Discussiones Mathematicae General Algebra and Applications 28 (2008) 179–191

ON COVARIETY LATTICES

Tomasz Brengos

Faculty of Mathematics and Information Sciences Warsaw University of Technology pl. Politechniki 1, 00–661 Warsaw, Poland

e-mail: t.brengos@mini.pw.edu.pl

Abstract

This paper shows basic properties of covariety lattices. Such lattices are shown to be infinitely distributive. The covariety lattice $L_{\mathcal{CV}}(\mathsf{K})$ of subcovarieties of a covariety K of *F*-coalgebras, where $F : \mathsf{Set} \to \mathsf{Set}$ preserves arbitrary intersections is isomorphic to the lattice of subcoalgebras of a \mathcal{P}_{κ} -coalgebra for some cardinal κ . A full description of the covariety lattice of $\mathcal{I}d$ -coalgebras is given. For any topology τ there exist a bounded functor $F : \mathsf{Set} \to \mathsf{Set}$ and a covariety K of *F*-coalgebras, such that $L_{\mathcal{CV}}(\mathsf{K})$ is isomorphic to the lattice (τ, \cup, \cap) of open sets of τ .

Keywords: coalgebra, covariety, coalgebraic logic.

2000 Mathematics Subject Classification: Primary: 03B70; Secondary: 03C99.

1. INTRODUCTION

Many mathematicians and computer scientists have been recently studying the universal theory of coalgebras - objects dual to algebras. Many interesting properties of coalgebras have been shown. E.g. an analogue of the Birkhoff Variety Theorem was developed, which describes syntactically the classes of coalgebras called *covarieties*.

This paper studies the basic properties of covariety lattices. We show that the covariety lattices are infinitely distributive. Corollary 3.9 shows that given any *F*-coalgebra \mathbb{A} there is a covariety K of $A \times F$ -coalgebras such that the lattice $L_{\mathcal{CV}}(\mathsf{K})$ of subcovarieties of K is isomorphic to the lattice $\mathsf{S}(\mathbb{A})$ of subcoalgebras of \mathbb{A} .

Next, Theorem 4.1 shows that, whenever F preserves arbitrary intersections, the covariety lattice is isomorphic to the lattice $\mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F})$ of subsets of all rooted coalgebras closed under taking rooted subcoalgebras of homomorphic images. As an example, the covariety lattice of $\mathcal{I}d$ -coalgebras is described.

Finally, the covariety lattice $L_{CV}(\mathsf{K})$ of subcovarieties of a covariety K of *F*-coalgebras, where $F : \mathsf{Set} \to \mathsf{Set}$ preserves arbitrary intersections, is characterized in Theorem 4.5 as the lattice of subcoalgebras of some \mathcal{P}_{κ} -coalgebra.

2. Basic definitions and properties

Let Set be the category of all sets and mappings between them. Let F: Set \rightarrow Set be a functor. An *F*-coalgebra \mathbb{A} is a pair (A, α) , where *A* is a set and α is a mapping $\alpha : A \rightarrow F(A)$. The set *A* is called the *carrier* of the coalgebra (A, α) and the mapping α is called the *structure*.

Let $\mathbb{A} = (A, \alpha)$ and $\mathbb{B} = (B, \beta)$ be two *F*-coalgebras. A homomorphism from the coalgebra \mathbb{A} to the coalgebra \mathbb{B} is a mapping $h : A \to B$, such that $F(h) \circ \alpha = \beta \circ h$.

The class of all F-coalgebras together with homomorphisms as morphisms forms a category denoted by Set_F . An F-coalgebra \mathbb{B} is said to be a *homomorphic image* of an F-coalgebra \mathbb{A} if there exists a surjective homomorphism from \mathbb{A} onto \mathbb{B} . An F-coalgebra \mathbb{S} is said to be a *subcoalgebra* of an F-coalgebra \mathbb{A} if there exists an injective homomorphism from \mathbb{S} into \mathbb{A} . This is denoted by $\mathbb{S} \leq \mathbb{A}$.

Theorem 2.1 [2]. Let $F : \text{Set} \to \text{Set}$ be a functor. Let $\{S_i\}_{i \in I}$ be a family of subcoalgebras of an F-coalgebra A. Then

- there exists a unique structure α : ⋃_{i∈I} S_i → F(⋃_{i∈I} S_i) such that the coalgebra ⋃_{i∈I} S_i := (⋃_{i∈I} S_i, α) is a subcoalgebra of A;
- if I is a finite set of indices, then there exists a unique structure $\beta : \bigcap_{i \in I} S_i \to F(\bigcap_{i \in I} S_i)$ such that $\bigcap_{i \in I} \mathbb{S}_i := (\bigcap_{i \in I} S_i, \beta)$ is a subcoalgebra of \mathbb{A} .

In other words, subcoalgebras of a given coalgebra form a topology.

Theorem 2.2 [2]. Let $F : \mathsf{Set} \to \mathsf{Set}$ be a functor and \mathbb{A} be an F-coalgebra. If $S \subseteq A$, then there exists at most one structure $\sigma : S \to F(S)$ such that $(S, \sigma) \leq \mathbb{A}$.

