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Abstract

Let S be a semiring whose additive reduct (S, +) is an inverse
semigroup. The relations θ and k, induced by tr and ker (resp.), are
congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S),
we have introduced four congruences ρmin, ρmax, ρmin and ρmax on
S and showed that ρθ = [ρmin, ρmax] and ρκ = [ρmin, ρmax]. Different
properties of ρθ and ρκ have been considered here. A congruence ρ on
S is a Clifford congruence if and only if ρmax is a distributive lattice
congruence and ρmax is a skew-ring congruence on S. If η (σ) is the
least distributive lattice (resp. skew-ring) congruence on S then η ∩ σ
is the least Clifford congruence on S.
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1. Introduction

The class of inverse semigroups is the most natural generalization of the
class of groups. A semigroup S is called inverse if for each a ∈ S there exists
unique x ∈ S such that

a = axa and x = xax.

Whereas if for each a ∈ S there exists x ∈ S such that a = axa then S
is called regular semigroup. An element e ∈ S is called an idempotent if
e = e2. A regular semigroup S is inverse if and only if ef = fe for all
idempotents e, f in S.

In this paper our objective is to study the lattice C(S) of all congruences
on an inverse semiring S. It was recognized by Scheiblich [12] that every
congruence ρ on an inverse semigroup is uniquely determined by its restric-
tion to the idempotents, called the trace of ρ and the union of all its classes
containing idempotents, called the kernel of ρ. The importance of trace was
realized earlier by Reilly and Scheiblich [11]. They defined a congruence
θ, induced by tr on the lattice of all congruences on an inverse semigroup
and gave expressions for the least element ρmin and greatest element ρmax

in ρθ. The congruence θ gives us a first decomposition of the lattice of
all congruences that is useful in gaining some overview of the congruences
on an inverse semigroup. For example, the θ-class of the equality relation
consists of all idempotent separating congruences and the θ-class of the uni-
versal relation consists of all group congruences. Different such advantages
of this way of looking at the congruences encouraged the researchers to con-
tinue their study in this way. Petrich [8] characterized the congruence θ
in several ways in terms of congruences and the H-equivalence. There he
has drawn several interesting consequences concerning θ-classes and their
least and greatest elements. Feigenbaum [1] first extended these results
to an orthodox semigroup and later [2] to regular semigroups. Green [3]
characterized the k-equivalence classes, where k is the relation on the lat-
tice of all congruences on an inverse semigroup induced by kernel. Petrich
and Reilly [10] determined the least element in a k-class and Pastijn and
Petrich [7] generalizes these results to regular semigroups.

The unqualified success of these relations θ and k to study the lattice
of all congruences on inverse semigroups including its diverse ramifications
gave a certain hope that this may also turn out to be the case for the lattice
of all congruences on inverse semirings. Sen, Ghosh and Mukhopadhyay [13]
studied the congruences on inverse semirings whose additive reduct is com-
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mutative and Maity [6] improved this to the inverse semirings whose set of
all additive idempotents is a bisemilattice.

The main aspect of this paper is to study the lattice of all congruences
on inverse semiring by the congruences induced by trace and kernel, in
particular characterization of ρmin, ρmax, ρmin and ρmax. Such details are
considered in Section 3 and Section 4.

In the last section we have considered the Clifford congruences on inverse
semiring. A congruence ρ on an inverse semiring S is called a Clifford
congruence if S/ρ is a distributive lattice of skew-rings. A congruence ρ
on S is a Clifford congruence if and only if ρmax is a distributive lattice
congruence and ρmax is a skew-ring congruence on S. If η is the least
distributive lattice congruence and σ is the least skew-ring congruence on S
then η ∩ σ is the least Clifford congruence on S.

2. Preliminaries

A semiring (S,+, ·) is an algebra with two binary operations + and · such
that both the reducts (S,+) and (S, ·) are semigroups and in which the two
distributive laws

x(y + z) = xy + xz and (y + z)x = yz + zx

are satisfied. Let S be a semiring. a ∈ S is called an additive idempotent if
a + a = a. We denote the set of all additive idempotents of a semiring S by
E+ or sometimes by E+(S). A subset I 6= ∅ of a semiring S is called a left
[right] ideal of S if a + b, sa[as] ∈ I for all a, b ∈ I and s ∈ S. I is said to
be an ideal of S if it is both a left and a right ideal of S. An ideal K of S
is called a k-ideal if for x ∈ S, x + k, k ∈ K implies that x ∈ K.

