (A;⊕,¬, 0) ∈ N(BA). Define x � y if and only if
¬x ⊕ y = ¬0. Then (A;�) is a bounded q-lattice with 0 � x � ¬0 for each
x ∈ A and x ∨ y = ¬(¬x ⊕ y) ⊕ y and x ∧ y = ¬(¬x ∨ ¬y).

Proof. Obviously, � is reflexive by Lemma 3(2). Let x � y, i.e.,
¬x ⊕ y = ¬0. Then, by (N2), we have

(2.1)

¬0 = ¬(¬(¬(¬x ⊕ y) ⊕ y) ⊕ z) ⊕ (¬x ⊕ z)

= ¬(¬(0 ⊕ y) ⊕ z) ⊕ (¬x ⊕ z)

= ¬(¬¬¬y ⊕ z) ⊕ (¬x ⊕ z)

= ¬(¬y ⊕ z) ⊕ (¬x ⊕ z).

Assume x � y and y � z. Then ¬y ⊕ z = ¬0, and, by (2.1)

¬(¬y ⊕ z) ⊕ (¬x ⊕ z) = ¬¬0 ⊕ (¬x ⊕ z)

= 0 ⊕ (¬x ⊕ z) = ¬¬(¬x ⊕ z)

= (¬x ⊕ z) ⊕ 0 = ¬x ⊕ z,

so that x � z. Hence � is really a quasiorder on A. We have 0 � x since
¬0 ⊕ x = ¬0, and also x � ¬0 since ¬x ⊕¬0 = ¬0.

Let x � y, i.e., ¬x ⊕ y = ¬0. Then, by (2.1),

¬0 = ¬(¬y ⊕ z) ⊕ (¬x ⊕ z),

hence ¬y ⊕ z � ¬x ⊕ z. This also entails

x � y ⇒ ¬y � ¬x.

Further, ¬¬y = 0 ⊕ y � x ⊕ y, whence ¬y ⊕ (x ⊕ y) = ¬0, i.e., y � x ⊕ y.
Due to this fact, ¬(¬x⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x is a common upper bound
of x, y. Assume that x, y � z. Then ¬z ⊕ y � ¬x ⊕ y, whence

¬(¬x ⊕ y) ⊕ y � ¬(¬z ⊕ y) ⊕ y = ¬(¬y ⊕ z) ⊕ z = ¬¬0 ⊕ z = ¬¬z.

Since ¬0 = ¬z ⊕ z = ¬¬¬z ⊕ z, we have ¬¬z � z. Using transitivity, we
conclude ¬(¬x ⊕ y) ⊕ y � z. We put x ∨ y = ¬(¬x ⊕ y) ⊕ y.

Analogously we can show that x ∧ y = ¬(¬x ∨ ¬y) is a lower bound of
{x, y} such that z � ¬(¬x∨¬y) for any other lower bound of {x, y}. Hence,
(A;∨,∧) is a q-lattice (see e.g. [1] for details).
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Example 1. Let us consider the algebra A = (A;⊕,¬, 0) ∈ N(BA), where
A = {0, 0′, a, a′, b, 1}, and whose operations ⊕ and ¬ are given by the fol-
lowing tables

⊕ 0 0′ a a′ b 1

0 0 0 a a b 1
0′ 0 0 a a b 1
a a a 1 1 b 1
a′ a a 1 1 b 1
b b b a a 1 1
1 1 1 1 1 1 1

x 0 0′ a a′ b 1

¬x 1 1 a a b 0

Note that e.g. a′ ⊕ 0 6= a′, ¬¬a′ 6= a′. By Theorem 1, we can assign to
A a bounded q-lattice Q = (A;∨,∧), where x ∨ y = ¬(¬x ⊕ y) ⊕ y and
x∧ y = ¬(¬x∨¬y) for all x, y ∈ A. The tables for operations ∨ and ∧ in Q
are as follows

∨ 0 0′ a a′ b 1

0 0 0 a a b 1
0′ 0 0 a a b 1
a a a a a 1 1
a′ a a a a 1 1
b b b 1 1 b 1
1 1 1 1 1 1 1

∧ 0 0′ a a′ b 1

0 0 0 0 0 0 0
0′ 0 0 0 0 0 0
a 0 0 a a 0 a
a′ 0 0 a a 0 a
b 0 0 0 0 b b
1 0 0 a a b 1

One can easily draw the diagram of Q in Figure 1.

R

R

I

I

1

0 0′

aa′ b

Figure 1
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Remark that 1 = ¬0 is the greatest element of Q, but 0 is not the least
element of Q, since 0 � 0′ and also 0′ � 0.

