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Abstract

In this short note we study necessary and sufficient conditions for
the nonnegativity of the Moore-Penrose inverse of a real matrix in
terms of certain spectral property shared by all positive splittings of
the given matrix.
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1. Introduction

The concept of monotonicity was proposed first by Collatz (see for instance
[4]). A square real matrix A is called monotone if Ax ≥ 0 ⇒ x ≥ 0.
Here x = (xi) ≥ 0 means that xi ≥ 0 for all i. Collatz has shown that a
matrix is monotone iff it is invertible and the inverse is nonnegative. He
also gave a sufficient condition on the entries of A in order for A−1 to
be nonnegative. Mangasarian [10] studied rectangular real matrices while
Berman and Plemmons ([2], [3]) obtained a variety of generalizations. Gil
gave new sufficient conditions on the entries of a matrix A that guarantee
the nonnegativity of A−1 ([5], [6]). We refer the reader to the excellent book
by Berman and Plemmons [3] for numerous examples of applications of
nonnegative matrices that include Numerical Analysis and linear economic
models.
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Berman and Plemmons [3] and several others (see [11] and the references
cited therein) have characterized monotonicity of matrices using splittings.
Recently, Peris [11] considered a positive splitting of a matrix A and
characterized the nonnegativity of A−1 in terms of an eigenvalue
property satisfied by all such splittings of A. He also considered special
types of positive splittings called B-splittings. Some of these results were
extended to ordered normed spaces by Weber [12]. The objective in this
article is to show how Peris’ results can be extended to characterize non-
negativity of the Moore-Penrose inverse of matrices with real entries. In
particular, we show how one of his sufficient conditions on nonnegativity
of the inverse of a matrix M (Theorem 1, [11]) can be extended to the
nonnegativity of the Moore-Penrose inverse of M , with an entirely similar
proof. Moreover, we have improved this particular part of Peris’ theorem
in not assuming that M is invertible. We show that, in the bargain, the
converse fails to hold. However, we succeed in obtaining a partial converse,
extending one of Weber’s results [12] to obtain a necessary condition for the
nonnegativity of the Moore-Penrose inverse in the finite dimensional setting.
Finally, we show how Peris’ results (that motivated this article), can be ob-
tained as a corollary of our results. In this sense, our main results generalize
those of Peris. It is pertinent to point out that we have been able to extend
the results of Weber (cited above), in [9], after the completion of the present
work. The present paper forms part of the contents of the doctoral thesis of
the first author [8].

The paper is organized as follows. In Section 2 we discuss the prelim-
inaries. In Section 3, we prove the main results. We conclude with some
observations.

2. Notations, definitions and preliminaries

Rn denotes the n dimensional real Euclidean space with the Euclidean norm
and Rn

+ denotes non-negative orthant in Rn. For a matrix A with nonnega-
tive entries we use the notation A ≥ 0. We denote the spectral radius of a
matrix A by r(A).

A splitting of a matrix M = B − A, with A ≥ 0, B ≥ 0 is called a
positive splitting.

A closed subset K of Rn is called a wedge if x, y ∈ K and α ≥ 0 imply
that x + y ∈ K and αx ∈ K. A wedge K is called a cone if K ∩−K = {0}.

A cone K is called reproducing (or generating) if every x ∈ Rn can be
represented in the form x = u − v, where u, v ∈ K. Equivalently, K is
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reproducing if Rn = K −K. Let the interior of K be denoted by K◦. Then
K is reproducing iff K◦ is nonempty [3].

A norm in the space Rn with respect to the cone K is said to be mono-
tonic on K if x ≤ y implies that ‖x‖ ≤ ‖y‖ for arbitrary x, y ∈ K. It is well
known that the Euclidean norm is monotonic on Rn

+ [7].
The Moore-Penrose inverse of a matrix M ∈ Rm×n is the unique matrix

M † which satisfies the following equations: MM †M = M ; M †MM † =
M †; (MM †)∗ = MM †; (M †M)∗ = M †M. If M is a (square) invertible
matrix, then it is easily seen that M−1 = M †. The following properties of
M † are well known ([1]): R(M ∗) = R(M †); N(M∗) = N(M †); MM † =
PR(M); M †M = PR(M∗). In particular, if x ∈ R(M ∗) then x = M †Mx.

We need the following version of the Perron-Frobenius theorem for ma-
trices leaving a closed convex reproducing cone invariant.

Theorem 2.1 (Theorem 1.3.2, [3]). Let K be a closed, convex and repro-
ducing cone in Rn and let A ∈ Rn×n be such that AK ⊆ K. Then r(A), the
spectral radius of A is an eigenvalue of A and K contains an eigenvector of
A corresponding to r(A).

