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Abstract

This paper shows basic properties of covariety lattices. Such lattices
are shown to be infinitely distributive. The covariety lattice LCV(K)
of subcovarieties of a covariety K of F -coalgebras, where F : Set →
Set preserves arbitrary intersections is isomorphic to the lattice of
subcoalgebras of a Pκ-coalgebra for some cardinal κ. A full descrip-
tion of the covariety lattice of Id-coalgebras is given. For any topology
τ there exist a bounded functor F : Set → Set and a covariety K of
F -coalgebras, such that LCV(K) is isomorphic to the lattice (τ,∪,∩) of
open sets of τ .
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1. Introduction

Many mathematicians and computer scientists have been recently studying
the universal theory of coalgebras - objects dual to algebras. Many inter-
esting properties of coalgebras have been shown. E.g. an analogue of the
Birkhoff Variety Theorem was developed, which describes syntactically the
classes of coalgebras called covarieties.

This paper studies the basic properties of covariety lattices. We show
that the covariety lattices are infinitely distributive. Corollary 3.9 shows
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that given any F -coalgebra A there is a covariety K of A × F -coalgebras
such that the lattice LCV(K) of subcovarieties of K is isomorphic to the
lattice S(A) of subcoalgebras of A.

Next, Theorem 4.1 shows that, whenever F preserves arbitrary intersec-
tions, the covariety lattice is isomorphic to the lattice D(RSetF

) of subsets
of all rooted coalgebras closed under taking rooted subcoalgebras of homo-
morphic images. As an example, the covariety lattice of Id-coalgebras is
described.

Finally, the covariety lattice LCV(K) of subcovarieties of a covariety K

of F -coalgebras, where F : Set → Set preserves arbitrary intersections, is
characterized in Theorem 4.5 as the lattice of subcoalgebras of some Pκ-
coalgebra.

2. Basic definitions and properties

Let Set be the category of all sets and mappings between them. Let F :
Set → Set be a functor. An F -coalgebra A is a pair (A,α), where A is a set
and α is a mapping α : A → F (A). The set A is called the carrier of the
coalgebra (A,α) and the mapping α is called the structure.

Let A = (A,α) and B = (B, β) be two F -coalgebras. A homomorphism

from the coalgebra A to the coalgebra B is a mapping h : A → B, such that
F (h) ◦ α = β ◦ h.

The class of all F -coalgebras together with homomorphisms as mor-
phisms forms a category denoted by SetF . An F -coalgebra B is said to be a
homomorphic image of an F -coalgebra A if there exists a surjective homo-
morphism from A onto B. An F -coalgebra S is said to be a subcoalgebra of
an F -coalgebra A if there exists an injective homomorphism from S into A.
This is denoted by S ≤ A.

Theorem 2.1 [2]. Let F : Set → Set be a functor. Let {Si}i∈I be a family

of subcoalgebras of an F -coalgebra A. Then

• there exists a unique structure α :
⋃

i∈I Si → F (
⋃

i∈I Si) such that the

coalgebra
⋃

i∈I Si := (
⋃

i∈I Si, α) is a subcoalgebra of A;

• if I is a finite set of indices, then there exists a unique structure

β :
⋂

i∈I Si → F (
⋂

i∈I Si) such that
⋂

i∈I Si := (
⋂

i∈I Si, β) is a sub-

coalgebra of A.

In other words, subcoalgebras of a given coalgebra form a topology.
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Theorem 2.2 [2]. Let F : Set → Set be a functor and A be an F -coalgebra.

If S ⊆ A, then there exists at most one structure σ : S → F (S) such that

(S, σ) ≤ A.

The disjoint union of a family {Xj}j∈J of sets is denoted by Σj∈JXj . Now let
{Ai}i∈I be a family of F -coalgebras. The disjoint sum Σi∈IAi of the family
{Ai}i∈I of F -coalgebras is an F -coalgebra defined as follows The carrier set
of the disjoint sum A = Σi∈IAi is the disjoint union of the carriers of Ai, i.e.

A := Σi∈IAi.

The structure α : A → F (A) of the disjoint sum A = Σi∈IAi is defined as
follows

α : A → F (A);Ai 3 a 7→ F (ei) ◦ αi(a),

where the mapping αi denotes the structure of the coalgebra Ai and

ei : Ai → A; a 7→ (a, i),

for every i ∈ I. We say that an F -coalgebra A is a conjunct sum of the

family {Gi}i∈I of F -coalgebras if there exists a family {ei : Gi → A}i∈I

of injective homomorphisms such that A =
⋃

i∈I ei(Gi). We denote it by
A ∈ ΣC({Gi}i∈I).