The disjoint union of a family $\{X_j\}_{j\in J}$ of sets is denoted by $\Sigma_{j\in J}X_j$. Now let $\{\mathbb{A}_i\}_{i\in I}$ be a family of *F*-coalgebras. The *disjoint sum* $\Sigma_{i\in I}\mathbb{A}_i$ of the family $\{\mathbb{A}_i\}_{i\in I}$ of *F*-coalgebras is an *F*-coalgebra defined as follows The carrier set of the disjoint sum $\mathbb{A} = \Sigma_{i\in I}\mathbb{A}_i$ is the disjoint union of the carriers of \mathbb{A}_i , i.e.

$$A := \sum_{i \in I} A_i.$$

The structure $\alpha : A \to F(A)$ of the disjoint sum $\mathbb{A} = \sum_{i \in I} \mathbb{A}_i$ is defined as follows

$$\alpha: A \to F(A); A_i \ni a \mapsto F(e_i) \circ \alpha_i(a),$$

where the mapping α_i denotes the structure of the coalgebra \mathbb{A}_i and

$$e_i: A_i \to A; a \mapsto (a, i),$$

for every $i \in I$. We say that an *F*-coalgebra \mathbb{A} is a conjunct sum of the family $\{\mathbb{G}_i\}_{i\in I}$ of *F*-coalgebras if there exists a family $\{e_i : \mathbb{G}_i \to \mathbb{A}\}_{i\in I}$ of injective homomorphisms such that $A = \bigcup_{i\in I} e_i(G_i)$. We denote it by $\mathbb{A} \in \Sigma^C(\{\mathbb{G}_i\}_{i\in I})$.

A functor F: Set \rightarrow Set is said to preserve arbitrary intersections if for any family of subcoalgebras $\{\mathbb{A}_i\}_{i\in I}$ of an F-coalgebra \mathbb{A} , there exists a structure $\alpha : \bigcap A_i \to F(\bigcap A_i)$ such that the F-coalgebra $\bigcap \mathbb{A}_i := (\bigcap A_i, \alpha)$ is a subcoalgebra of \mathbb{A} .

A functor $F : \text{Set} \to \text{Set}$ is said to be *bounded by* κ , if κ is the cardinal number such that for every F-coalgebra \mathbb{A} and for every $a \in A$ there exists an F-coalgebra \mathbb{U}_a , such that $|U_a| \leq \kappa$, $a \in U_a$ and $\mathbb{U}_a \leq \mathbb{A}$. We say that F is bounded if it is bounded by κ for some cardinal κ .

Example 2.3. Let κ be a cardinal number. Let $\mathcal{P}_{\kappa} : \mathsf{Set} \to \mathsf{Set}$ be the functor given by $\mathcal{P}_{\kappa}(X) = \{S \subseteq X \mid |S| \leq \kappa\}$ for a set X and

$$\mathcal{P}_{\kappa}(f): \mathcal{P}_{\kappa}(X) \to \mathcal{P}_{\kappa}(Y); S \to f(S)$$

for a mapping $f : X \to Y$. The functor \mathcal{P}_{κ} is an example of a bounded functor which preserves arbitrary intersections (see [5]).

Example 2.4. The filter functor $\mathcal{F} : \mathsf{Set} \to \mathsf{Set}$ assigns to every set X the set of filters $\mathcal{F}(X)$ on X and to every mapping $f : X \to Y$ the mapping

$$\mathcal{F}(f): \mathcal{F}(X) \to \mathcal{F}(Y); F \mapsto \uparrow \{f(W) \mid W \in F\},\$$

where $\uparrow \{f(W) \mid W \in F\}$ denotes the filter generated by the set $\{f(W) \mid W \in F\}$. This functor is an example of a functor which does not preserve arbitrary intersections.

It is important to mention that any topological space can be turned into an \mathcal{F} -coalgebra. Let (X, τ) be a topological space. Define the mapping

$$\sigma: X \to \mathcal{F}(X); x \mapsto \{ W \subseteq X \mid \exists O \in \tau \text{ such that } x \in O \subseteq W \}.$$

The subcoalgebras of the \mathcal{F} -coalgebra (X, σ) are precisely the open subsets of (X, τ) (see [3]). Since the intersection of an arbitrary family of open sets in a given topological space may not exist, it is clear that \mathcal{F} does not preserve arbitrary intersections. The filter functor \mathcal{F} is not bounded.

Let K be a class of F-coalgebras. We define the following classes of F-coalgebras:

$$\begin{split} \mathcal{S}(\mathsf{K}) &:= \{ \mathbb{S} \mid \exists \mathbb{A} \in \mathsf{K} \text{ such that } \mathbb{S} \leq \mathbb{A} \}, \\ \mathcal{H}(\mathsf{K}) &:= \{ \mathbb{B} \mid \exists \mathbb{A} \in \mathsf{K} \text{ such that } \mathbb{A} \twoheadrightarrow \mathbb{B} \}, \\ \Sigma(\mathsf{K}) &:= \{ \Sigma_{i \in I} \mathbb{A}_i \mid \{ \mathbb{A}_i \}_{i \in I} \subseteq \mathsf{K} \}. \end{split}$$

A class K of F -coalgebras is called a *covariety* if it is closed under S, H and Σ , i.e., $S(K) \subseteq K, H(K) \subseteq K$ and $\Sigma(K) \subseteq K$.