3. Main results

In this section we present the main results (Theorem 3.1, Theorem 3.5 and
Corollary 3.6). The proof of Theorem 3.1 is entirely similar to the ingenious
proof provided by Peris ((b) =⇒ (a), Theorem 1, [11]). However, we obtain
a more general result.

Theorem 3.1. Suppose that M ∈ Rm×n satisfies the following condition:







Whenever M = B − A, with B ≥ 0 and A ≥ 0, there exists

0 6= v ∈ Rn
+ ∩ R(M∗) and µ ∈ [0, 1) such that Av = µBv.

Then M † ≥ 0.
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Proof. Let M † = (tij). Suppose M † � 0. Then there exist i0 and j0 such
that ti0j0 < 0. Define am m × n matrix B = (bij), for all j = 1, 2, 3, ...,m
with

bij =







b, if i 6= j0

b + q, if i = j0,

where b and q being arbitrary positive numbers chosen in such a way that
A = B −M ≥ 0. Then M = B −A and by the hypothesis, for this splitting,
there exist µ ∈ [0, 1) and 0 6= v ∈ Rn

+ ∩ R(M∗) such that Av = µBv.
Hence, Mv = (B − A)v = (1 − µ)Bv. Setting w = Bv, we then have (using
v = M †Mv, as v ∈ R(M ∗))

M †w = M †Bv = M †

(

1

1 − µ
Mv

)

=
1

1 − µ
v ≥ 0.

On the other hand, using v = (v1, v2, ...., vn)t, the equation w = Bv gives

wj =







b(v1 + v2 + · · · + vn), for j 6= j0

(b + q)(v1 + v2 + · · · + vn), for j = j0,

where j varies from 1 to m. So, if j 6= j0, then

wj

wj0

=
b

b + q
.

Let s = max1≤j≤m

{

|ti0j |

|ti0j0
|

}

. Choose q large enough such that

b

b + q
<

1

ms + 1
.

Then, (M †w)i0 is given by
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(M †w)i0 = (ti01, ti02, ..., ti0j0 , ..., ti0m) . (w1, w2, ..., wj0 , ..., wm)t

= wj0 (ti01, ti02, ..., ti0j0 , ..., ti0m) .

(

b

b + q
,

b

b + q
, ..., 1, ...,

b

b + q

)t

≤ |ti0j0 |wj0 (s, s...,−1, ..., s) .

(

b

b + q
,

b

b + q
, ..., 1, ...,

b

b + q

)t

= |ti0j0 |wj0

[

sb

b + q
+

sb

b + q
+ · · · + (−1) + · · · +

sb

b + q

]

< |ti0j0 |wj0

[

s
(m − 1)

ms + 1
− 1

]

< 0,

a contradiction. Hence M † ≥ 0.

Remarks 3.2. Verifying that M † ≥ 0 is arguably simpler than testing
whether all possible nonnegative splittings of M satisfy the generalized
eigenvalue property stated in Theorem 3.1. However, our intention is to
merely demonstrate that with the same proof, Peris’ result is true even for
Moore-Penrose inverses. And so, a stronger result is obtained.

We next show that the converse of Theorem 3.1 is not true.

Example 3.3. Let M =

(

1 0

1 0

)

be the matrix representation of a linear

operator on R2 with the nonnegative orthant as the cone. Then M † =
1
2M t ≥ 0. Consider M = B − A, where B =

(

2 0

1 0

)

≥ 0 and A =

(

1 0

0 0

)

≥ 0.

If Av = µBv holds for some µ and for v ∈ R2
+ ∩ R(M∗) 6= {0} then, v = 0.

We next show that, if we impose an additional (natural) condition on
B then we can recover the converse. We need a preliminary result that we
state next.

Lemma 3.4. Let S be a subspace of Rn. If Rn
+ ∩ S 6= {0} then Rn

+ ∩ S is a
closed and generating cone in its linear span. Further, the Euclidean norm
on Rn is monotonic with respect to the cone Rn

+ ∩ S.
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Proof. Since Rn
+ is closed in Rn and S is a subspace of Rn, Rn

+∩S is closed
in Rn. Set P = Rn

+ ∩ S and let Q denote the linear span of P . Then P is a
cone. The proof follows from the representation of x ∈ Q as

x =
∑

{i : bi ≥ 0}

bix
i +

∑

{i : bi < 0}

bix
i

for some bi ∈ R and xi ∈ P.

The next result is a partial converse of Theorem 3.1. This generalizes a result
of Weber (Theorem 2, [12] for positively invertible operators) to matrices
with nonnegative Moore-Penrose inverse.

Theorem 3.5. Let 0 6= M ∈ Rm×n. If M † ≥ 0, then for any decomposition
M = B − A, with A,B ≥ 0 and R(B) ⊆ R(M), there exist 0 6= v ∈
Rn

+ ∩ R(M∗) and a number µ ∈ [0, 1) such that Av = µBv.

