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Abstract

Let S be a semiring whose additive reduct (S,+) is an inverse
semigroup. The relations 6 and k, induced by tr and ker (resp.), are
congruences on the lattice C(S) of all congruences on S. For p € C(S),

we have introduced four congruences pmin, Pmax, P and p

max

S and showed that pf = [pmin, Pmax] and px = [p™, pmax]. Different
properties of pf and px have been considered here. A congruence p on
S is a Clifford congruence if and only if p,,q, is a distributive lattice

congruence and p™**

is a skew-ring congruence on S. If 5 (o) is the

least distributive lattice (resp. skew-ring) congruence on S then nNo

is the least Clifford congruence on S.
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1. INTRODUCTION

The class of inverse semigroups is the most natural generalization of the
class of groups. A semigroup S is called inverse if for each a € S there exists
unique x € S such that

a = axa and T = zazx.

Whereas if for each a € S there exists z € S such that a = aza then S
is called regular semigroup. An element e € S is called an idempotent if
e = e2. A regular semigroup S is inverse if and only if ef = fe for all
idempotents e, f in S.

In this paper our objective is to study the lattice C(.S) of all congruences
on an inverse semiring S. It was recognized by Scheiblich [12] that every
congruence p on an inverse semigroup is uniquely determined by its restric-
tion to the idempotents, called the trace of p and the union of all its classes
containing idempotents, called the kernel of p. The importance of trace was
realized earlier by Reilly and Scheiblich [11]. They defined a congruence
0, induced by tr on the lattice of all congruences on an inverse semigroup
and gave expressions for the least element pni, and greatest element ppax
in pf. The congruence 6 gives us a first decomposition of the lattice of
all congruences that is useful in gaining some overview of the congruences
on an inverse semigroup. For example, the f-class of the equality relation
consists of all idempotent separating congruences and the 6-class of the uni-
versal relation consists of all group congruences. Different such advantages
of this way of looking at the congruences encouraged the researchers to con-
tinue their study in this way. Petrich [8] characterized the congruence 6
in several ways in terms of congruences and the H-equivalence. There he
has drawn several interesting consequences concerning 6-classes and their
least and greatest elements. Feigenbaum [1] first extended these results
to an orthodox semigroup and later [2] to regular semigroups. Green [3]
characterized the k-equivalence classes, where k is the relation on the lat-
tice of all congruences on an inverse semigroup induced by kernel. Petrich
and Reilly [10] determined the least element in a k-class and Pastijn and
Petrich [7] generalizes these results to regular semigroups.

The unqualified success of these relations 6 and k to study the lattice
of all congruences on inverse semigroups including its diverse ramifications
gave a certain hope that this may also turn out to be the case for the lattice
of all congruences on inverse semirings. Sen, Ghosh and Mukhopadhyay [13]
studied the congruences on inverse semirings whose additive reduct is com-
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mutative and Maity [6] improved this to the inverse semirings whose set of
all additive idempotents is a bisemilattice.

The main aspect of this paper is to study the lattice of all congruences
on inverse semiring by the congruences induced by trace and kernel, in
particular characterization of pmin, Pmax; pmin and p™?*. Such details are
considered in Section 3 and Section 4.

In the last section we have considered the Clifford congruences on inverse
semiring. A congruence p on an inverse semiring S is called a Clifford
congruence if S/p is a distributive lattice of skew-rings. A congruence p
on S is a Clifford congruence if and only if ppq, is a distributive lattice
congruence and p"%* is a skew-ring congruence on S. If 7 is the least
distributive lattice congruence and o is the least skew-ring congruence on S
then n N o is the least Clifford congruence on S.

2. PRELIMINARIES

A semiring (S,+,-) is an algebra with two binary operations + and - such
that both the reducts (S, +) and (S, -) are semigroups and in which the two
distributive laws

z(y+z) =zy+xz and (y+z2)r=yz+zx

are satisfied. Let .S be a semiring. a € S is called an additive idempotent if
a+ a = a. We denote the set of all additive idempotents of a semiring S by
E* or sometimes by ET(S). A subset I # () of a semiring S is called a left
[right] ideal of S if a + b, saas] € I for all a,b € I and s € S. [ is said to
be an ideal of S if it is both a left and a right ideal of S. An ideal K of S
is called a k-ideal if for x € S, x + k, k € K implies that z € K.