The Hasse diagram of the skeleton of Q is depicted in Figure 2; of course
it is a basic algebra.

1 = ¬0

0 = ¬1

a = ¬a b = ¬b

Figure 2

3. q-lattices with sectionally antitone mappings

As usual, under an involution on a set A we mean a map p : A → A such
that app = a for all a ∈ A.

Given a quasiordered set (A;�), a map p : A → A is called antitone if
the implication x � y ⇒ yp � xp holds.

Let L = (L;∨,∧, 1) be a q-lattice with the greatest idempotent 1 (i.e.,
1 = 1 ∨ 1), and let � denote the induced quasiorder on L. Remember that
the skeleton SkL = {x ∈ L; x ∨ x = x} is a lattice. By an interval in L we
understand here the set [a, b] = {x ∈ L; a � x � b}, and under an interval
in the skeleton the intersection Sk[a, b] = SkL ∩ [a, b] provided a, b ∈ SkL.

For example, [0, a] = {0, 0′, a, a′} and Sk[0, a] = {0, a} for the q-lattice
of Example 1 (see Figure 1).

Remark 2. For any p ∈ L, let an antitone involution p : x 7→ xp, x ∈ SkL,
be given on the interval Sk[p ∨ p, 1]. The mapping p with p ∈ L can be
extended to a mapping on the whole interval [p, 1] in a natural way as
follows. For x ∈ [p, 1] we define xp := (x ∨ x)p∨p. Note that in general,
x 7→ xp is not an involution on [p, 1] but only on Sk[p ∨ p, 1]. Indeed,
xpp = ((x∨ x)p∨p ∨ (x∨ x)p∨p)p∨p = ((x∨ x)p∨p)p∨p = x∨ x ∈ SkL, however
xpp 6= x for x /∈ SkL.
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Lemma 5. Let L = (L;∨,∧, 1) be a q-lattice with 1 = 1 ∨ 1. For any
p ∈ L, let an antitone mapping p : x 7→ xp, be given on the interval [p∨ p, 1]
such that its restriction to Sk[p ∨ p, 1] is an involution. For x, y ∈ L, let us
introduce a binary operation x◦y := (x∨y)y∨y. Then the following identities
hold:

(1) x ◦ x = 1, x ◦ 1 = 1;

(2) 1 ◦ (x ◦ y) = x ◦ y;

(3) (x ◦ y) ◦ y = (y ◦ x) ◦ x (quasi-commutativity);

(4) (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = 1;

(5) x ◦ ((x ◦ y) ◦ y) = 1.

Moreover,

(6) if x ∨ y ∨ z = z ∨ z then ((x ◦ y) ◦ y) ◦ z = 1;

(7) if x ∨ y = y ∨ y then (y ◦ z) ◦ (x ◦ z) = 1.

Proof. Indeed, x ◦ x = (x ∨ x)x∨x = 1, x ◦ 1 = (x ∨ 1)1∨1 = 11 = 1,
1 ◦ (x ◦ y) = 1 ◦ (x ∨ y)y∨y = (1 ∨ (x ∨ y)y∨y)(x∨y)y∨y

= 1(x∨y)y∨y

= x ◦ y.
Further, (x◦y)◦y = ((x∨y)y∨y∨y)y∨y. Here (x∨y)y∨y∨y = (x∨y)y∨y since
(x∨ y)y∨y � y∨ y � y, therefore ((x∨ y)y∨y ∨ y)y∨y = x∨ y, and (3) follows.
To prove (4), we compute (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) = ((x∨ y) ◦ z) ◦ (x ◦ z) =
(((x ∨ y) ∨ z)z∨z ∨ (x ∨ z)z∨z)(x∨z)z∨z

∨(x∨z)z∨z

= ((x ∨ z)z∨z)(x∨z)z∨z

= 1.

(5): x ◦ ((x ◦ y) ◦ y) = x ◦ (x∨ y) = (x∨ (x∨ y))(x∨y)∨(x∨y) = (x∨ y)x∨y = 1

(6): ((x ◦ y) ◦ y) ◦ z = (x ∨ y) ◦ z = ((x ∨ y) ∨ z)z∨z = (z ∨ z)z∨z = 1

(7): (y ◦ z) ◦ (x ◦ z) = ((y ∨ z)z∨z ∨ (x ∨ z)z∨z)(x∨z)z∨z
∨(x∨z)z∨z

=
((x ∨ z)z∨z)(x∨z)z∨z

= 1.