A semiring S is called an inverse semiring if for each a ∈ S there exists a
unique element a′ ∈ S such that a = a+a′+a and a′ = a′+a+a′. Following
M. P. Grillet [4], we call a semiring S a skew-ring if its additive reduct (S,+)
is a group. A semiring S is called an additive idempotent semiring if the
additive reduct is a semilattice. If moreover the multiplicative reduct (S, ·)
is a band then the semiring S is called a b-lattice.

Let S be an inverse semiring. Then the set of all congruences on S is a
lattice which we will denote by C(S). For ρ ∈ C(S), we define the trace and
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kernel of ρ, respectively, by:

trρ = ρ ∩ (E+ × E+)

and kerρ = {x ∈ S | xρe, e ∈ E+}.

A semiring S is called a distributive lattice ( b-lattice ) D of skew-rings Sα

if there exists a distributive lattice (b-lattice) congruence ρ on S such that
D = S/ρ and each ρ-class Sα; α ∈ D is a skew-ring.

Definition 2.1 [14] . A semiring S is called a completely regular semiring
if for each a ∈ S there exists x ∈ S such that

(i) a = a + x + a and a + x = x + a

(ii) a(a + x) = a + x.

Theorem 2.2 [14] . A semiring S is completely regular if and only if it is
a union of skew-rings.

Theorem 2.3 [14] . Let S be a completely regular semiring. Then e2 = e
for all e ∈ E+.

Definition 2.4 [15] . An inverse semiring S is called a Clifford semiring if
for all a, b ∈ S,

(2.1) a + a′ = a′ + a

(2.2) a(a + a′) = a + a′

(2.3) a(b + b′) = (b + b′)a

(2.4) a + a(b + b′) = a

(2.5) a + b = b implies that a + a = a.

Theorem 2.5 [15] . A semiring S is a Clifford semiring if and only if it is
a distributive lattice of skew-rings.

Definition 2.6 [15]. An inversive semiring S is a generalized Clifford semir-
ing if it satisfies the conditions (2.1), (2.2) and (2.5) for all a, b ∈ S.
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Theorem 2.7 [15] . A semiring S is a generalized Clifford semiring if and
only if S is a b-lattice of skew-rings.

Let S be a semiring. A congruence ρ on S is called a Clifford (generalized)
congruence if S/ρ is a Clifford (generalized) semiring. For a class F of
semirings, we define F -congruences on S similarly.

Let S be an inversive semiring. We denote the Green’s relations on
(S,+) by L+,R+,H+. Recall that, for a, b ∈ S,

aL+b if and only if a′ + a = b′ + b

aR+b if and only if a + a′ = b + b′

aH+b if and only if a′ + a = b′ + b and a + a′ = b + b′.

Again we refer [5] and [9] for the informations we need concerning inverse
semigroups.

3. The congruence θ on C(S)

In [11], Reilly and Scheiblich defined a relation θ on the lattice of congruences
on inverse semigroups by: ρθξ if and only if ρ, ξ induce the same partition
of the idempotents of S. There they proved that θ is a complete congruence
and each θ-class is a complete modular lattice.

Let S be an inverse semiring. Similarly we define a relation θ on C(S)
by: for ρ, ξ ∈ C(S),

ρθξ if and only if trρ = trξ.

Let S be an inverse semiring and ρ ∈ C(S). We define a relation ρmax on S
by: for a, b ∈ S,

aρmaxb if and only if (ra′s + e + ras)ρ(rb′s + e + rbs)

for all e ∈ E+ and for all r, s ∈ S1.

Lemma 3.1. Let S be an inverse semiring and ρ be a congruence on S.
Then ρmax is the greatest congruence on S such that trρ = trρmax.