Theorem 2.5 [2]. Let K be a class of F-coalgebras. The class $SH\Sigma(K)$ is the smallest covariety containing K.

We say that a class K' of F-coalgebras is a *subcovariety* of a covariety K whenever K' is a covariety and $K' \subseteq K$.

The assumption of boundedness of a functor F guarantees that the collection of all subcovarieties of the covariety Set_F is a set (see [2]). Since we do not want to focus only on coalgebras for bounded functors we need to allow *class based lattices*, i.e., partially ordered classes in which each pair of elements has a supremum and an infimum. Obviously, any lattice is a class based lattice. We may easily generalize the notion of completeness to the

class based lattices. Namely, a partially ordered class (C, \leq) is a complete class based lattice if all its subclasses have a supremum and infimum. We see that whenever (C, \leq) is a complete class based lattice and C is a proper set then (C, \leq) is simply a complete lattice. The following holds.

Theorem 2.6. The collection of all subcovarieties of a given covariety K of F-coalgebras ordered by inclusion is a complete class based lattice.

We denote the class based lattice of all subcovarieties of K by $L_{CV}(K)$. Let $\{K_i\}_{i\in I}$ be a collection of subcovarieties of the covariety K of F-coalgebras. Note that the collection $\{K_i\}_{i\in I}$ and hence I may be a proper class. The infimum and supremum of $\{K_i\}_{i\in I}$ in $L_{CV}(K)$ are of the following form.

$$\prod_{i \in I} \mathsf{K}_i := \bigcap_{i \in I} \mathsf{K}_i,$$
$$\sum_{i \in I} \mathsf{K}_i := \mathcal{SH}\Sigma\left(\bigcup_{i \in I} \mathsf{K}_i\right).$$

We will clearly distinguish between the class based lattices whose carrier is a proper class and lattices with a set carrier. We will use the term *proper lattice* to emphasize the fact that the latter holds, i.e. a class based lattice is simply a lattice.

3. Covariety lattices

In this section we discuss the distributivity of covariety class based lattices. Then we describe the lattices $L_{CV}(SH\Sigma(\mathbb{A}))$ for certain coalgebras \mathbb{A} and show that the lattice of open sets of any topological space is isomorphic to some covariety lattice $L_{CV}(\mathsf{K})$.

Suppose F is bounded by |X| for some set X. Then the cofree Fcoalgebra \mathbb{C}_X over the set X exists. In this case there is a one-to-one
correspondence between the so-called invariant subcoalgebras of \mathbb{C}_X and
covarieties of F-coalgebras. This correspondence is given by the following
formula:

$$\mathsf{K} = \mathcal{Q}(\mathbb{C}_X, \mathbb{U}) := \{ \mathbb{A} \mid \forall \phi : \mathbb{A} \to \mathbb{C}_X, \phi(A) \subseteq U \},\$$

where $\mathbb{U} := \bigcup \{ \phi(\mathbb{A}) \mid \phi : \mathbb{A} \to \mathbb{C}_X \text{ and } \mathbb{A} \in \mathsf{K} \}$ (see [2]). Therefore, the lattice $L_{\mathcal{CV}}(\mathsf{Set}_F)$ of all covarieties of *F*-coalgebras is isomorphic to the lattice

of invariant subcoalgebras of \mathbb{C}_X ordered by inclusion. Because it is clear that the invariant subcoalgebras are closed under infinite unions and finite intersections the lattice $L_{\mathcal{CV}}(\mathsf{Set}_F)$ is infinitely distributive. If we do not assume boundedness of F then we cannot speak of the above correspondence. Yet, we are able to derive the following result directly.

Theorem 3.1. The class based lattice $L_{CV}(Set_F)$ of covarieties of F-coalgebras is distributive.

Proof. Let $\{\mathsf{K}_i\}_{i\in I}$ be a collection of covarieties of *F*-coalgebras and let K be a covariety. Note that *I* may be a proper class. To show that the covariety class based lattice $L_{\mathcal{CV}}(\mathsf{Set}_F)$ is distributive it is enough to verify that the following inequality is true:

$$\mathsf{K} \cdot \left(\sum_{i \in I} \mathsf{K}_i\right) \leq \sum_{i \in I} \mathsf{K} \cdot \mathsf{K}_i.$$