A functor F : Set → Set is said to preserve arbitrary intersections if
for any family of subcoalgebras {Ai}i∈I of an F -coalgebra A, there exists a
structure α :

⋂
Ai → F (

⋂
Ai) such that the F -coalgebra

⋂
Ai := (

⋂
Ai, α)

is a subcoalgebra of A.

A functor F : Set → Set is said to be bounded by κ, if κ is the cardinal
number such that for every F -coalgebra A and for every a ∈ A there exists
an F -coalgebra Ua, such that |Ua| ≤ κ, a ∈ Ua and Ua ≤ A. We say that F

is bounded if it is bounded by κ for some cardinal κ.

Example 2.3. Let κ be a cardinal number. Let Pκ : Set → Set be the
functor given by Pκ(X) = {S ⊆ X | |S| ≤ κ} for a set X and

Pκ(f) : Pκ(X) → Pκ(Y );S → f(S)

for a mapping f : X → Y . The functor Pκ is an example of a bounded
functor which preserves arbitrary intersections (see [5]).
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Example 2.4. The filter functor F : Set → Set assigns to every set X the
set of filters F(X) on X and to every mapping f : X → Y the mapping

F(f) : F(X) → F(Y );F 7→↑ {f(W ) | W ∈ F},

where ↑ {f(W ) | W ∈ F} denotes the filter generated by the set {f(W ) |
W ∈ F}. This functor is an example of a functor which does not preserve
arbitrary intersections.

It is important to mention that any topological space can be turned into
an F -coalgebra. Let (X, τ) be a topological space. Define the mapping

σ : X → F(X);x 7→ {W ⊆ X | ∃O ∈ τ such that x ∈ O ⊆ W}.

The subcoalgebras of the F -coalgebra (X,σ) are precisely the open subsets
of (X, τ) (see [3]). Since the intersection of an arbitrary family of open
sets in a given topological space may not exist, it is clear that F does not
preserve arbitrary intersections. The filter functor F is not bounded.

Let K be a class of F -coalgebras. We define the following classes of
F -coalgebras:

S(K) := {S | ∃A ∈ K such that S ≤ A},

H(K) := {B | ∃A ∈ K such that A � B},

Σ(K) := {Σi∈IAi | {Ai}i∈I ⊆ K}.

A class K of F -coalgebras is called a covariety if it is closed under S,H and
Σ, i.e., S(K) ⊆ K, H(K) ⊆ K and Σ(K) ⊆ K.

Theorem 2.5 [2]. Let K be a class of F -coalgebras. The class SHΣ(K) is

the smallest covariety containing K.

We say that a class K′ of F -coalgebras is a subcovariety of a covariety K

whenever K′ is a covariety and K′ ⊆ K.
The assumption of boundedness of a functor F guarantees that the

collection of all subcovarieties of the covariety SetF is a set (see [2]). Since
we do not want to focus only on coalgebras for bounded functors we need to
allow class based lattices, i.e., partially ordered classes in which each pair of
elements has a supremum and an infimum. Obviously, any lattice is a class
based lattice. We may easily generalize the notion of completeness to the



On covariety lattices 183

class based lattices. Namely, a partially ordered class (C,≤) is a complete
class based lattice if all its subclasses have a supremum and infimum. We
see that whenever (C,≤) is a complete class based lattice and C is a proper
set then (C,≤) is simply a complete lattice. The following holds.

Theorem 2.6. The collection of all subcovarieties of a given covariety K of

F -coalgebras ordered by inclusion is a complete class based lattice.

We denote the class based lattice of all subcovarieties of K by LCV(K). Let
{Ki}i∈I be a collection of subcovarieties of the covariety K of F -coalgebras.
Note that the collection {Ki}i∈I and hence I may be a proper class. The
infimum and supremum of {Ki}i∈I in LCV(K) are of the following form.

∏

i∈I

Ki :=
⋂

i∈I

Ki,

∑

i∈I

Ki := SHΣ

(
⋃

i∈I

Ki

)
.

We will clearly distinguish between the class based lattices whose carrier is
a proper class and lattices with a set carrier. We will use the term proper

lattice to emphasize the fact that the latter holds, i.e. a class based lattice
is simply a lattice.