Proof. Let a, b ∈ S such that aρmaxb. Then (ra′s+e+ras)ρ(rb′s+e+rbs)
for all e ∈ E+, r, s ∈ S1. Let c ∈ S. Then rc′s + e + rcs ∈ E+ for all
e ∈ E+, r, s ∈ S1. So (ra′s+rc′a+e+rcs+ras)ρ(rb′s+rc′s+e+rcs+rbs)
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for all e ∈ E+, r, s ∈ S1. This implies that (r(c + a)′s + e + r(c + a)s)
ρ(r(c + b)′s + e + r(c + b)s) so that (c + a)ρmax(c + b). Also for any c ∈
S, aρmaxb implies that ((rc)a′s + e + (rc)as))ρ((rc)b′s + e + (rc)bs) for all
e ∈ E+, r, s ∈ S1. This implies that (r(ca)′s+e+r(ca)s)ρ(r(cb)′s+e+r(cb)s)
for all e ∈ E+, r, s ∈ S1. So caρmaxcb. Similarly (a + c)ρmax(b + c) and
acρmaxbc. Therefore ρmax is a congruence on S.

Let ξ ∈ C(S) be such that trρ = trξ. Then for a, b ∈ S, aξb implies that
(ra′s+e+ras)ξ(rb′s+e+rbs). This implies that (ra′s+e+ras)ρ(rb′s+e+rbs)
so that aρmaxb. Hence ξ ⊆ ρmax, in particular ρ ⊆ ρmax. This implies
that trρ ⊆ trρmax. Now for any e, f ∈ E+, eρmaxf implies that (e + g + e)
ρ(f + g + f) for all g ∈ E+ that is (e + g)ρ(f + g) for all g ∈ E+. This
implies that e = (e + e)ρ(f + e) = (e + f)ρ(f + f) = f . Thus trρmax ⊆ trρ.
Hence trρ = trρmax. Thus ρmax is the greatest congruence on S with the
same trace.

As in the inverse semigroup, for ρ ∈ C(S), we define another relation ρmin

on S by: for a, b ∈ S,

aρminb if and only if a + e = b + e, eρ(a′ + a)ρ(b′ + b) for some e ∈ E+.

Then it can be checked that ρmin is the least congruence on S with the same
trace.

From Lemma 3.1, we can prove the following theorem similarly to
Theorem III.2.5 [9].

Theorem 3.2. Let S be an inversive semiring. Then

(i) θ is a complete congruence on C(S),

(ii) for any ρ ∈ C(S), ρθ = [ρmin, ρmax],

(iii) ρθ is a complete modular sublattice of C(S).

Theorem 3.3. Let S be an inverse completely regular semiring and ρ, ξ ∈
C(S). Then the following conditions are equivalent:

(i) ρθξ,

(ii) (ρ ∩ ξ)|eρ and (ρ ∩ ξ)|eξ are skew-ring congruences for all e ∈ E+.
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Proof. (i) ⇒ (ii): Let e ∈ E+. Then e2 = e, by Theorem 2.3. Hence eρ is
a subsemiring of S. Let f, g ∈ eρ ∩ E+. Then fρg and so fξg. Therefore
f(ρ ∩ ξ)g. Hence (ρ ∩ ξ)|eρ is a skew-ring congruence. Similarly (ρ ∩ ξ)|eξ is
a skew-ring congruence.

(ii) ⇒ (i): Follows easily.

Corollary 3.4. In a Clifford or generalized Clifford semiring S the follwing
conditions are equivalent for ρ, ξ ∈ C(S):

(i) ρθξ,

(ii) (ρ ∩ ξ)|eρ and (ρ ∩ ξ)|eξ are skew-ring congruences for all e ∈ E+.

Lemma 3.5. Let S be an inverse semiring and ρ ∈ C(S). Then

(i) kerρmin = {a ∈ S : a + e = e for some e ∈ E+, eρ(a′ + a)},

(ii) kerρmax = {a ∈ S : (ras + e)ρ(e + ras) for all e ∈ E+, r, s ∈ S1}.

Proof. (i) It is similar to Proposition 5.6 [8].

(ii) For a ∈ S,

a ∈ kerρmax

⇔ aρmax(a′ + a)

⇔ (ra′s + e + ras)ρ(r(a′ + a)′s + e + r(a′ + a)s)for all r, s ∈ S1, e ∈ E+

⇔ (ra′s + e + ras)ρ(r(a′ + a)s + e + r(a′ + a)s)for all r, s ∈ S1, e ∈ E+

⇔ (ra′s + e + ras)ρ(r(a′ + a)s + e)for all r, s ∈ S1, e ∈ E+

⇔ (ras + ra′s + e + ras)ρ(ras + r(a′ + a)s + e)for allr, s ∈ S1, e ∈ E+

⇔ (e + ras + ra′s + ras)ρ(ras + e)for all r, s ∈ S1, e ∈ E+

⇔ (e + ras)ρ(ras + e)for all r, s ∈ S1, e ∈ E+.