Let $\mathbb{A} \in \mathsf{K} \cdot (\sum_{i \in I} \mathsf{K}_i)$. This means that $\mathbb{A} \in \mathsf{K}$ and $\mathbb{A} \in \sum_{i \in I} \mathsf{K}_i$. Since $\sum_{i \in I} \mathsf{K}_i = S\mathcal{H}\Sigma(\bigcup_{i \in I} \mathsf{K}_i)$, it follows that $\mathbb{A} \leq h(\sum_{j \in J} \mathbb{B}_j)$, where $\mathbb{B}_j \in \bigcup_{i \in I} \mathsf{K}_i$ for any j coming from the set of indices J and h is a homomorphism. Let $e_k : \mathbb{B}_k \to \sum_{j \in J} \mathbb{B}_j$ for $k \in J$ denote the canonical embeddings. Then $\mathbb{A} \leq \bigcup_{i \in J} h(e_j(\mathbb{B}_j))$. By Theorem 2.1 we have

$$\mathbb{A} = \bigcup_{j \in J} h(e_j(\mathbb{B}_j)) \cap \mathbb{A}.$$

Since all K_i 's are covarieties and $h(e_j(\mathbb{B}_j)) \cap \mathbb{A} \leq h(e_j(\mathbb{B}_j))$, it follows that $h(e_j(\mathbb{B}_j)) \cap \mathbb{A} \in \mathsf{K}_{i_j}$ for some $i_j \in I$. Moreover, because $h(e_j(\mathbb{B}_j)) \cap \mathbb{A} \leq \mathbb{A}$ and $\mathbb{A} \in \mathsf{K}$, we have $h(e_j(\mathbb{B}_j)) \cap \mathbb{A} \in \mathsf{K}$. Hence $h(e_j(\mathbb{B}_j)) \cap \mathbb{A} \in \mathsf{K} \cdot \mathsf{K}_{i_j}$ and therefore

$$\mathbb{A} \in \sum_{i \in I} \mathsf{K} \cdot \mathsf{K}_i.$$

Definition 3.2 ([2]). An *F*-coalgebra \mathbb{A} is called *strongly simple* whenever it does not possess any nontrivial homomorphic images.

We will now show some properties of strongly simple coalgebras, neccessary for characterisation of $L_{CV}(SH\Sigma(\mathbb{A}))$.

Lemma 3.3 ([2]). Let \mathbb{A} be a strongly simple *F*-coalgebra. If \mathbb{B} is an *F*-coalgebra, then there exists at most one homomorphism $h : \mathbb{B} \to \mathbb{A}$.

Lemma 3.4. Let $\mathbb{A} = (A, \alpha)$ be a strongly simple *F*-coalgebra. Let $\mathbb{S} \leq \mathbb{A}$ and $\mathbb{T} \leq \mathbb{A}$ be such that $\mathbb{S} \cong \mathbb{T}$. Then $\mathbb{S} = \mathbb{T}$.

Lemma 3.5. Let \mathbb{A} be a strongly simple *F*-coalgebra. If $\mathbb{B} \in S\mathcal{H}\Sigma(\mathbb{A})$, then $\mathbb{B} \in \Sigma^C S(\mathbb{A})$.

Proof. If $\mathbb{B} \in S\mathcal{H}\Sigma(\mathbb{A})$ then $\mathbb{B} \leq h(\Sigma_{i\in I}\mathbb{A})$, where h is a homomorphism. Let $e_i : \mathbb{A} \to \Sigma_{i\in I}\mathbb{A}$ denote the canonical embeddings. Since \mathbb{A} is strongly simple, it follows that the image coalgebra $h(e_i(\mathbb{A}))$ is isomorphic to \mathbb{A} for each $i \in I$. Since $h(\Sigma_{i\in I}\mathbb{A}) = \bigcup_{i\in I} h(e_i(\mathbb{A}))$, it follows that $\mathbb{B} = \bigcup_{i\in I} h(e_i(\mathbb{A})) \cap \mathbb{B}$. Because $h(e_i(\mathbb{A})) \cap \mathbb{B} \leq h(e_i(\mathbb{A})) \cong \mathbb{A}$, we have $\mathbb{B} \in \Sigma^C S(\mathbb{A})$.

Let A be an *F*-coalgebra. Let S(A) denote the set of carriers of subcoalgebras of A, i.e.

$$\mathbf{S}(\mathbb{A}) := \{ B \mid \mathbb{B} \le \mathbb{A} \}$$

By Theorem 2.1, the set $S(\mathbb{A})$ together with the operations of union and intersection forms a lattice.

What we now want to do is to show without any additional assumptions that $L_{CV}(S\mathcal{H}\Sigma(\mathbb{A}))$ is isomorphic to the proper lattice $(S(\mathbb{A}), \cup, \cap)$ for any strongly simple coalgebra \mathbb{A} . If we assume that F is bounded then the cofree F-coalgebra \mathbb{C}_1 over the one-element set 1 exists. The coalgebra \mathbb{C}_1 is the terminal object in the category Set_F . Therefore, it is strongly simple. Moreover, strongly simple F-coalgebras are precisely subcoalgebras of \mathbb{C}_1 and all subcoalgebras of \mathbb{C}_1 are invariant. Hence, $L_{CV}(S\mathcal{H}\Sigma(\mathbb{C}_1))$ is isomorphic to $(S(\mathbb{C}_1), \cup, \cap)$. The same thing is clearly true for any subcoalgebra of \mathbb{C}_1 . If we do not assume that F is bounded the terminal object in Set_F may not exist. Yet, we can expand our category Set_F to class based coalgebras, where the terminal object always exists (see [1]). Using a similar argument and working with class based coalgebras and we get a general result. At the same time if one does not prefer to work with classes then the direct proof of the following theorem is an alternative.