A semiring S is called an inverse semiring if for each a € S there exists a
unique element a’ € S such that a = a+a’+a and o’ = a’ +a+a’. Following
M. P. Grillet [4], we call a semiring S a skew-ring if its additive reduct (.S, +)
is a group. A semiring S is called an additive idempotent semiring if the
additive reduct is a semilattice. If moreover the multiplicative reduct (.5, -)
is a band then the semiring S is called a b-lattice.

Let S be an inverse semiring. Then the set of all congruences on S is a
lattice which we will denote by C(S). For p € C(S), we define the trace and
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kernel of p, respectively, by:
tro=pnN(ET x ET)
and kerp={x € S| zpe, e € E*}.

A semiring S is called a distributive lattice ( b-lattice ) D of skew-rings S,
if there exists a distributive lattice (b-lattice) congruence p on S such that
D = S/p and each p-class S,; o € D is a skew-ring.

Definition 2.1 [14]. A semiring S is called a completely regular semiring
if for each a € S there exists x € S such that

(i) a=a+z+aandat+zr=x+a
(i) ala+z)=a+z.

Theorem 2.2 [14]. A semiring S is completely regular if and only if it is
a union of skew-rings.

Theorem 2.3 [14] . Let S be a completely regular semiring. Then e? = e
for alle € ET.

Definition 2.4 [15]. An inverse semiring S is called a Clifford semiring if
for all a,b € S,

(2.1) at+d =d +a

(2.2) ala+ad)=a+d

(2.3) alb+b)=(b+b)a

(2.4) atab+?b)=a

(2.5) a+b=>b implies that a+a=a.

Theorem 2.5 [15]. A semiring S is a Clifford semiring if and only if it is
a distributive lattice of skew-rings.

Definition 2.6 [15]. An inversive semiring S is a generalized Clifford semir-
ing if it satisfies the conditions (2.1), (2.2) and (2.5) for all a,b € S.
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Theorem 2.7 [15]. A semiring S is a generalized Clifford semiring if and
only if S is a b-lattice of skew-rings.

Let S be a semiring. A congruence p on S is called a Clifford (generalized)
congruence if S/p is a Clifford (generalized) semiring. For a class F of
semirings, we define F-congruences on S similarly.

Let S be an inversive semiring. We denote the Green’s relations on
(S,+) by LT, R, HT. Recall that, for a,b € S,

al™h ifand onlyif o' +a=10b+b
aR"b ifand only if a+a =b+1b
aH™b ifand onlyif o’ +a=b+b and a+d =b+ 0.

Again we refer [5] and [9] for the informations we need concerning inverse
semigroups.

3. THE CONGRUENCE 6 ON C(S)

In [11], Reilly and Scheiblich defined a relation 6 on the lattice of congruences
on inverse semigroups by: pf¢ if and only if p, £ induce the same partition
of the idempotents of S. There they proved that # is a complete congruence
and each 6-class is a complete modular lattice.
Let S be an inverse semiring. Similarly we define a relation 6 on C(S)
by: for p,& € C(S),
pO& if and only if trp = tré.

Let S be an inverse semiring and p € C(5). We define a relation py,q, on S
by: for a,b € S,
apmazb if and only if (ra’s + e+ ras)p(rb's + e + rbs)

for all ec ET and forall r,sc S

Lemma 3.1. Let S be an inverse semiring and p be a congruence on S.
Then pmaz 1S the greatest congruence on S such that trp = trpmaz.

Proof. Let a,b € S such that apya.b. Then (ra’s+e+ras)p(rb’s+e+rbs)
for all e € Et,r,s € S'. Let ¢ € S. Then rc's + e + res € ET for all
e€ ET,r,s €S So (rd's+rda+e+res+ras)p(rt's+rds+e—+res+rbs)
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for all e € E*,r,s € S'. This implies that (r(c + a)’s + e + r(c + a)s)
p(r(c +b)s + e+ r(c+b)s) so that (¢ + a)pmaz(c + b). Also for any ¢ €
S, apmazb implies that ((rc)a’s + e + (re)as))p((re)b’s + e + (re)bs) for all
e € ET,r,s € S'. This implies that (r(ca)’'s+e+r(ca)s)p(r(cb) s+e+r(ch)s)
for all e € E*,r;s € S'. So capmarch. Similarly (a + ¢)pmaz(b + ¢) and
acpmazbe. Therefore p,q, is a congruence on S.