Proof. Set L = Rn
+ ∩ R(M∗). Let H denote the linear span of L. (Note

that since M † ≥ 0, and M † 6= 0, it follows that L 6= {0}). By Lemma 3.4,
L is a closed and generating cone in H. Define the operator C : H → H by

C = (M †B)|H . Since M † ≥ 0 and B ≥ 0, we have C
L

≥ 0 (i.e., C(L) ⊆ L).
So, by Theorem 2.1, there exist 0 6= v ∈ Rn

+ ∩ R(M∗) such that (M †B)v =
Cv = rv, where r is the spectral radius of C. Next, we show r ≥ 1. Let IH

denote the identity operator on H. Then

IH = (M †M)|H

= (M †(B − A))|H

= C − (M †A)|H .

Using that M † ≥ 0 and A ≥ 0, the operator (M †A)|H is also positive with

respect to L, and thus C = IH +(M †A)|H
L

≥ IH . Then for all x ∈ L and for

any n ∈ N, x
L

≤ Cnx . Since the norm in Rn is monotonic with respect to L,
for any 0 6= x ∈ L,

‖x‖ ≤ ‖Cnx‖ ≤ ‖Cn‖‖x‖,

so that

1 ≤ ‖Cn‖, n ∈ N.
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Thus

1 ≤ lim
n→∞

(‖Cn‖)
1

n = r(C) = r.

Since Cv = rv, we have MCv = rMv, i.e., Bv = r(Bv − Av), as R(B) ⊆
R(M). This implies Av = (1 − 1

r
)Bv. This completes the proof when µ =

1 − 1
r
.

The next result will also be useful in obtaining the result of Peris, a particular
case.

Corollary 3.6. Let 0 6= M ∈ Rm×n. Suppose that M † ≥ 0 and that M has
a decomposition M = B −A, with A,B ≥ 0 where R(B) ⊆ R(M). If λ is a
real number such that Au = λBu for some 0 6= u ∈ L, then λ ≤ µ = 1− 1

r(C) ,

where C = (M †B)|H and H is the linear span of L.

Proof. Let Au = λBu with 0 6= u ∈ L. Then Mu = Bu−Au = (1−λ)Bu.
If Mu = 0, then u ∈ R(M ∗) ∩ N(M) and so u = 0, a contradiction. Thus

Mu 6= 0. So λ 6= 1 and Cu = 1
1−λ

u. Then 1
1−λ

> 0 as C
L

≥ 0 and u ∈ L. So
1

1−λ
is a positive eigenvalue with the eigenvector u for C. By Theorem 2.1,

1
1−λ

≤ r(C), i.e., λ ≤ 1 − 1
r(C) .

We now show how Peris’ theorem follows from our results. This is given
mainly for completeness.

Corollary 3.7 (Theorem 1, [11]). For a square non-singular matrix M , the
following conditions are equivalent:

(a) M is inverse positive (M−1 ≥ 0).

(b) For all positive splittings of M i.e., M = B−A, B ≥ 0, A ≥ 0, there
exists 0 6= v ≥ 0, µ ∈ [0, 1) such that Av = µBv.

Furthermore, if there exists 0 6= u ≥ 0 such that Au = λBu, then λ ≤ µ.

Proof. Indeed, if M−1 exists, then M † = M−1 and R(M) = R(M ∗) = Rn.
So, statement (b) follows by Theorem 3.5. Condition (b) implies statement
(a) by Theorem 3.1. The last statement follows from Corollary 3.6.

Remarks 3.8.

(i) For the decomposition considered in Example 3.3, R(B) * R(M). Thus
the condition R(B) ⊆ R(M) is indispensable in Theorem 3.5, in general.
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(ii) Let be M =

(

1 0

1 0

)

. Let be M = B − A with A,B ≥ 0. Then M † =

1
2M t ≥ 0. If B = (bij) and A = (aij) then b11 = 1 + a11, b12 =
a12, b21 = 1 + a21 and b22 = a22. Let R(B) ⊆ R(M). Consider the
equation Av = µBv with 0 6= v ∈ R2

+ ∩ R(M∗) and µ ∈ [0, 1). This
reduces to the single equation a11v1 = µ(1 + a11)v1 for v1 > 0 and
a11 ≥ 0, which always has a solution: µ = 0 if a11 = 0 and µ = a11

1+a11
< 1

if a11 > 0.

(iii) We make the following interesting observation: Suppose that M † ≥ 0.
Then for all nonnegative matrices A and B that satisfy the conditions
of Theorem 3.5, a Perron-Frobenius property holds for A − λB, with
λ ∈ [0, 1). We are presently not aware of any application of this result.
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