Theorem 3.6. Let \mathbb{A} be a strongly simple *F*-coalgebra. Then $L_{CV}(S\mathcal{H}\Sigma(\mathbb{A}))$ is a proper lattice and

$$L_{\mathcal{CV}}(\mathcal{SH}\Sigma(\mathbb{A})) \cong (S(\mathbb{A}), \cup, \cap).$$

Proof. Let K be a subcovariety of the covariety $\mathcal{SH}\Sigma(\mathbb{A})$. Define

$$\mathbb{S}_{\mathsf{K}}:=\bigcup\{\mathbb{S}|\ \mathbb{S}\leq\mathbb{A}\ \mathrm{and}\ \mathbb{S}\in\mathsf{K}\}.$$

In other words, the *F*-coalgebra S_K is the union of subcoalgebras of A which are elements of the covariety K.

It is clear that \mathbb{S}_{K} is the greatest subcoalgebra of \mathbb{A} contained in K .

Let $\mathbb{B} \in \mathsf{K}$. We have $\mathbb{B} \leq f(\Sigma_{i \in I} \mathbb{A})$ for a homomorphism f. By Lemma 3.5, $\mathbb{B} \in \Sigma^{C}(\{\mathbb{C}_{i}\}_{i \in I})$, where $\mathbb{C}_{i} \leq \mathbb{A}$ for $i \in I$. Since $\mathbb{C}_{i} \leq \mathbb{B}$, it follows that $\mathbb{C}_{i} \in \mathsf{K}$. Hence $\mathbb{C}_{i} \leq \mathbb{S}_{\mathsf{K}}$ for $i \in I$ and $\mathbb{B} \in \Sigma^{C} \mathcal{S}(\mathbb{S}_{\mathsf{K}})$. Therefore any coalgebra $\mathbb{B} \in \mathsf{K}$ is a conjunct sum of subcoalgebras of \mathbb{S}_{K} , i.e. $\mathsf{K} = \Sigma^{C} \mathcal{S}(\mathbb{S}_{\mathsf{K}})$.

We will now prove that the mapping

$$\mathbb{S}_{(-)}: L_{\mathcal{CV}}(\mathcal{SH}\Sigma(\mathbb{A})) \to S(\mathbb{A}); \mathsf{K} \mapsto \mathbb{S}_{\mathsf{K}}$$

is a lattice isomorphism. To show that it is injective, let K_1 and K_2 be subcovarieties of the covariety $SH\Sigma(\mathbb{A})$ such that $\mathbb{S}_{K_1} = \mathbb{S}_{K_2}$. Then

$$\mathsf{K}_1 = \Sigma^C \mathcal{S}(\mathbb{S}_{\mathsf{K}_1}) = \Sigma^C \mathcal{S}(\mathbb{S}_{\mathsf{K}_2}) = \mathsf{K}_2.$$

We will now show that $\mathbb{S}_{(-)}$ is a surjection. Let $\mathbb{C} \leq \mathbb{A}$. Then

$$\mathbb{C} \leq \mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})}.$$

Since $\mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})} \leq \mathbb{A}$ and since $\mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})} \in \mathcal{SH}\Sigma(\mathbb{C}) = \Sigma^C \mathcal{S}(\mathbb{C})$, it follows that

$$\mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})} \in \Sigma^C(\{\mathbb{D}_j\}_{j \in J})$$

where $\mathbb{D}_j \leq \mathbb{C}$. This means that for any $j \in J$, the coalgebra $\mathbb{S}_{S\mathcal{H}\Sigma(\mathbb{C})}$ contains a coalgebra $\widetilde{\mathbb{D}}_j$ isomorphic to \mathbb{D}_j as its subcoalgebra. Hence

$$\mathbb{D}_j \leq \mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})} \leq \mathbb{A}$$

for all $j \in J$, and $\mathbb{D}_j \leq \mathbb{C} \leq \mathbb{A}$. By Lemma 3.4, we have $\mathbb{D}_j = \mathbb{D}_j$. Therefore,

$$\mathbb{S}_{\mathcal{SH}\Sigma(\mathbb{C})} = \bigcup_{j \in J} \widetilde{\mathbb{D}}_j = \bigcup_{j \in J} \mathbb{D}_j \le \mathbb{C}$$

and $\mathbb{S}_{S\mathcal{H}\Sigma(\mathbb{C})} = \mathbb{C}$. Consequently the mapping $\mathbb{S}_{(-)}$ is a bijection. Since it is clear that $\mathbb{S}_{(-)}$ is order preserving we immediately get that $\mathbb{S}_{(-)}$ is the isomorphism from the lattice $L_{C\mathcal{V}}(S\mathcal{H}\Sigma(\mathbb{A}))$ onto $(\mathbf{S}(\mathbb{A}), \cup, \cap)$.