A congruence ρ on an inverse semiring S is called idempotent separating if
for e, f ∈ E+,

eρf implies that e = f.
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It is clear that ε, the equality relation on S is the minimum idempotent
separating congruence on S. Theorem 3.2 implies that εmax is the maximum
idempotent separating congruence on S. We denote it by µ or sometimes
by µS. Therefore, for a, b ∈ S,

aµb ⇔ ra′s + e + ras = rb′s + e + rbs for all e ∈ E+, r, s ∈ S1.

Theorem 3.6. Let S be a generalized Clifford semiring. Then ρmax = ρ∨µ
for every congruence ρ on S.

Proof. Let ρ be a congruence on S and a, b ∈ S such that aµb. Then
ra′s + e + ras = rb′s + e + rbs for all r, s ∈ S1, e ∈ E+. So (ra′s + e +
ras)ρ(rb′s+e+rbs) for all r, s ∈ S1, e ∈ E+. Hence aρmaxb. Also ρ ⊆ ρmax.
This implies that ρ ∨ µ ⊆ ρmax. Now trρmax = trρ ⊆ tr(ρ ∨ µ). Since S
is a generalized Clifford, kerρmax = S = kerεmax = kerµ ⊆ ker(ρ ∨ µ), by
Lemma 3.5. Therefore ρmax ⊆ ρ ∨ µ. Hence ρmax = ρ ∨ µ.

4. The congruence κ on C(S)

As in the lattice of congruences on inverse semigroups, we define another
relation κ on C(S) by:

ρκξ if and only if kerρ = kerξ.

A congruence ρ on an inverse semiring S is said to saturate a non-empty
subset H of S if H is a union of some ρ-classes. In [13], Sen, Ghosh and
Mukhopadhyay determined the greatest congruence τ H on S, which satu-
rates a given nonempty subset H as follows:

aτHb if and only if x + ras + y ∈ H ⇔ x + rbs + y ∈ H

for all x, y ∈ So, r, s ∈ S1.

For any ρ ∈ C(S), we define two relations on S by:

ρmax = τkerρ

and ρmin = (ρ ∩ L+)∗.
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Theorem 4.1. Let S be an inverse semiring. Then

(i) κ is a ∩-complete congruence on C(S),

(ii) ρκ = [ρmin, ρmax] for any ρ ∈ C(S),

(iii) ρκ is a complete sublattice of C(S) for all ρ ∈ C(S).

Proof. (i) This is similar to Theorem III.4.8 [9].

(ii) Let ξ ∈ ρκ. Then kerρ = kerξ. Since τ kerξ is the largest congruence
saturating kerξ, so ξ ⊆ τ kerξ = τkerρ = ρmax. Also kerρmax = kerτkerρ =
kerρ. Hence ρmax is the largest element in ρκ.

Let ξ ∈ ρκ. Then kerρ = kerξ. Now a(ρ ∩ L+)b implies that aρb and
a′ + a = b′ + b. Then (a + b′)ρ(b + b′) implies that a + b′ ∈ kerρ = kerξ, so
that (a+b′)ξ((a+b′)′+(a+b′)) = (b+a′)+(a+b′). Hence a = a+(a′+a) =
a + (b′ + b) = ((a + b′) + b)ξ(b + (a′ + a) + (b′ + b)) = b. Thus ρ ∩ L+ ⊆ ξ,
which gives ker(ρ ∩ L+)∗ ⊆ kerξ. Again a ∈ kerξ = kerρ implies that
aρ(a′ + a). Then a(ρ ∩ L+)(a′ + a) and so kerξ ⊆ ker(ρ ∩ L+)∗. Thus
kerξ = ker(ρ ∩ L+)∗. Again ρ ∩ L+ ⊆ ξ implies that (ρ ∩ L+)∗ ⊆ ξ that is
ρmin ⊆ ξ. Thus ρmin is the least element of ρκ.

(iii) Since any interval in a complete lattice is a complete sublattice, so
ρκ is a complete sublattice of C(S).