Let £ € C(S) be such that trp = tré. Then for a,b € S, a&b implies that
(ra’s+e+ras)é(rt/s+e+rbs). Thisimplies that (ra’s+e+ras)p(rb’ s+e+rbs)
so that appmae:b. Hence & C pyiae, in particular p C pe- This implies
that trp C trpmae. Now for any e, f € ET, eppmaef implies that (e + g + ¢)
p(f + g+ f) for all g € ET that is (e + g)p(f + g) for all g € E*. This
implies that e = (e +e)p(f +¢€) = (e + f)p(f + f) = f. Thus trpmas C trp.
Hence trp = trpmaz- Thus pmaee is the greatest congruence on S with the
same trace. ]

As in the inverse semigroup, for p € C(S), we define another relation p,ip

on S by: for a,b € S,
apminb if and only if a+e=0b+e, ep(a’ +a)p(d’ +b) for some e € ET.

Then it can be checked that p,,;, is the least congruence on S with the same
trace.

From Lemma 3.1, we can prove the following theorem similarly to
Theorem I11.2.5 [9)].

Theorem 3.2. Let S be an inversive semiring. Then

(i) 0 is a complete congruence on C(S),

(11) fOT‘ any p € C(S)7P9 = [pminapmam]v
(iii) pf is a complete modular sublattice of C(S5).

Theorem 3.3. Let S be an inverse completely reqular semiring and p,& €
C(S). Then the following conditions are equivalent:

(1) P,
(i) (pN&)lep and (pNE)|ee are skew-ring congruences for all e € E7.
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Proof. (i) = (ii): Let e € ET. Then e? = ¢, by Theorem 2.3. Hence ep is
a subsemiring of S. Let f,g € epN E*. Then fpg and so f€g. Therefore
f(pn&)g. Hence (pNE)|ep is a skew-ring congruence. Similarly (p N E)|ee is
a skew-ring congruence.

(ii) = (i): Follows easily. ]

Corollary 3.4. In a Clifford or generalized Clifford semiring S the follwing
conditions are equivalent for p,& € C(S):

(i) pb,

(i) (pN&)lep and (pNE)|ee are skew-ring congruences for all e € E7.
Lemma 3.5. Let S be an inverse semiring and p € C(S). Then

(i) kerpmin={a€S:a+e=ce for somee e ET ep(a +a)},

(i) kerpmazr = {a € S : (ras+ e)p(e +ras) for alle € E*,r,s € S'}.

Proof. (i) It is similar to Proposition 5.6 [8].
(ii) For a € S,
a € kerpmaz
& apmaz(a’ + a)
& (ra's +e+ras)p(r(a +a)'s +e+r(d +a)s)forallr,s € St e c BT
& (ra's +e+ras)p(r(a +a)s +e+r(d +a)s)for all s € St e € BT
& (ra's 4+ e +ras)p(r(a’ +a)s +e)for allr,s € St e c ET
& (ras +ra's + e+ ras)p(ras +r(a’ + a)s + e)for allr, s € S*,e € BT
& (e+ras+rad's +ras)p(ras + e)for all r,s € ST e € ET
dl

e+ras)p(ras + e)for allr,s € St e € ET. -

A congruence p on an inverse semiring S is called idempotent separating if
fore, f € ET,

epf implies that e = f.
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It is clear that €, the equality relation on S is the minimum idempotent
separating congruence on S. Theorem 3.2 implies that €4, is the maximum
idempotent separating congruence on S. We denote it by p or sometimes
by pg. Therefore, for a,b € S,

apb < ra's +e+ras =rb's+e+rbsforalec Et,r s e St

Theorem 3.6. Let S be a generalized Clifford semiring. Then pmaz = pV 1
for every congruence p on S.

Proof. Let p be a congruence on S and a,b € S such that aub. Then
ra's +e+ras = rb's + e+ rbs for all r,s € Ste € ET. So (ra's + e+
ras)p(rb’s+e-+rbs) for all ;s € St e € ET. Hence apmazb. Also p C prmaz-
This implies that pV i C pmaz. NOW t7pmae = trp C tr(p V u). Since S
is a generalized Clifford, kerpmas = S = keremas = kerp C ker(p V u), by
Lemma 3.5. Therefore ppqr C pV pu. Hence ppge = p V . |

4. THE CONGRUENCE k ON C(S)

As in the lattice of congruences on inverse semigroups, we define another
relation x on C(S) by:
pré if and only if kerp = ker€.