For an *F*-coalgebra $\mathbb{A} = (A, \alpha)$ and a set *B* such that $A \subseteq B$, we define the following $B \times F$ - coalgebra:

$$\mathbb{A}_B := \left(A, \left(\subseteq_A^B, \alpha \right) \right).$$

The structure map of \mathbb{A}_B is the following:

$$(\subseteq_A^B, \alpha) : A \to B \times F(A); a \mapsto (a, \alpha(a)).$$

This easy trick allows us to force the $B \times F$ -coalgebra \mathbb{A}_B to be strongly simple and at the same time to leave the subcoalgebras of \mathbb{A} untouched. This property is formally described by the following lemmata.

Lemma 3.7. Let $\mathbb{A} = (A, \alpha)$ be an *F*-coalgebra and let *B* be a set such that $A \subseteq B$. Then the $B \times F$ -coalgebra \mathbb{A}_B is strongly simple.

Lemma 3.8. Let $\mathbb{A} = (A, \alpha)$ be an *F*-coalgebra and let *B* be a set such that $A \subseteq B$. Then $(\mathsf{S}(\mathbb{A}), \cup, \cap) = (\mathsf{S}(\mathbb{A}_B), \cup, \cap)$.

Corollary 3.9. Let (X, τ) be a topological space. There exists a bounded functor $F : \mathsf{Set} \to \mathsf{Set}$ and a covariety K of F-coalgebras such that $L_{\mathcal{CV}}(\mathsf{K})$ is isomorphic to the lattice (τ, \cup, \cap) of open sets in τ .

Proof. It follows by Example 2.4, Lemma 3.8, Lemma 3.7 and Theorem 3.6.

4. Covariety lattices for functors preserving arbitrary intersections

Throughout this section we will assume that F is a bounded functor. Therefore, the collection of all covarieties of F-coalgebras is a set. It is worth noting that almost all of the results presented here naturally generalize to the case when classes of covarieties are allowed.

Given a strongly simple F-coalgebra \mathbb{A} , Theorem 3.6 describes the lattice of subcovarieties of the covariety $S\mathcal{H}\Sigma(\mathbb{A})$ in terms of the lattice of subcoalgebras of \mathbb{A} . The following question arises: can we describe the covariety lattice of any covariety K of F-coalgebras in a similar way in terms of subcoalgebras of an F-coalgebra? In general the answer is "no", which is seen in the Example 4.4. But first, we will characterize the lattice $L_{C\mathcal{V}}(\mathsf{Set}_F)$ in the case the functor F preserves arbitrary intersections. An *F*-coalgebra \mathbb{A} is called *rooted* (or *one-generated*) if there exists an element $a \in A$, called a *root*, such that the coalgebra \mathbb{A} is the smallest subcoalgebra of \mathbb{A} containing the element a. If $a \in A$ is a root of a rooted coalgebra \mathbb{A} , then we say that \mathbb{A} is generated by a.

If $F : \mathsf{Set} \to \mathsf{Set}$ preserves arbitrary intersections, then all rooted Fcoalgebras are of the following form

$$\langle a \rangle := \bigcap \{ \mathbb{S} \mid a \in S \text{ and } \mathbb{S} \le \mathbb{A} \},\$$

for some *F*-coalgebra \mathbb{A} and $a \in A$. For any *F*-coalgebra \mathbb{A} , we have $\mathbb{A} = \bigcup_{a \in A} \langle a \rangle$. It follows that $\mathbb{A} \in \Sigma^C(\{\langle a \rangle\}_{a \in A})$.

Let K be a class of F-coalgebras. Let $\mathfrak{R}_{\mathsf{K}}$ denote the collection of rooted F-coalgebras consisting of exactly one representative from each class of isomorphic rooted F-coalgebras from the class K. If $\mathbb{A}, \mathbb{B} \in \mathfrak{R}_{\mathsf{K}}$ and are isomorphic, then $\mathbb{A} = \mathbb{B}$. By the assumption of boundedness of F we know that $\mathfrak{R}_{\mathsf{K}}$ is a proper set. Let $\mathcal{D}(\mathfrak{R}_{\mathsf{K}})$ denote the set of subsets of $\mathfrak{R}_{\mathsf{K}}$ closed under taking subcoalgebras of homomorphic images, i.e.:

$$\mathcal{D}(\mathfrak{R}_{\mathsf{K}}) := \{ U \subseteq \mathfrak{R}_{\mathsf{K}} \mid \mathfrak{R}_{\mathsf{K}} \cap \mathcal{SH}(U) = U \}.$$

Theorem 4.1. If F: Set \rightarrow Set preserves arbitrary intersections then the lattice $L_{CV}(Set_F)$ of subcovarieties of Set_F is isomorphic to the lattice $(\mathcal{D}(\mathfrak{R}_{Set_F}), \cup, \cap).$

Proof. Let K be a covariety of F-coalgebras. Let $\mathbb{A} \in \mathfrak{R}_{\mathsf{K}}$. Then \mathbb{A} is a rooted coalgebra in the covariety K. The rooted subcoalgebras of homomorphic images of \mathbb{A} are elements of the set $\mathfrak{R}_{\mathsf{K}}$. This means that $\mathfrak{R}_{\mathsf{K}} \in \mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F})$. We define the following mapping.