Now we give an alternative presentation for ρmin. For this we state the
followong Lemma without proof. In fact it can be proved easily as in semi-
group.

Lemma 4.2. Let θ be an equivalence relation on a semiring S. Then the
congruence θ∗ on S generated by θ is gien by:

(a, b) ∈ θ∗ if and only if ∃x, y ∈ So, r, s ∈ S1 and (c, d) ∈ θ

such that a = x + rcs + y and b = x + rds + y.

Now the following theorem is straightforward.
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Theorem 4.3. Let S be an inverse semiring and ρ be a congruence on S.
Then

(a, b) ∈ ρmin if and only if ∃x, y ∈ So, r, s ∈ S1 and (c, d) ∈ ρ

such that a = x + rcs + y, b = x + rds + y and c′ + c = d′ + d.

From Theorem 3.2 and Theorem 4.1 the following theorem follows
immediately.

Theorem 4.4. Let S be an inverse semiring. Then for any congruence ρ
on S,

ρ = ρmin ∨ ρmin = ρmax ∩ ρmax.

The following theorem shows that each idempotent separating congruence
on an inverse semiring is the least element of its kernel class.

Theorem 4.5. Let S an inverse semiring and ρ be an idempotent separating
congruence on S. Then ρ = ρmin. In particular µ = µmin.

Proof. Let a, b ∈ S such that aρb. Then (a′ + a)ρ(b′ + b) implies that
a′ + a = b′ + b. Now aL+(a′ + a) = (b′ + b)L+b implies that a(ρ ∩ L+)b.
Hence ρ ⊆ ρmin and so ρ = ρmin.

Theorem 4.6. Let S be an inverse completely regular semiring and ρ, ξ ∈
C(S). Then the following conditions are equivalent:

(i) ρκξ.

(ii) (ρ∩ ξ)|eρ and (ρ∩ ξ)|eξ are additive idempotent semiring congruences
for all e ∈ E+.

Proof. (i) ⇒ (ii): Let ρ ∈ C(S) and e ∈ E+. Since S is completely regular,
by Theorem 2.3 it follows that e2 = e and so eρ is a subsemiring of S. Let
a, b ∈ eρ. Then (a + a)ρa and (a + b)ρeρ(b + a). Again kerρ = kerξ implies
that a, b ∈ kerξ and so (a + a)ξa and (a + b)ξ(b + a). Thus (ρ ∩ ξ)|eρ is an
additive idempotent semiring congruence.

(ii) ⇒ (i): Let a ∈ kerρ. Then there is e ∈ E+ such that a ∈ eρ. Hence
a(ρ ∩ ξ)f for some f ∈ E+. Then aξf , that is a ∈ kerξ. So kerρ ⊆ kerξ.
Similarly kerξ ⊆ kerρ. Therefore kerρ = kerξ, which implies that ρκξ.
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Theorem 4.7. Let S be a semiring which is a distributive lattice of skew-
rings and ρ, ξ ∈ C(S). Then the following conditions are equivalent:

(i) ρκξ.

(ii) (ρ ∩ ξ)|eρ and (ρ ∩ ξ)|eξ are distributive lattice congruences for all
e ∈ E+.

Proof. (i) ⇒ (ii): From above Theorem, it follows that (ρ ∩ ξ)|eρ is
an additive idempotent semiring congruence. So a(ρ ∩ ξ)(a + a′) for all
a ∈ eρ. Since S is a distributive lattice of skew-rings, so by Theorem 2.5,
it satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4). Then for a, b ∈ eρ we get
a2(ρ ∩ ξ)a(a + a′) = (a + a′)(ρ ∩ ξ)a and ab(ρ ∩ ξ)(ab + ab′) = a(b + b′) =
(b + b′)a = (ba + b′a)(ρ ∩ ξ)ba. Also (a + ab)(ρ ∩ ξ)(a + ab + ab′ + a′) =
a + a(b + b′) + a′ = (a + a′)(ρ∩ ξ)a. Hence (ρ∩ ξ)|eρ is a distributive lattice
congruence.

(ii) ⇒ (i): Follows from Theorem 4.6.

Corollary 4.8. Let S be a semiring which is a b-lattice of skew-rings and
ρ, ξ ∈ C(S). Then the following conditions are equivalent:

(i) ρκξ.