A congruence p on an inverse semiring S is said to saturate a non-empty
subset H of S if H is a union of some p-classes. In [13], Sen, Ghosh and
Mukhopadhyay determined the greatest congruence 79 on S, which satu-
rates a given nonempty subset H as follows:

ar’b if and only if z+ras+ye He o +rbs+ye H

for all 2,y € S°,r,s € S'.

For any p € C(S), we define two relations on S by:

mar __ Tkerp

p

and p™" = (p N LT)*.
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Theorem 4.1. Let S be an inverse semiring. Then

(i) & is a N-complete congruence on C(S),
(ii) pr = [p™", p"] for any p € C(S),

(i) pk is a complete sublattice of C(S) for all p € C(S).

Proof. (i) This is similar to Theorem II1.4.8 [9].

(ii) Let & € pk. Then kerp = ker€. Since T7¢"¢ is the largest congruence
saturating keré, so & C 7Feré = gherp = pymaz  Also kerp™®® = kerrherr =
kerp. Hence p™% is the largest element in pk.

Let € € pk. Then kerp = keré. Now a(p N L£T)b implies that apb and
a+a=0V0+0b. Then (a+b)p(b+ ') implies that a + b € kerp = keré, so
that (a+0)&((a+b") +(a+V")) = (b+a')+ (a+b'). Hence a = a+(a’+a) =
a+ @ +b)=(a+b)+0)E0b+ (a/ +a)+ (b +b)=b. Thus pN LT C &,
which gives ker(p N L1T)* C keré. Again a € ker{ = kerp implies that
ap(a’ + a). Then a(p N LT)(a’ + a) and so keré C ker(p N LT)*. Thus
keré = ker(p N L7)*. Again pN LT C ¢ implies that (p N LT)* C £ that is
p™™ C ¢, Thus p™™ is the least element of pr.

(iii) Since any interval in a complete lattice is a complete sublattice, so
pr is a complete sublattice of C(.5). ]

Now we give an alternative presentation for p™". For this we state the

followong Lemma without proof. In fact it can be proved easily as in semi-
group.

Lemma 4.2. Let 0 be an equivalence relation on a semiring S. Then the
congruence 0* on S generated by 0 is gien by:

(a,b) € 0* if and only if Fx,y € S°,r,s € S' and (c,d) €0

such that a=x+rcs+y and b=x+rds+y.

Now the following theorem is straightforward.
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Theorem 4.3. Let S be an inverse semiring and p be a congruence on S.
Then

(a,b) € p™" if and only if Iz,y € S°,r,s € S' and (c,d) € p

such that a = x +res+y,b=x+rds+y and ¢ +c=d +d.

From Theorem 3.2 and Theorem 4.1 the following theorem follows
immediately.

Theorem 4.4. Let S be an inverse semiring. Then for any congruence p
on S,

min maz

P = Pmin VP = Pmaz MNP

The following theorem shows that each idempotent separating congruence
on an inverse semiring is the least element of its kernel class.

Theorem 4.5. Let S an inverse semiring and p be an idempotent separating
congruence on S. Then p = p™"™. In particular p = p™".

Proof. Let a,b € S such that apb. Then (a’ + a)p(b’ + b) implies that
a+a="Vb+b Nowal'(ad +a) = (V+b)LTbh implies that a(p N L)b.
Hence p C p™" and so p = p™". [

Theorem 4.6. Let S be an inverse completely reqular semiring and p,& €
C(S). Then the following conditions are equivalent:

(i) pré.

(i) (pN&lep and (pNE)|ee are additive idempotent semiring congruences
for alle € ET.

Proof. (i) = (ii): Let p € C(S) and e € E™. Since S is completely regular,
by Theorem 2.3 it follows that e? = e and so ep is a subsemiring of S. Let
a,b € ep. Then (a + a)pa and (a+ b)pep(b+ a). Again kerp = ker implies
that a,b € ker{ and so (a + a)fa and (a + b){(b+ a). Thus (pN&)e, is an
additive idempotent semiring congruence.