3. Covariety lattices

In this section we discuss the distributivity of covariety class based lattices.
Then we describe the lattices LCV(SHΣ(A)) for certain coalgebras A and
show that the lattice of open sets of any topological space is isomorphic to
some covariety lattice LCV(K).

Suppose F is bounded by |X| for some set X. Then the cofree F -
coalgebra CX over the set X exists. In this case there is a one-to-one
correspondence between the so-called invariant subcoalgebras of CX and
covarieties of F -coalgebras. This correspondence is given by the following
formula:

K = Q(CX , U) := {A | ∀φ : A → CX , φ(A) ⊆ U},

where U :=
⋃
{φ(A) | φ : A → CX and A ∈ K} (see [2]). Therefore, the

lattice LCV(SetF ) of all covarieties of F -coalgebras is isomorphic to the lattice
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of invariant subcoalgebras of CX ordered by inclusion. Because it is clear
that the invariant subcoalgebras are closed under infinite unions and finite
intersections the lattice LCV(SetF ) is infinitely distributive. If we do not
assume boundedness of F then we cannot speak of the above correspondence.
Yet, we are able to derive the following result directly.

Theorem 3.1. The class based lattice LCV(SetF ) of covarieties of

F -coalgebras is distributive.

Proof. Let {Ki}i∈I be a collection of covarieties of F -coalgebras and let
K be a covariety. Note that I may be a proper class. To show that the
covariety class based lattice LCV(SetF ) is distributive it is enough to verify
that the following inequality is true:

K ·

(
∑

i∈I

Ki

)
≤
∑

i∈I

K · Ki.

Let A ∈ K · (
∑

i∈I Ki). This means that A ∈ K and A ∈
∑

i∈I Ki. Since∑
i∈I Ki = SHΣ(

⋃
i∈I Ki), it follows that A ≤ h(Σj∈JBj), where Bj ∈⋃

i∈I Ki for any j coming from the set of indices J and h is a homomor-
phism. Let ek : Bk → Σj∈JBj for k ∈ J denote the canonical embeddings.
Then A ≤

⋃
j∈J h(ej(Bj)). By Theorem 2.1 we have

A =
⋃

j∈J

h(ej(Bj)) ∩ A.

Since all Ki’s are covarieties and h(ej(Bj)) ∩ A ≤ h(ej(Bj)), it follows that
h(ej(Bj)) ∩ A ∈ Kij for some ij ∈ I. Moreover, because h(ej(Bj)) ∩ A ≤ A

and A ∈ K, we have h(ej(Bj)) ∩ A ∈ K. Hence h(ej(Bj)) ∩ A ∈ K · Kij and
therefore

A ∈
∑

i∈I

K · Ki.

Definition 3.2 ([2]). An F -coalgebra A is called strongly simple whenever
it does not possess any nontrivial homomorphic images.

We will now show some properties of strongly simple coalgebras, neccessary
for characterisation of LCV(SHΣ(A)).
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Lemma 3.3 ([2]). Let A be a strongly simple F -coalgebra. If B is an F -

coalgebra, then there exists at most one homomorphism h : B → A.

Lemma 3.4. Let A = (A,α) be a strongly simple F -coalgebra. Let S ≤ A

and T ≤ A be such that S ∼= T. Then S = T.

Lemma 3.5. Let A be a strongly simple F -coalgebra. If B ∈ SHΣ(A), then

B ∈ ΣCS(A).

Proof. If B ∈ SHΣ(A) then B ≤ h(Σi∈IA), where h is a homomor-
phism. Let ei : A → Σi∈IA denote the canonical embeddings. Since A

is strongly simple, it follows that the image coalgebra h(ei(A)) is isomor-
phic to A for each i ∈ I. Since h(Σi∈IA) =

⋃
i∈I h(ei(A)), it follows that

B =
⋃

i∈I h(ei(A)) ∩ B. Because h(ei(A)) ∩ B ≤ h(ei(A)) ∼= A, we have
B ∈ ΣCS(A).

Let A be an F -coalgebra. Let S(A) denote the set of carriers of subcoalgebras
of A, i.e.

S(A) := {B | B ≤ A}.

By Theorem 2.1, the set S(A) together with the operations of union and
intersection forms a lattice.