$$r: L_{\mathcal{CV}}(\mathsf{Set}_F) \to \mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F}); \mathsf{K} \mapsto \mathfrak{R}_{\mathsf{K}}.$$

We will show that r is an isomorphism. Let K_1 and K_2 be two covarieties such that $r(\mathsf{K}_1) = r(\mathsf{K}_2)$. Let $\mathbb{A} \in \mathsf{K}_1$. For any $a \in A$ the rooted coalgebra $\langle a \rangle$ is a subcoalgebra of \mathbb{A} . Hence $\langle a \rangle \in \mathsf{K}_1$ and $\langle a \rangle \in \mathsf{K}_2$. Since $\mathbb{A} = \bigcup_{a \in A} \langle a \rangle$, the coalgebra \mathbb{A} belongs to K_2 . Therefore, $\mathsf{K}_1 = \mathsf{K}_2$ and the mapping r is injective.

Now let $U \in \mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F})$. The smallest covariety containing U is given by the class $\mathcal{SH}\Sigma(U)$. It is clear that $U \subseteq r(\mathcal{SH}\Sigma(U))$. Now let $\mathbb{A} \in r(\mathcal{SH}\Sigma(U))$. This means that \mathbb{A} is a rooted coalgebra, say $\mathbb{A} = \langle a \rangle$, and

188

is a subcoalgebra of \mathbb{B} , where $\mathbb{B} = h(\Sigma_{i \in I} \mathbb{C}_i)$ is a homomorphic image of the disjoint sum of a family $\{\mathbb{C}_i\}_{i \in I}$ of rooted coalgebras in U. Let $e_i : \mathbb{C}_i \to \Sigma_{i \in I} \mathbb{C}_i$ denote the canonical embeddings. It is easy to see that $\mathbb{B} = h(\Sigma_{i \in I} \mathbb{C}_i) = \bigcup_{i \in I} h(e_i(\mathbb{C}_i))$. Since $\langle a \rangle \leq \mathbb{B}$, it follows that $a \in h(e_j(\mathbb{C}_j))$ for some $j \in I$. Hence $\langle a \rangle \leq h(e_j(\mathbb{C}_j))$. Since U is closed under taking rooted subcoalgebras of homomorphic images, it follows that $\mathbb{A} = \langle a \rangle \in U$. Therefore $U = r(\mathcal{SH}\Sigma(U))$ and the mapping r is surjective. Consequently r is bijective. It is clear that the mapping r is an order embedding. Hence r is a lattice isomorphism.

Remark 4.2. It is worth noting that the mapping r in the proof of Theorem 4.1 is in fact a complete lattice isomorphism.

Corollary 4.3. Let $F : \mathsf{Set} \to \mathsf{Set}$ preserve arbitrary intersections and let K be a covariety of F-coalgebras. Then $L_{\mathcal{CV}}(\mathsf{K}) \cong (\mathcal{D}(\mathfrak{R}_{\mathsf{K}}), \cup, \cap)$.

Example 4.4. We will describe the covariety lattice $L_{\mathcal{CV}}(\operatorname{Set}_{\mathcal{I}d})$. By Theorem 4.1, the first step is to find all rooted $\mathcal{I}d$ -coalgebras. Note that $\mathcal{I}d$ -coalgebras are exactly mono-unary algebras. Therefore, we can speak of an *index* and *period* of a rooted $\mathcal{I}d$ -coalgebra. Let $\mathsf{N}_0 = \mathsf{N} \cup \{0\}$. It is easy to see that every rooted $\mathcal{I}d$ -coalgebra can be represented by a pair $(i,p) \in \mathsf{N}_0 \times \mathsf{N} \cup \{(\infty,0)\}$, where *i* denotes an index and *p* a period of a given coalgebra. E.g. (0,2) denotes the coalgebra given by the diagram $\bullet \hookrightarrow \bullet$ and (1,2) by the diagram $\bullet \to \bullet \leftrightarrows \bullet$. Given a finite rooted $\mathcal{I}d$ -coalgebra of (i,p) is of the form (i',p), where $i' \leq i$. Any subcoalgebra of $(\infty,0)$ is of the form (i',p'), where $i' \leq i$ and p'| p. Therefore,

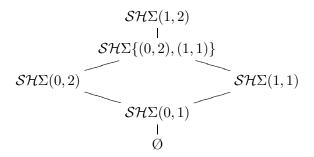
$$\mathcal{SH}((i,p)) = \{(i',p') \in \mathsf{N}_0 \times \mathsf{N} \cup \{(\infty,0)\} \mid i' \le i \text{ and } p'|p\}.$$

We can introduce a partial order on $N_0 \times N \cup \{(\infty, 0)\}$ as follows: $(i', p') \preccurlyeq (i, p) : \iff i' \leq i$ and $p' \mid p$. Then

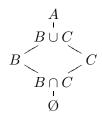
$$\mathcal{SH}((i,p)) = \downarrow (i,p) := \{(i',p') \mid (i',p') \preccurlyeq (i,p)\}.$$

By Theorem 4.1, the lattice $L_{\mathcal{CV}}(\mathsf{Set}_{\mathcal{I}d})$ of subcovarieties of $\mathsf{Set}_{\mathcal{I}d}$ is isomorphic to the lattice of downsets $(\mathcal{O}(\mathsf{N}_0 \times \mathsf{N} \cup \{(\infty, 0)\}), \cup, \cap)$ of the poset $\mathsf{N}_0 \times \mathsf{N} \cup \{(\infty, 0)\}$.