(i) = (i): Let a € kerp. Then there is e € E™ such that a € ep. Hence
a(pN&)f for some f € ET. Then alf, that is a € keré. So kerp C keré.
Similarly keré C kerp. Therefore kerp = ker§, which implies that pr§. =
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Theorem 4.7. Let S be a semiring which is o distributive lattice of skew-
rings and p,& € C(S). Then the following conditions are equivalent:

(i) pré.

(i) (pNElep and (p N E)|ee are distributive lattice congruences for all
e€ ET.

Proof. (i) = (ii): From above Theorem, it follows that (p N &)|e, is
an additive idempotent semiring congruence. So a(p N &)(a + a’) for all
a € ep. Since S is a distributive lattice of skew-rings, so by Theorem 2.5,
it satisfies (1.1.1), (1.1.2), (1.1.3) and (1.1.4). Then for a,b € ep we get
at(pn&ala+a) = (a+ad)(pné&a and ablp N E)(ab+ab’) = a(b+ ) =
(b+V)a = (ba+ba)(pn&ba. Also (a+ ab)(pN&)(a+ ab+ ab +d') =
a+ad+b)+d =(a+d)(pn&)a. Hence (pN§)|e, is a distributive lattice
congruence.

(ii) = (i): Follows from Theorem 4.6. ]

Corollary 4.8. Let S be a semiring which is a b-lattice of skew-rings and
p,& € C(S). Then the following conditions are equivalent:

(i) prE.
(i) (pN&)lep and (pNE)|ee are b-lattice congruences for all e € ET.

5. CLIFFORD CONGRUENCES

Let S be an inverse semiring. A congruence p on an inverse semiring S is
idempoetnt pure if for all a € S,e € ET,ape implies that a € ET. So p is
idempotent pure if and only if kerp = ET. Hence ¢ is the least idempotent
pure congruence and €™ is the greatest idempotent pure congruence on S,
which will be denoted by 7 or sometimes by 7g. Therefore, for a,b € .S,

arb ifand only if z+ras+y€ ET & x+rbs+yc ET

for all z,y € S°r sec St

We will denote the least distributive lattice congruence on S by 1 and the
least b-lattice congruence on S by v.
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Theorem 5.1. Let S be an inverse semiring and p be a congruence on S.
Then the following conditions are equivalent.

(i) p is a generalized Clifford congruence.

(il)  Pmaz 8 a b-lattice congruence and p™**

S.

s a skew-ring congruence on

(i) pmaz =p Vv and pP"** =pVo.

(iv) trp=tr(pVv) and kerp = ker(p V o).
Proof. (i) = (ii): Since p is a generalized Clifford congruence on S, so

(S/p,+) is a Clifford semigroup, that is (a+e)p(e+a) for alla € S,e € E*.
Let a,b € S. Then for all r,s € S',e € ET,

r(a+b)s+e+r(a+b)s=(rbs+ (ra's+e+ras) + rbs)
p(ra's + e +ras + rb's + rbs)
p(ra's +rb's + rbs + e + ras)
p(ra’s +rb's + e+ rbs + ras)

=r(b+a)s+e+rb+a)s

shows that (a + 0)pmaz(b + a). Similarly (¢ + a)pmega for all a € S.
Now 7(a?)'s + e + ra’s = (raa’s + e + raas)p(ra(a’ + a)s + e)p(r(a’ + a)
s+e)p(ra’s +e+ras) for all 7,5 € S1 e € ET implies that a?p,,a.a for all
a € S. Therefore ppq. is a b-lattice congruence on S.

It can be proved that p™**
Theorem 4.6 [6].

(ii) = (iii): By our hypothesis, v C ppaz- Also p C ppaer. Hence vVp C
Pmaz- Again kerppma, € S = kerv = ker(vVp) and trppme. = trp C tr(vVp)
implies that ppae C vV p. Thus pe. =V Vp.

is a skew-ring congruence, similarly to

For p™%*  again we refer Theorem 4.6 [6].

(i) = (iv): Trivial.