Lemma 6. Let (A; ◦, 1) be an algebra of type (2, 0) satisfying the identities
(1), (2) and (4). Then the relation � introduced by

x � y if and only if x ◦ y = 1

is a quasiorder on A and for all x ∈ A, we have x � 1. Moreover, x ◦ y = 1
if and only if x ∨ y = y ∨ y.
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Proof. By (1), � is reflexive. For transitivity, let x � y, y � z, that is,
x ◦ y = y ◦ z = 1. Then by (4), (1) and (2), 1 = (((x ◦ y) ◦ y) ◦ z) ◦ (x ◦ z) =
((1 ◦ y) ◦ z) ◦ (x ◦ z) = (y ◦ z) ◦ (x ◦ z) = 1 ◦ (x ◦ z) = x ◦ z, so that x � z.
Clearly, x ◦ 1 = 1 gets x � 1 for all x ∈ A.

Further, if x ∨ y = y ∨ y then 1 = (y ∨ y)y∨y = (x ∨ y)y∨y = x ◦ y.
Conversely, if x ◦ y = 1 then 1 = (x ∨ y)y∨y which immediately yields that
x ∨ y = y ∨ y.

The quasiorder � given by x � y ⇔ x ◦ y = 1 will be called the induced
quasiorder of (A; ◦, 1).

Theorem 2. Let A = (A; ◦, 1) be an algebra satisfying the identities (1)–
(7). Then (A;�) is a join-q-semilattice in which x ∨ y = (x ◦ y) ◦ y for all
x, y ∈ A. For each p ∈ A, the interval [p∨p, 1] is a q-lattice with an antitone
mapping

a 7→ ap = a ◦ p, a ∈ [p ∨ p, 1].

Proof. For x, y ∈ A, x◦((x◦y)◦y) = 1, y◦((y◦x)◦x) = y◦((x◦y)◦y) = 1
holds by (5) and (3), hence (x◦y)◦y is an upper bound of x, y. The element
(x◦y)◦y is an idempotent with respect to ∨ since ((x◦y)◦y)∨((x◦y)◦y) =
(((x ◦ y) ◦ y) ◦ ((x ◦ y) ◦ y)) ◦ ((x ◦ y) ◦ y) = 1 ◦ ((x ◦ y) ◦ y) = (x ◦ y) ◦ y (by
(1) and (2)).

Let z be an idempotent such that x � z, y � z. Then, according to
(6), ((x ◦ y) ◦ y) ◦ z = 1 that is (x ◦ y) ◦ y � z, and (x ◦ y) ◦ y is the least
idempotent above the elements x and y and hence (x◦y)◦y is a q-supremum
of x, y, i.e., x ∨ y. For any element a ∈ [p ∨ p, 1], the map a 7→ ap = a ◦ p is
antitone, because, by (7), x � y ⇒ y ◦ z � x ◦ z. For a, b ∈ [p ∨ p, 1] define
a∧ b = (ap∨ bp)p. Obviously, a∧ b is a q-infimum of a, b thus, by Proposition
3, ([p ∨ p, 1];∨,∧) is a q-lattice.

Theorem 3. Let A = (A;⊕,¬, 0) ∈ N(BA). Define x ◦ y := ¬x ⊕ y
and 1 = ¬0. Further, let ∨, ∧ are defined as in Theorem 1. Then L(A) =
(A;∨,∧, ◦, 1, 0) is a bounded q-lattice with sectionally antitone mappings
such that their restrictions to Sk[p ∨ p, 1] are involutions where for each
p ∈ A and x ∈ [p ∨ p, 1] we define xp = x ◦ p.

Proof. Let us prove that the mapping p : [p ∨ p, 1] → [p ∨ p, 1] where
x 7→ xp = ¬x ⊕ p, p ∈ A, is antitone. Indeed, if x � y then ¬x � ¬y,
hence xp = ¬x ⊕ p � ¬y ⊕ p = yp for all x, y ∈ [p ∨ p, 1]. If x, y ∈ [p, 1] and
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y∨y = x∨x = x then ¬x⊕p = ¬(y∨y)⊕p = ¬y⊕p since N(BA) satisfies
all normal identities of BA.

Theorem 4. Let L = (L;∨,∧, ◦, 0, 1) be a bounded q-lattice with sectionally
antitone mappings such that their restrictions to Sk[p∨p, 1] are involutions.
Define ¬x := x◦0 and x⊕y := (x◦0)◦y. Then A(L) = (L;⊕,¬, 0) ∈ N(BA).