Now, consider the $\mathcal{I}d$ -coalgebra (1,2). The covariety lattice of $\mathcal{SH}\Sigma(1,2)$ looks as follows:



At the beginning of this section we stated a question whether it was possible to describe a covariety lattice $L_{CV}(\mathsf{K})$ of any covariety K of F-coalgebras in terms of subcoalgebras of an F-coalgebra. We will show that it is impossible to construct an $\mathcal{I}d$ -coalgebra \mathbb{A} , whose subcoalgebra lattice is isomorphic to the covariety lattice $\mathcal{SH}\Sigma(1,2)$. By contradiction, assume that there exists $\mathcal{I}d$ -coalgebra \mathbb{A} whose subcoalgebra lattice is the following:



Join irreducible elements, i.e. \mathbb{B}, \mathbb{C} and $\mathbb{B} \cap \mathbb{C}$, must be rooted $\mathcal{I}d$ -coalgebras. The rooted coalgebra $\mathbb{B} \cap \mathbb{C}$ does not contain any proper subcoalgebras. This means that $\mathbb{B} \cap \mathbb{C}$ is a cycle. The coalgebras $\mathbb{B} = \langle b \rangle$ and $\mathbb{C} = \langle c \rangle$ cover the coalgebra $\mathbb{B} \cap \mathbb{C}$. Hence the coalgebra $\mathbb{B} \cup \mathbb{C}$ has the following form.

Since A itself is join irreducible, it follows that it is rooted, i.e. $A = \langle a \rangle$. On one hand the element *a* has to be connected directly with the element *b* and on the other with the element *c*, which is a contradiction.

Theorem 4.5. Let $F : \text{Set} \to \text{Set}$ be a functor preserving arbitrary intersections. Then the lattice $L_{CV}(K)$ of subcovarieties of a covariety K of Fcoalgebras is isomorphic to the lattice of subcoalgebras of some \mathcal{P}_{κ} -coalgebra.

Conversely, for any \mathcal{P}_{κ} -coalgebra \mathbb{A} , there exists a functor $F : \mathsf{Set} \to \mathsf{Set}$ preserving arbitrary intersections and a covariety K of F-coalgebras such that the lattice $L_{\mathcal{CV}}(\mathsf{K})$ is isomorphic to the lattice of subcoalgebras of \mathbb{A} .

Proof. If F preserves arbitrary intersection, then by Theorem 4.1, the lattice $L_{\mathcal{CV}}(\mathsf{Set}_F)$ of subcovarieties of Set_F is isomorphic to the lattice $(\mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F}), \cup, \cap)$. Take $\kappa := |\mathfrak{R}_{\mathsf{Set}_F}|$. Define a \mathcal{P}_{κ} -coalgebra $(\mathfrak{R}_{\mathsf{Set}_F}, \eta)$ as follows. For $\langle a \rangle \in \mathfrak{R}_{\mathsf{Set}_F}$ define

$$\eta(\langle a \rangle) := \mathcal{SH}(\langle a \rangle) \cap \mathfrak{R}_{\mathsf{Set}_F}.$$

Then clearly

 $\mathsf{S}((\mathfrak{R}_{\mathsf{Set}_F},\eta))\cong \mathcal{D}(\mathfrak{R}_{\mathsf{Set}_F})\cong L_{\mathcal{CV}}(\mathsf{Set}_F).$

Conversely let $\mathbb{A} = (A, \alpha)$ be a \mathcal{P}_{κ} -coalgebra. Then by Theorem 3.6, the lattice $L_{\mathcal{CV}}(\mathcal{SH}\Sigma(\mathbb{A}_A))$ of subcovarieties of the covariety $\mathcal{SH}\Sigma(\mathbb{A}_A)$ of $A \times \mathcal{P}_{\kappa}$ -coalgebras is isomorphic to $S(\mathbb{A})$ and the functor $A \times \mathcal{P}_{\kappa}$ is bounded and preserves arbitrary intersections.

References

- M. Barr, Terminal Coalgebras in Well-founded Set Theory, Theoretical Computer Science 144 (2) (1993), 299–315.
- [2] H.P. Gumm, *Elements of the General Theory of Coalgebras*, LUATCS'99, Rand Africaans University, Johannesburg, South Africa 1999.
- [3] H.P. Gumm, Functors for coalgebras, Algebra Universalis 45 (2–3) (2001), 135–147.
- [4] H.P. Gumm and T. Schröder, Coalgebras of bounded type, Mathematical Structures in Computer Science 12 (5) (2002), 565–578.
- [5] H.P. Gumm, From T-coalgebras to filter structures and transiton systems, CALCO 2005, Springer Lecture Notes in Computer Science (LNCS) 3629, 2005.

Received 21 November 2007 Revised 5 March 2008