(iv) = (i): Let a € S. Then (a+a')vav(a’ 4+ a) and so (a+a’)v(a’ +a).
Then trp = tr(p V v) implies that (a + a’)p(a’ + a). Also a?va implies
that (a? + (a®)')v(a + a'), that is a(a + a')v(a + a’), which implies
that a(a + a')p(a + o’). Again let a,b € S such that ap + bp = bp.
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Then (a+ b)pb implies that (a +b) + b’ € kerp = ker(pV o). Since o and so
pV o are skew-ring congruences and b+ b’ € E*, so a € ker(pV o) = kerp.
Hence ap + ap = ap. Thus p is a generalized Clifford congruence on S. =

Corollary 5.2. Let S be a semiring. Then the following conditions are
equivalent:

(i) S is a generalized Clifford semiring.

max

(i1) For every p € C(S), pmaz = pV v and p™** = pV o.

(iii) p=v andT=0.
Note that Theorem 3.6 is a direct consequence of this corollary.

Theorem 5.3. Let S be an inverse semiring. Then o Nv is the least gen-
eralized Clifford congruence on S.

Proof. Let A = o Nv. Then it can be proved that (a 4+ a’)v(d’ + a)
and a(a + a')v(a + d’) for all a € S, similarly to the Theorem 5.1. Also
o being skew-ring congruence ecf for all e, f € E*. So (a + a')A(d’ + a)
and a(a + a’)A\(a + a’). Let a,b € S be such that aX + bA = bA. Then
ac + bo = bo, which implies that ac + aoc = ao. Also (a + a)va. Hence
(a + a)Xa. Therefore A is a generalized Clifford congruence. Let p be a
generalized Clifford congruence. Then v C pye: and o C p"™%*. So o Nv C
Pmaz NP7 = p, by Theorem 4.4. This implies that ¢ N v is the least
generalized Clifford congruence on S. [

Theorem 5.4. Let S be an inverse semiring and p be a congruence on S.
Then the following conditions are equivalent:

(i) p is a Clifford congruence on S.

(i1)  pmaaz 18 a distributive lattice congruence on S and p™**

congruence on S.

s a skew-ring

(i) pPmaz =p V1N and pP™** =pVo.

(iv) trp=tr(pVvn) and kerp = ker(pV o).
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Proof. (i) = (ii): Every Clifford semiring is a generalized Clifford semir-
ing. So the Theorem 5.1 implies that apmaz(a+a), (a+b)pmaz (b+a), apmaza®
foralla,b € S. Let a,b € S. Thenforr,s € S',e € ET, r(ab)’ s+e+r(ab)s =
(rab’s + e + rabs)p(ra(b/ + b)s + e)p(r(t/ + b)as + e)p(rb'as + e + rbas) =
r(ba) + e + r(ba)s, since p is a Clifford congruence. Thus abp,..ba. Now
r(a+ ab)'s + e+ r(a+ ab)s = (rab’s + ra’s + e + ras + rabs)p(ra’s + e +
ras+rab's+rabs)p(ra’s+e+r(a+a(d’ +b))s)p(ra’s+e+ras) implies that
(a + ab) pmaza. Also a(a + b) = (a? + ab) pmaz(a + ab)pmaza. Hence ppqaq is
a distributive lattice congruence.

Similarly to Theorem 5.1, it can be proved that p
congruence.

AT is a skew-ring

(ii) = (iii): Similar to Theorem 5.1.
(i) = (iv): Trivial.
(iv) =(i): Let p € C(S) has the given trace and kenel. Then p is

a generalized Clifford congruence, which can be proved similarly to the
Theorem 5.1. Now for all a,b € S, abnba, implies that

(ab+ (ab))n(ba + (ba)")

= (ab+ ab)p V n(ba + b'a)

= a(b+b)pVnb+ba

= a(b+0)p(b+b)a, sincetrp=trpVn.

Again for all a,b € S, (a + ab)na implies that
(a+ab)p V na

= (a+ab+ (a+ab))pVnla+ad)
= (a+ab+ab +d)pVnla+ad)
= (a+alb+V)+d)pla+d), sincetrp=trpVn
= (a+d +a)plat+alb+V)+d +a)=a+d +a+alb+V)
= ap(a +a(b+1)).

Thus p is a Clifford congruence. [
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Corollary 5.5. On a semiring S the following conditions are equivalent:

(i) S is a Clifford semiring.

max

(ii) For every p € C(S), pmaz = pV 0 and p"** = pV o.

(ili) p=nandT=0.

The following theorem follows from Theorem 5.4 similarly to the Theorem
5.3.

Theorem 5.6. Let S be an inverse semiring. Then oM is the least Clifford
congruence on S.
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