Proof. We shall verify the axioms (N1)–(N10).

(N1): ¬(¬x ⊕ y) ⊕ y = (x ◦ y) ◦ y = (y ◦ x) ◦ x = ¬(¬y ⊕ x) ⊕ x;

(N2): ¬(¬(¬(x⊕y)⊕y)⊕z)⊕(x⊕z) = ¬(¬((x∨0)0∨0∨y)⊕z)⊕((x◦0)◦z) =
(((x ∨ 0)0∨0 ∨ y) ∨ z)z∨z ◦ ((x ∨ 0)0∨0 ∨ z)z∨z = 1 = 0 ◦ 0 = ¬0;

(N3): 0 ⊕ 0 = (0 ◦ 0) ◦ 0 = 1 ◦ 0 = 0;

(N4): ¬¬x = (x ◦ 0) ◦ 0 = x ⊕ 0;

(N5): (x ⊕ 0) ⊕ y = ((x ◦ 0) ◦ 0) ⊕ y = x ⊕ y;

(N6): x ⊕ (y ⊕ 0) = x ⊕ ((y ◦ 0) ◦ 0) = x ⊕ y;

(N7): ¬0 ⊕ x = (0 ◦ 0) ⊕ x = 1 ⊕ x = (1 ◦ 0) ◦ x = 0 ◦ x = 1;

(N8): x ⊕ ¬0 = x ⊕ (0 ◦ 0) = x ⊕ 1 = (x ◦ 0) ◦ 1 = 1 = 0 ◦ 0 = ¬0;

(N9): (x ⊕ y) ⊕ 0 = ((x ⊕ y) ◦ 0) ◦ 0 = x ⊕ y;

(N10): ¬¬¬x = ((x ◦ 0) ◦ 0) ◦ 0 = x ◦ 0 = ¬x.

Theorem 5. Let A = (A; ◦, 1) be an algebra satisfying (1)–(7) where x∨y =
(x◦y)◦y. Let p ∈ A with 1◦p = p and define ¬px := x◦p, x⊕py := (x◦p)◦y.
Then the algebra ([p, 1];⊕p,¬p, p) belongs to N(BA).

Proof. Let x, y, z ∈ [p, 1]. Clearly, ¬p and ⊕p are well-defined operations
on the interval [p, 1], since p � ¬x⊕ p = x ◦ p and p � y � ¬(¬x⊕ p) ⊕ y =
(x ◦ p) ◦ y. We check the axioms (N1)–(N10).

(N1): ¬p(¬px ⊕p y) ⊕p y = (((((x ◦ p) ◦ p) ◦ y) ◦ p) ◦ p) ◦ y = (x ◦ y) ◦ y =
(y ◦ x) ◦ x = (((((y ◦ p) ◦ p) ◦ x) ◦ p) ◦ p) ◦ x = ¬p(¬py ⊕p x) ⊕p x;

(N2): ¬p(¬p(¬p(x ⊕p y) ⊕p y) ⊕p z) ⊕p (x ⊕p z) = ((((((x ◦ p) ◦ y) ◦ y) ◦
z) ◦ p) ◦ p) ◦ ((x ◦ p) ◦ z) = ((((x ◦ p)∨ y) ◦ z) ∨ p) ◦ ((x ◦ p) ◦ z) = 1;
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(N3): p ⊕p p = (p ◦ p) ◦ p = 1 ◦ p = p;

(N4): ¬p¬px = (x ◦ p) ◦ p = x ⊕p p;

(N5): (x ⊕p p) ⊕p y = ((x ◦ p) ◦ p) ⊕p y = x ⊕p y;

(N6): x ⊕p (y ⊕p p) = x ⊕p ((y ◦ p) ◦ p) = x ⊕p y;

(N7): ¬pp⊕px = (p◦p)⊕px = 1⊕px = (1◦p)◦x = p◦x = 1 = p◦p = ¬pp;

(N8): x ⊕p ¬pp = x ⊕p (p ◦ p) = x ⊕p 1 = (x ◦ p) ◦ 1 = 1 = p ◦ p = ¬pp;

(N9): (x ⊕p y) ⊕p p = ((x ⊕p y) ◦ p) ◦ p = x ⊕p y;

(N10): ¬p¬p¬px = ((x ◦ p) ◦ p) ◦ p = x ◦ p = ¬px.
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[4] I. Chajda and E. Graczyńska, Algebras presented by normal identities, Acta
Univ. Palacki. Olomuc., Fac. Rerum. Nat., Math. 38 (1999), 49–58.
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