(ii) (ρ ∩ ξ)|eρ and (ρ ∩ ξ)|eξ are b-lattice congruences for all e ∈ E+.

5. Clifford congruences

Let S be an inverse semiring. A congruence ρ on an inverse semiring S is
idempoetnt pure if for all a ∈ S, e ∈ E+, aρe implies that a ∈ E+. So ρ is
idempotent pure if and only if kerρ = E+. Hence ε is the least idempotent
pure congruence and εmax is the greatest idempotent pure congruence on S,
which will be denoted by τ or sometimes by τS . Therefore, for a, b ∈ S,

aτb if and only if x + ras + y ∈ E+ ⇔ x + rbs + y ∈ E+

for all x, y ∈ So, r, s ∈ S1.

We will denote the least distributive lattice congruence on S by η and the
least b-lattice congruence on S by ν.
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Theorem 5.1. Let S be an inverse semiring and ρ be a congruence on S.
Then the following conditions are equivalent.

(i) ρ is a generalized Clifford congruence.

(ii) ρmax is a b-lattice congruence and ρmax is a skew-ring congruence on
S.

(iii) ρmax = ρ ∨ ν and ρmax = ρ ∨ σ.

(iv) trρ = tr(ρ ∨ ν) and kerρ = ker(ρ ∨ σ).

Proof. (i) ⇒ (ii): Since ρ is a generalized Clifford congruence on S, so
(S/ρ,+) is a Clifford semigroup, that is (a+e)ρ(e+a) for all a ∈ S, e ∈ E+.
Let a, b ∈ S. Then for all r, s ∈ S1, e ∈ E+,

r(a + b)′s + e + r(a + b)s =(rb′s + (ra′s + e + ras) + rbs)

ρ(ra′s + e + ras + rb′s + rbs)

ρ(ra′s + rb′s + rbs + e + ras)

ρ(ra′s + rb′s + e + rbs + ras)

= r(b + a)′s + e + r(b + a)s

shows that (a + b)ρmax(b + a). Similarly (a + a)ρmaxa for all a ∈ S.
Now r(a2)′s + e + ra2s = (raa′s + e + raas)ρ(ra(a′ + a)s + e)ρ(r(a′ + a)
s + e)ρ(ra′s + e + ras) for all r, s ∈ S1, e ∈ E+ implies that a2ρmaxa for all
a ∈ S. Therefore ρmax is a b-lattice congruence on S.

It can be proved that ρmax is a skew-ring congruence, similarly to
Theorem 4.6 [6].

(ii) ⇒ (iii): By our hypothesis, ν ⊆ ρmax. Also ρ ⊆ ρmax. Hence ν∨ρ ⊆
ρmax. Again kerρmax ⊆ S = kerν = ker(ν∨ρ) and trρmax = trρ ⊆ tr(ν∨ρ)
implies that ρmax ⊆ ν ∨ ρ. Thus ρmax = ν ∨ ρ.

For ρmax, again we refer Theorem 4.6 [6].
(iii) ⇒ (iv): Trivial.

(iv) ⇒ (i): Let a ∈ S. Then (a+a′)νaν(a′ +a) and so (a+a′)ν(a′ +a).
Then trρ = tr(ρ ∨ ν) implies that (a + a′)ρ(a′ + a). Also a2νa implies
that (a2 + (a2)′)ν(a + a′), that is a(a + a′)ν(a + a′), which implies
that a(a + a′)ρ(a + a′). Again let a, b ∈ S such that aρ + bρ = bρ.
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Then (a + b)ρb implies that (a + b)+ b′ ∈ kerρ = ker(ρ∨σ). Since σ and so
ρ ∨ σ are skew-ring congruences and b + b′ ∈ E+, so a ∈ ker(ρ ∨ σ) = kerρ.
Hence aρ + aρ = aρ. Thus ρ is a generalized Clifford congruence on S.

Corollary 5.2. Let S be a semiring. Then the following conditions are
equivalent:

(i) S is a generalized Clifford semiring.

(ii) For every ρ ∈ C(S), ρmax = ρ ∨ ν and ρmax = ρ ∨ σ.

(iii) µ = ν and τ = σ.

Note that Theorem 3.6 is a direct consequence of this corollary.