What we now want to do is to show without any additional assumptions
that LCV(SHΣ(A)) is isomorphic to the proper lattice (S(A),∪,∩) for any
strongly simple coalgebra A. If we assume that F is bounded then the cofree
F -coalgebra C1 over the one-element set 1 exists. The coalgebra C1 is the
terminal object in the category SetF . Therefore, it is strongly simple. More-
over, strongly simple F -coalgebras are precisely subcoalgebras of C1 and all
subcoalgebras of C1 are invariant. Hence, LCV(SHΣ(C1)) is isomorphic to
(S(C1),∪,∩). The same thing is clearly true for any subcoalgebra of C1.
If we do not assume that F is bounded the terminal object in SetF may
not exist. Yet, we can expand our category SetF to class based coalgebras,
where the terminal object always exists (see [1]). Using a similar argument
and working with class based coalgebras and we get a general result. At the
same time if one does not prefer to work with classes then the direct proof
of the following theorem is an alternative.

Theorem 3.6. Let A be a strongly simple F -coalgebra. Then LCV(SHΣ(A))
is a proper lattice and

LCV(SHΣ(A)) ∼= (S(A),∪,∩).
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Proof. Let K be a subcovariety of the covariety SHΣ(A). Define

SK :=
⋃

{S| S ≤ A and S ∈ K}.

In other words, the F -coalgebra SK is the union of subcoalgebras of A which
are elements of the covariety K.

It is clear that SK is the greatest subcoalgebra of A contained in K.
Let B ∈ K. We have B ≤ f(Σi∈IA) for a homomorphism f . By Lemma

3.5, B ∈ ΣC({Ci}i∈I), where Ci ≤ A for i ∈ I. Since Ci ≤ B, it follows that
Ci ∈ K. Hence Ci ≤ SK for i ∈ I and B ∈ ΣCS(SK). Therefore any coalgebra
B ∈ K is a conjunct sum of subcoalgebras of SK, i.e. K = ΣCS(SK).

We will now prove that the mapping

S(−) : LCV(SHΣ(A)) → S(A);K 7→ SK

is a lattice isomorphism. To show that it is injective, let K1 and K2 be
subcovarieties of the covariety SHΣ(A) such that SK1

= SK2
. Then

K1 = ΣCS(SK1
) = ΣCS(SK2

) = K2.

We will now show that S(−) is a surjection. Let C ≤ A. Then

C ≤ SSHΣ(C).

Since SSHΣ(C) ≤ A and since SSHΣ(C) ∈ SHΣ(C) = ΣCS(C), it follows that

SSHΣ(C) ∈ ΣC({Dj}j∈J),

where Dj ≤ C. This means that for any j ∈ J , the coalgebra SSHΣ(C)

contains a coalgebra D̃j isomorphic to Dj as its subcoalgebra. Hence

D̃j ≤ SSHΣ(C) ≤ A

for all j ∈ J , and Dj ≤ C ≤ A. By Lemma 3.4, we have D̃j = Dj. Therefore,

SSHΣ(C) =
⋃

j∈J

D̃j =
⋃

j∈J

Dj ≤ C

and SSHΣ(C) = C. Consequently the mapping S(−) is a bijection. Since it
is clear that S(−) is order preserving we immediately get that S(−) is the
isomorphism from the lattice LCV(SHΣ(A)) onto (S(A),∪,∩).
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For an F -coalgebra A = (A,α) and a set B such that A ⊆ B, we define the
following B × F - coalgebra:

AB :=
(
A,
(
⊆B

A , α
))

.

The structure map of AB is the following:

(
⊆B

A, α
)

: A → B × F (A); a 7→ (a, α(a)).

This easy trick allows us to force the B × F -coalgebra AB to be strongly
simple and at the same time to leave the subcoalgebras of A untouched.
This property is formally described by the following lemmata.

Lemma 3.7. Let A = (A,α) be an F -coalgebra and let B be a set such that

A ⊆ B. Then the B × F -coalgebra AB is strongly simple.

Lemma 3.8. Let A = (A,α) be an F -coalgebra and let B be a set such that

A ⊆ B. Then (S(A),∪,∩) = (S(AB),∪,∩).

Corollary 3.9. Let (X, τ) be a topological space. There exists a bounded

functor F : Set → Set and a covariety K of F -coalgebras such that LCV(K)
is isomorphic to the lattice (τ,∪,∩) of open sets in τ .

Proof. It follows by Example 2.4, Lemma 3.8, Lemma 3.7 and Theorem
3.6.

4. Covariety lattices for functors preserving arbitrary

intersections

Throughout this section we will assume that F is a bounded functor. There-
fore, the collection of all covarieties of F -coalgebras is a set. It is worth
noting that almost all of the results presented here naturally generalize to
the case when classes of covarieties are allowed.

Given a strongly simple F -coalgebra A, Theorem 3.6 describes the
lattice of subcovarieties of the covariety SHΣ(A) in terms of the
lattice of subcoalgebras of A. The following question arises: can we de-
scribe the covariety lattice of any covariety K of F -coalgebras in a similar
way in terms of subcoalgebras of an F -coalgebra? In general the answer is
“no”, which is seen in the Example 4.4. But first, we will characterize the
lattice LCV(SetF ) in the case the functor F preserves arbitrary intersections.
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An F -coalgebra A is called rooted (or one-generated) if there exists an
element a ∈ A, called a root, such that the coalgebra A is the smallest
subcoalgebra of A containing the element a. If a ∈ A is a root of a rooted
coalgebra A, then we say that A is generated by a.

If F : Set → Set preserves arbitrary intersections, then all rooted F -
coalgebras are of the following form

〈a〉 :=
⋂

{S | a ∈ S and S ≤ A},

for some F -coalgebra A and a ∈ A. For any F -coalgebra A, we have A =⋃
a∈A 〈a〉. It follows that A ∈ ΣC({〈a〉}a∈A).

Let K be a class of F -coalgebras. Let RK denote the collection of
rooted F -coalgebras consisting of exactly one representative from each class
of isomorphic rooted F -coalgebras from the class K. If A, B ∈ RK and are
isomorphic, then A = B. By the assumption of boundedness of F we know
that RK is a proper set. Let D(RK) denote the set of subsets of RK closed
under taking subcoalgebras of homomorphic images, i.e.:

D(RK) := {U ⊆ RK | RK ∩ SH(U) = U}.

Theorem 4.1. If F : Set → Set preserves arbitrary intersections then

the lattice LCV(SetF ) of subcovarieties of SetF is isomorphic to the lattice

(D(RSetF
),∪,∩).

Proof. Let K be a covariety of F -coalgebras. Let A ∈ RK. Then A

is a rooted coalgebra in the covariety K. The rooted subcoalgebras of
homomorphic images of A are elements of the set RK. This means that
RK ∈ D(RSetF

). We define the following mapping.

r : LCV(SetF ) → D(RSetF
);K 7→ RK.

We will show that r is an isomorphism. Let K1 and K2 be two covarieties such
that r(K1) = r(K2). Let A ∈ K1. For any a ∈ A the rooted coalgebra 〈a〉
is a subcoalgebra of A. Hence 〈a〉 ∈ K1 and 〈a〉 ∈ K2. Since A =

⋃
a∈A 〈a〉,

the coalgebra A belongs to K2. Therefore, K1 = K2 and the mapping r is
injective.

Now let U ∈ D(RSetF
). The smallest covariety containing U is given

by the class SHΣ(U). It is clear that U ⊆ r(SHΣ(U)). Now let A ∈
r(SHΣ(U)). This means that A is a rooted coalgebra, say A = 〈a〉, and
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is a subcoalgebra of B, where B = h(Σi∈ICi) is a homomorphic image of
the disjoint sum of a family {Ci}i∈I of rooted coalgebras in U . Let ei :
Ci → Σi∈ICi denote the canonical embeddings. It is easy to see that B =
h(Σi∈ICi) =

⋃
i∈I h(ei(Ci)). Since 〈a〉 ≤ B, it follows that a ∈ h(ej(Cj))

for some j ∈ I. Hence 〈a〉 ≤ h(ej(Cj)). Since U is closed under taking
rooted subcoalgebras of homomorphic images, it follows that A = 〈a〉 ∈ U .
Therefore U = r(SHΣ(U)) and the mapping r is surjective. Consequently
r is bijective. It is clear that the mapping r is an order embedding. Hence
r is a lattice isomorphism.

Remark 4.2. It is worth noting that the mapping r in the proof of Theorem
4.1 is in fact a complete lattice isomorphism.

Corollary 4.3. Let F : Set → Set preserve arbitrary intersections and let

K be a covariety of F -coalgebras. Then LCV(K) ∼= (D(RK),∪,∩).