Theorem 5.3. Let S be an inverse semiring. Then σ ∩ ν is the least gen-
eralized Clifford congruence on S.

Proof. Let λ = σ ∩ ν. Then it can be proved that (a + a′)ν(a′ + a)
and a(a + a′)ν(a + a′) for all a ∈ S, similarly to the Theorem 5.1. Also
σ being skew-ring congruence eσf for all e, f ∈ E+. So (a + a′)λ(a′ + a)
and a(a + a′)λ(a + a′). Let a, b ∈ S be such that aλ + bλ = bλ. Then
aσ + bσ = bσ, which implies that aσ + aσ = aσ. Also (a + a)νa. Hence
(a + a)λa. Therefore λ is a generalized Clifford congruence. Let ρ be a
generalized Clifford congruence. Then ν ⊆ ρmax and σ ⊆ ρmax. So σ ∩ ν ⊆
ρmax ∩ ρmax = ρ, by Theorem 4.4. This implies that σ ∩ ν is the least
generalized Clifford congruence on S.

Theorem 5.4. Let S be an inverse semiring and ρ be a congruence on S.
Then the following conditions are equivalent:

(i) ρ is a Clifford congruence on S.

(ii) ρmax is a distributive lattice congruence on S and ρmax is a skew-ring
congruence on S.

(iii) ρmax = ρ ∨ η and ρmax = ρ ∨ σ.

(iv) trρ = tr(ρ ∨ η) and kerρ = ker(ρ ∨ σ).
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Proof. (i) ⇒ (ii): Every Clifford semiring is a generalized Clifford semir-
ing. So the Theorem 5.1 implies that aρmax(a+a), (a+b)ρmax(b+a), aρmaxa2

for all a, b ∈ S. Let a, b ∈ S. Then for r, s ∈ S1, e ∈ E+, r(ab)′s+e+r(ab)s =
(rab′s + e + rabs)ρ(ra(b′ + b)s + e)ρ(r(b′ + b)as + e)ρ(rb′as + e + rbas) =
r(ba)′ + e + r(ba)s, since ρ is a Clifford congruence. Thus abρmaxba. Now
r(a + ab)′s + e + r(a + ab)s = (rab′s + ra′s + e + ras + rabs)ρ(ra′s + e +
ras+rab′s+rabs)ρ(ra′s+e+r(a+a(b′ + b))s)ρ(ra′s+e+ras) implies that
(a + ab)ρmaxa. Also a(a + b) = (a2 + ab)ρmax(a + ab)ρmaxa. Hence ρmax is
a distributive lattice congruence.

Similarly to Theorem 5.1, it can be proved that ρmax is a skew-ring
congruence.

(ii) ⇒ (iii): Similar to Theorem 5.1.

(iii) ⇒ (iv): Trivial.

(iv) ⇒(i): Let ρ ∈ C(S) has the given trace and kenel. Then ρ is
a generalized Clifford congruence, which can be proved similarly to the
Theorem 5.1. Now for all a, b ∈ S, abηba, implies that

(ab + (ab)′)η(ba + (ba)′)

⇒ (ab + ab′)ρ ∨ η(ba + b′a)

⇒ a(b + b′)ρ ∨ η(b + b′)a

⇒ a(b + b′)ρ(b + b′)a, since trρ = trρ ∨ η.

Again for all a, b ∈ S, (a + ab)ηa implies that

(a + ab)ρ ∨ ηa

⇒ (a + ab + (a + ab)′)ρ ∨ η(a + a′)

⇒ (a + ab + ab′ + a′)ρ ∨ η(a + a′)

⇒ (a + a(b + b′) + a′)ρ(a + a′), since trρ = trρ ∨ η

⇒ (a + a′ + a)ρ(a + a(b + b′) + a′ + a) = a + a′ + a + a(b + b′)

⇒ aρ(a + a(b + b′)).

Thus ρ is a Clifford congruence.
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Corollary 5.5. On a semiring S the following conditions are equivalent:

(i) S is a Clifford semiring.

(ii) For every ρ ∈ C(S), ρmax = ρ ∨ η and ρmax = ρ ∨ σ.

(iii) µ = η and τ = σ.

The following theorem follows from Theorem 5.4 similarly to the Theorem
5.3.

Theorem 5.6. Let S be an inverse semiring. Then σ∩η is the least Clifford
congruence on S.
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