Example 4.4. We will describe the covariety lattice LCV(SetId). By The-
orem 4.1, the first step is to find all rooted Id-coalgebras. Note that Id-
coalgebras are exactly mono-unary algebras. Therefore, we can speak of
an index and period of a rooted Id-coalgebra. Let N0 = N ∪ {0}. It is
easy to see that every rooted Id-coalgebra can be represented by a pair
(i, p) ∈ N0 × N ∪ {(∞, 0)}, where i denotes an index and p a period of a
given coalgebra. E.g. (0, 2) denotes the coalgebra given by the diagram
• � • and (1, 2) by the diagram • → • � •. Given a finite rooted Id-
coalgebra (i, p), it is not hard to notice that any rooted subcoalgebra of
(i, p) is of the form (i′, p), where i′ ≤ i. Any subcoalgebra of (∞, 0) is of the
form (∞, 0). Moreover, any rooted homomorphic image of a coalgebra (i, p)
is of the form (i′, p′), where i′ ≤ i and p′| p. Therefore,

SH((i, p)) = {(i′, p′) ∈ N0 × N ∪ {(∞, 0)} | i′ ≤ i and p′|p}.

We can introduce a partial order on N0 × N ∪ {(∞, 0)} as follows: (i′, p′) 4

(i, p) : ⇐⇒ i′ ≤ i and p′| p. Then

SH((i, p)) =↓ (i, p) := {(i′, p′) | (i′, p′) 4 (i, p)}.

By Theorem 4.1, the lattice LCV(SetId) of subcovarieties of SetId is isomor-
phic to the lattice of downsets (O(N0 × N ∪ {(∞, 0)}),∪,∩) of the poset
N0 × N ∪ {(∞, 0)}.
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Now, consider the Id-coalgebra (1, 2). The covariety lattice of SHΣ(1, 2)
looks as follows:

SHΣ(1, 2)

SHΣ{(0, 2), (1, 1)}
hhhhhh

VVVVVV

SHΣ(0, 2) SHΣ(1, 1)

SHΣ(0, 1)

VVVVVV
hhhhhh

Ø

At the beginning of this section we stated a question whether it was possible
to describe a covariety lattice LCV(K) of any covariety K of F -coalgebras in
terms of subcoalgebras of an F -coalgebra. We will show that it is impossible
to construct an Id-coalgebra A, whose subcoalgebra lattice is isomorphic to
the covariety lattice SHΣ(1, 2). By contradiction, assume that there exists
Id-coalgebra A whose subcoalgebra lattice is the following:

A

B ∪ C
rr

r LL
L

B C

B ∩ C

LLL rrr

Ø

Join irreducible elements, i.e. B, C and B∩C, must be rooted Id-coalgebras.
The rooted coalgebra B∩C does not contain any proper subcoalgebras. This
means that B ∩ C is a cycle. The coalgebras B = 〈b〉 and C = 〈c〉 cover the
coalgebra B ∩ C. Hence the coalgebra B ∪ C has the following form.

b

��

c

��
•

��

· · ·oo •oo

• // · · · // •

OO

Since A itself is join irreducible, it follows that it is rooted, i.e. A = 〈a〉. On
one hand the element a has to be connected directly with the element b and
on the other with the element c, which is a contradiction. 2
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Theorem 4.5. Let F : Set → Set be a functor preserving arbitrary inter-

sections. Then the lattice LCV(K) of subcovarieties of a covariety K of F -

coalgebras is isomorphic to the lattice of subcoalgebras of some Pκ-coalgebra.

Conversely, for any Pκ-coalgebra A, there exists a functor F : Set → Set

preserving arbitrary intersections and a covariety K of F -coalgebras such that

the lattice LCV(K) is isomorphic to the lattice of subcoalgebras of A.

Proof. If F preserves arbitrary intersection, then by Theorem 4.1,
the lattice LCV(SetF ) of subcovarieties of SetF is isomorphic to the lattice
(D(RSetF

),∪,∩). Take κ := |RSetF
|. Define a Pκ-coalgebra (RSetF

, η) as
follows. For 〈a〉 ∈ RSetF

define

η(〈a〉) := SH(〈a〉) ∩ RSetF
.

Then clearly
S((RSetF

, η)) ∼= D(RSetF
) ∼= LCV(SetF ).

Conversely let A = (A,α) be a Pκ-coalgebra. Then by Theorem 3.6, the
lattice LCV(SHΣ(AA)) of subcovarieties of the covariety SHΣ(AA) of A×Pκ-
coalgebras is isomorphic to S(A) and the functor A × Pκ is bounded and
preserves arbitrary intersections.
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